® —

WIAE

World Journal of Advanced Engineering Technology and Sciences W,
cISSN: 2582-8266 Avaned
Cross Ref DOI: 10.30574/wjaets s e
WJAETS Journal homepage: https://wjaets.com/
(REVIEW ARTICLE) W) Check for updates

The security-first agile playbook: Embedding DevSecOps into program management
practices

Geetha Aradhyula *

Program Management Office Zolon Tech Inc. Herndon Virginia United States.

World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 015-031

Publication history: Received on 20 July 2025; revised on 25 August 2025; accepted on 29 August 2025

Article DOI: https://doi.org/10.30574 /wjaets.2025.16.3.1313

Abstract

In a time when digital transformation has accelerated and cyber threats have become increasingly complex;
organizations face the double whammy of needing to keep Agile delivery speeds high while holding security and
compliance at an inseparable level of consideration. Traditional Agile methods promote very fast iterations and placing
value in their customer, oftentimes depriving security of its due share of time or relegating it to after development,
which leads to either vulnerabilities or compliance issues, and expensive reworks. Hence such a gap has been addressed
by this research: it introduces the Security-First Agile Playbook, a coherent mechanism to weave DevSecOps practices
into the program management continuum. So, in simple terms, the playbook treats security as a continuous,
collaborative, and measurement-based activity that is ingrained in their sprints and release cycle.

The core tenets in the framework revolve around security by design, i.e., vulnerability scanning by automation, threat
modeling, secure coding practices, and compliance checking in real-time within development pipelines. Bringing in
DevSecOps pipelines offers the prospect of shifting security left allowing issues to be found much earlier, remediated in
a timely fashion, and in-built metrics like mean time to remediation (MTTR) and vulnerability density to be tracked
through compliance adherence. Furthermore, the playbook emphasizes the role of program managers as security
enablers, embedding security champions in cross-functional teams, aligning sprint goals with risk management
objectives, and harmonizing Agile governance with regulatory frameworks.

Borrowing insights across highly regulated industries such as finance, healthcare, and defense, the study has illustrated
some practical pathways for implementing the Security-First Agile Playbook, including cultural transformation,
automated tool adoption, and adaptive governance. From the findings, we conclude that embedding security in program
management mitigates risks while simultaneously enhancing organizational resilience, stakeholder trust, and fast-
tracking secure innovation. Therefore, the Security-First Agile Playbook provides a pragmatic, adaptive framework for
organizations to weight speed, assurance, and resilience in an increasingly volatile digital world.

Keywords: Agile Software Development, DevSecOps, Program Management, Secure Software Development Lifecycle
(SSDLC), Continuous Compliance, Cyber Resilience

1 Introduction

Agile methodologies have emerged as the dominant paradigm in software development, emphasizing adaptability,
iterative delivery, and responsiveness to customer needs. Over the past two decades, Agile has evolved from a niche
methodology into the standard for digital transformation initiatives across industries (Beck et al., 2001; Dingsgyr et al.,
2021; VersionOne, 2020; Fitzgerald and Stol, 2017). However, while Agile accelerates time-to-market and fosters
collaboration, it has historically deprioritized security. In many organizations, security was treated as a final gate—

* Corresponding author: Geetha Aradhyula

Copyright © 2025 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0.

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://www.wjaets.com/
https://doi.org/10.30574/wjaets.2025.16.3.1313
https://crossmark.crossref.org/dialog/?doi=10.30574/wjaets.2025.16.3.1313&domain=pdf

World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 015-031

addressed late in the development lifecycle or as a compliance check after functionality was delivered (Leite et al., 2019;
Khan and Akhunzada, 2020).

This separation has proven both risky and costly. According to the National Institute of Standards and Technology (NIST
SP 800-218, Secure Software Development Framework), vulnerabilities discovered in production can cost up to 30
times more to remediate compared to addressing them during requirements or design (NIST, 2022). Similarly, a Gartner
(2023) report highlights that organizations failing to integrate security early in Agile pipelines experienced 40% more
release delays due to emergency security fixes. Industry research further underscores that security misconfigurations
and vulnerabilities remain the leading cause of breaches in Agile-driven cloud deployments (Hashizume et al., 2013;
Hasan and Salah, 2019). These findings demonstrate the urgent need for a paradigm shift: embedding security as a core
design principle rather than a reactive measure.

The Security-First Agile Playbook is proposed as a response to this gap. Unlike existing DevSecOps frameworks, which
primarily focus on automation and pipeline-level security, this playbook introduces a governance overlay that aligns
program management, compliance requirements, and security practices within Agile delivery (Rajapakse et al.,, 2021;
Binbeshr and Imam, 2025). It reframes security not as a bottleneck, but as a catalyst for sustainable innovation and
resilience.

Beyond automation, the playbook emphasizes:

e (Cultural transformation, where “security is everyone’s responsibility” (Kim et al.,, 2016; Kuehl, 2021).

e Adaptive governance, enabling organizations to balance speed with assurance (Kerzner, 2022; Open Group,
n.d.).

e Real-world applications, demonstrated through case studies (e.g., a global financial services firm reduced
release risk by 35% through embedded threat modeling, according to Forrester, 2023).

e Integration with evolving standards, such as NIST, GDPR, HIPAA, and Zero Trust security models (Sedgewick
and Souppaya, 2020; Microsoft, 2024; OWASP, 2024).

1.1. Contribution

This framework fills the gap between theory and practice by combining cultural change, governance principles,
automation, and industry case evidence into one cohesive model. Its unique contribution lies in bridging DevSecOps
practices with program-level governance, ensuring enterprises can achieve both compliance and agility without
compromise (Cheenepalli et al., 2025; Singh, 2025).

DevSecOps

Plan Deploy

(PRE-PRODUCTION} (PRODUCTION)

Threat modeling,) Access and configuration management,
change impact analysis chaos engineering, pen testing

Build Operate

(PRE-PRODUCTION) Pre-production Production (PRODUCTION)

Log collection, RASP,
Patching, WAF

Pre-commit hooks,
software
composition analysis,
SAST, code review,
container security,
vulnerability
scanning, DAST

Test Monitor
(PRE-PRODUCTION) (PRODUCTION)
DAST SIEM, vulnerability monitoring,

access control

Figure 1 DevSecOps lifecycle integrating security across planning, building, testing, deployment, operation, and
monitoring

16

World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 015-031

2. Understanding the Security-First Mindset

2.1, Defining Security-First Agile

Security-First Agile represents a paradigm shift in modern software delivery. Instead of treating security as an
afterthought or a compliance checklist, it elevates security to a core success measure alongside agility and speed.
Traditional Agile frameworks prioritize rapid iteration and customer responsiveness, but often at the cost of sidelining
security (Dingsgyr et al., 2021; Fitzgerald and Stol, 2017). This trade-off has proven increasingly untenable in today’s
high-risk cyber environment, where adversaries exploit even minor gaps introduced during rapid releases (Shin and
Williams, 2013; Khan and Akhunzada, 2020).

In Security-First Agile, security is woven into every activity, artifact, and deliverable in the Agile lifecycle from backlog
refinement and sprint planning, to coding, automated testing, deployment, and post-release monitoring (Jalali and
Wohlin, 2012; Rajapakse et al., 2021). This approach positions security as a non-negotiable design attribute, equal in
importance to performance, scalability, and functionality. Its central philosophy is that the real value of agility lies not
merely in speed of delivery, but in the resilient, trustworthy, and compliant delivery of value (Gartner, 2023; Kim et al,,
2016).

2.2, Why Security Cannot Be Bolted-On Later

The “bolt-on” approach to security where vulnerabilities are addressed only after development is increasingly
unsustainable. NIST (2022) estimates that fixing vulnerabilities post-deployment is 30x more expensive than resolving
them during early design. Industry research further highlights that nearly 60% of breaches exploited unpatched or late-
fixed vulnerabilities (Verizon DBIR, 2023; IBM, 2023). Moreover, bolted-on security often leads to

Project delays, as critical flaws surface during late-stage compliance checks (Forrester, 2023).

Rising costs, as vulnerabilities accumulate into systemic issues (PwC, 2022).

Developer frustration, as late fixes disrupt Agile velocity (Erich et al., 2017).

Customer trust erosion, when preventable security incidents reach production (Ponemon Institute, 2023).

In Agile and DevOps pipelines, where deployments occur in hours or days, inserting heavy post-development security
reviews creates bottlenecks that contradict the very principle of agility (Hashizume et al.,, 2013). The security-first
mindset therefore advocates for “shifting left” embedding security practices as early as possible in the lifecycle (Eickhoff
et al,, 2020; Williams et al., 2019). This shift transforms security from a reactive remediation task into a proactive
enabler of quality.

2.3. Common Risks of Ignoring Security in Agile/DevOps Pipelines

Organizations that fail to embed security into Agile and DevOps workflows face a range of risks

e Increased Vulnerabilities: Without secure coding practices, static/dynamic application security testing
(SAST/DAST), and continuous penetration testing, exploitable flaws proliferate through rapid release cycles
(OWASP, 2024; Chen etal., 2019).

e Data Breaches and Privacy Violations: Weak controls expose sensitive information, leading to regulatory
fines, reputational damage, and erosion of customer trust (Ponemon Institute, 2023; Cisco, 2023).

e Regulatory Non-Compliance: Neglecting automated compliance checks risks violating GDPR, HIPAA, PCI-DSS,
or SOC 2, which can result in financial penalties and legal actions (ENISA, 2021; ISO/IEC, 2018).

e Operational Disruptions: Exploitable weaknesses can trigger downtime, ransomware attacks, and outages,
undermining business continuity (IBM, 2023; Accenture, 2022).

e Erosion of Agility: Security neglect generates technical debt, slowing innovation as teams spend increasing
time fixing past issues rather than building new capabilities (Erich et al., 2017).

For example, a 2022 IBM case study found that a financial services firm adopting embedded threat modeling within

Agile teams reduced release-related security incidents by 35%, demonstrating the measurable impact of early
integration (IBM, 2022).

17

World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 015-031

2.4. Alignment with Compliance, Regulatory, and Industry Standards

Security-First Agile is not only about risk reduction it also ensures alignment with regulatory and industry standards.
High-risk domains such as healthcare, finance, and government face strict mandates requiring that security be designed
into software rather than retrofitted.

24.1. Key frameworks that guide this integration include

e NIST Cybersecurity Framework (CSF) and NIST Secure Software Development Framework (SSDF, SP 800-218)
(NIST, 2022).

e ISO/IEC 27001, emphasizing information security management (ISO, 2018).

e OWASP Software Assurance Maturity Model (SAMM) and CIS Critical Security Controls, offering best practices
for secure development (OWASP, 2024; CIS, 2023).

e Sector-Specific Regulations: HIPAA for healthcare, PCI-DSS for payments, and GDPR for data privacy
(European Union, 2018; HHS, 2021).

Modern practices such as continuous compliance monitoring, automated audit logging, and policy-as-code allow Agile
teams to maintain regulatory alignment while avoiding disruptive manual audits (PwC, 2022; Kuehl, 2021). This
integration not only mitigates regulatory risk but also fosters trust among regulators, customers, and business
stakeholders.

Faster delivery Improved security Reduced costs Improved security Greater business
posture integration success

Figure 2 Benefits of the shift-left approach in software development and security

3. Principles of the Security-First Agile Playbook

The Security-First Agile Playbook is guided by a set of core principles designed to make security an enabler of agility
rather than a constraint. These principles provide a structured, adaptable framework for embedding DevSecOps
practices into program management while respecting the collaborative and iterative culture of Agile. Unlike traditional
DevSecOps guidance, this playbook introduces a governance overlay that explicitly links security practices with
compliance, risk management, and business outcomes (Sharma and Bawa, 2023; Baca et al,, 2021).

3.1. Shift-Left Security

At the foundation of Security-First Agile is the shift-left principle, which emphasizes integrating security activities as
early as possible in the development lifecycle. Rather than postponing testing until production release, teams conduct
threat modeling, secure design reviews, and static code analysis during backlog refinement, sprint planning, and
development.

18

World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 015-031

Research has shown that defects remediated early are 10-30 times less costly to fix compared to post-deployment
vulnerabilities (NIST, 2022; IEEE, 2023; Veracode, 2022). Shift-left practices also empower developers by embedding
secure coding standards, IDE-integrated vulnerability scanning, and fast feedback loops, reinforcing the cultural norm
that “every developer is a security contributor” (Wuyts et al,, 2021).

3.2. Continuous Security Monitoring

Security cannot be treated as a one-time milestone. The playbook stresses end-to-end continuous monitoring, spanning
pipelines and runtime environments. This includes

e Automated dependency and container scanning in CI/CD.
e Integrated dynamic and interactive application security testing (DAST/IAST) during staging.
e Runtime Application Self-Protection (RASP) and anomaly detection in production.

Continuous monitoring provides real-time risk awareness, reduces blind spots, and ensures systems remain resilient
against evolving threats (Gartner, 2023; ENISA, 2022). Additionally, monitoring supports continuous compliance by
automatically generating security logs and audit artifacts critical for industries governed by HIPAA, PCI-DSS, or GDPR
(Bohme and Kataria, 2022).

3.3. Shared Responsibility Model

A defining feature of Security-First Agile is the shared responsibility model, which extends security ownership across
all Agile roles

Developers implement secure coding and review.

Testers/QA validate functionality and security together.

Operations teams maintain secure deployments and patching.

Security engineers provide expertise, automated controls, and guidance.
Program managers and product owners align risk tolerance with delivery goals.

This model ensures that security decisions are contextual and continuous, preventing costly late-cycle escalations. For
example, studies of Agile security adoption in financial services found that embedding security champions into squads
reduced release delays by 35% while lowering post-release vulnerabilities (Forrester, 2022; Williams et al., 2020). The
shared responsibility principle aligns with the DevSecOps Research Roadmap proposed by the IEEE Cybersecurity
Initiative, which emphasizes distributed accountability across Agile ecosystems (Rahman and Williams, 2022).

3.4. Adaptive Governance

Traditional governance marked by long approval cycles and rigid policies conflicts with Agile speed. The playbook
introduces adaptive governance, which codifies policies into workflows and applies risk-based control levels:

e Low-risk features — lightweight automated compliance checks.
e High-risk systems (e.g., healthcare or finance) — additional human approval and scrutiny.

This approach aligns with the NIST Secure Software Development Framework (SSDF, SP 800-218), which advocates
embedding compliance into pipelines rather than treating it as an afterthought (NIST, 2022). Adaptive governance
improves both agility and trust by making compliance continuous, transparent, and audit-ready (ISO, 2022; Ernst and
Young, 2023).

3.5. Automation First

Automation is the backbone of Security-First Agile. By prioritizing security-as-code, teams eliminate bottlenecks, reduce
human error, and ensure consistent application of controls across environments. Practices include:

Infrastructure-as-Code (IaC) with security policies baked in.

Automated vulnerability detection and remediation at build and deployment.
Policies-as-Code to enforce compliance dynamically.

Automated rollback mechanisms if anomalies or misconfigurations are detected.

Automation enables security controls to evolve at the same pace as rapid Agile delivery cycles, turning what was once
a bottleneck into a driver of resilience and velocity (Hashizume et al.,, 2023; Red Hat, 2022).

19

World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 015-031

DevSecOps

£
= e———
=

Figure 3 Principles of the Security-First Agile Playbook

Summing up, the five principles (shift-left security, continuous monitoring, sharing responsibility, adaptive governance,
and automation-first) constitute the coordinate framework of the Security-First Agile Playbook. Consequently, a firm's
speed, resilience, and compliance come together to create a space that supports secure innovation in a sustainable way.

4. Embedding DevSecOps into Program Management

Embedding DevSecOps into program management requires a fundamental rethinking of governance, structure, and
measurement. Traditional program management emphasized scope, cost, and schedule as primary success factors. Agile
evolved this view by introducing adaptability, velocity, and customer value as additional metrics of success. With the
emergence of DevSecOps, program management must further evolve by treating security governance as a first-class
concern and embedding it directly into Agile delivery practices (Kersten, 2021; Fitzgerald and Stol, 2022).

This section outlines how program managers can align planning, execution, and monitoring with security principles
without compromising speed, adaptability, or innovation.

4.1. Redefining Program Management in the Agile-DevSecOps Ecosystem

In a DevSecOps environment, program management shifts from a compliance-at-the-end model to a continuous
orchestration role. Program managers are no longer just timeline and deliverables coordinators they act as strategic
enablers of resilience, compliance, and cross-functional collaboration (Ebert and Visaggio, 2021; Gartner, 2023).

e Security must be integrated into all Agile ceremonies: backlog grooming, sprint reviews, retrospectives, and
release planning (Humphrey and Snyder, 2022).

e Compliance cannot remain an afterthought; instead, it becomes an ongoing responsibility embedded within
delivery pipelines (NIST, 2022; Basiri et al., 2021).

As Gartner (2023) highlights, organizations that adopt continuous compliance frameworks see up to 40% faster release
cycles without an increase in post-deployment vulnerabilities. In this context, program managers evolve into custodians
of continuous risk management, ensuring that each increment of delivery is not just functional but also secure and audit-
ready (Forrester, 2022; ISACA, 2023).

20

World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 015-031

4.2, Governance Frameworks that Align Security with Agile Delivery

Adaptive governance is a defining feature of Security-First Agile. Traditional rigid governance structures conflict with
Agile’s responsiveness, whereas adaptive governance balances assurance with agility (Rigby et al., 2016; Stahl and
Bosch, 2022).

Frameworks such as Scaled Agile Framework (SAFe), Disciplined Agile Delivery (DAD), or hybrid Agile-governance
approaches can be extended with lightweight security checkpoints (Moustafa et al.,, 2021). Examples include:

e Security stage gates embedded into PI planning.
e Policies-as-Code and automated compliance validation in CI/CD pipelines.
e Dynamic controls that adjust based on risk (IEEE Software, 2022).

This aligns with the NIST Secure Software Development Framework (SSDF, SP 800-218, 2022), which recommends
embedding compliance into workflows rather than delaying it until late-stage reviews. Such approaches not only
support audit readiness but also strengthen regulator confidence in Agile delivery (CISA, 2023).

4.3. Mapping Security Requirements into Program Backlogs

One of the most practical ways to integrate DevSecOps into program management is by translating security
requirements into program backlogs. This makes security visible, traceable, and prioritized alongside features and user
stories (Williams et al.,, 2021).

4.3.1. Examples

e “As a program owner, | want all third-party libraries to be automatically scanned for vulnerabilities so that
dependency risk is reduced.”

e “As a product owner, | want encryption standards enforced at the database level so that HIPAA compliance is
maintained.”

Expressing security controls as backlog items ensures transparency, shared ownership, and facilitates audits by
showing traceable security actions across delivery cycles (IEEE Software, 2022; Fitzgerald and Stol, 2022).

4.4. Metrics and KPIs: Measuring Security Maturity Alongside Delivery

Program managers must expand monitoring beyond traditional Agile KPIs (velocity, throughput, defect rates) to include
security maturity metrics (Okubo et al., 2021; Forrester, 2022). These may include:

Mean Time to Remediation (MTTR): Average time to fix vulnerabilities post-detection.

Vulnerability Detection Rate: Proportion of vulnerabilities caught early versus post-release.

Compliance Coverage: Percentage of regulatory requirements validated continuously through automation.
Risk Reduction Velocity: Rate of addressing security risks compared to new risks identified.

Security Debt: Accumulated backlog of unresolved vulnerabilities (Leite et al., 2021).

According to Forrester (2022), firms that tracked security KPIs in tandem with Agile metrics achieved 25% faster
remediation times and significantly reduced risk exposure compared to firms tracking them separately.

4.5. Case Examples: Successful Integration of DevSecOps into Enterprise-Scale Programs

e Financial Services: A global bank embedded automated PCI-DSS and GDPR compliance checks into its CI/CD
pipelines, reducing audit preparation time by 60% while sustaining daily production deployments (Gartner,
2023).

e Healthcare Technology: A U.S.-based health IT provider integrated HIPAA-driven security requirements into
backlogs as user stories (ISACA, 2023). This reduced data breach incidents and cut regulatory approval
timelines.

e Government Programs: The U.S. Department of Defense’s Enterprise DevSecOps Initiative (2022)
operationalized DevSecOps at scale, embedding security into program increment planning and pipelines (DoD,
2022). This allowed classified systems to be deployed faster while meeting stringent cybersecurity standards.

These cases demonstrate that embedding DevSecOps into program management is not only feasible but also yields
measurable outcomes: reduced risk, improved compliance efficiency, and stronger stakeholder trust.

21

World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 015-031

4.6. Contribution Beyond Existing Frameworks
What this playbook contributes is a governance overlay that integrates security with Agile program management.
Unlike standard DevSecOps models that emphasize tooling and culture, this framework explicitly links:

e Program-level governance with security KPIs.
e Backlog integration with auditability and traceability.
e Adaptive governance with regulatory readiness (Humphrey and Snyder, 2022; Ebert and Visaggio, 2021).

This transforms program management into a strategic enabler of secure agility, rather than a compliance bottleneck.

DevSecOps

Plan Denelo

(PRE-PRODUCTION) (PRODUCTION

Threat modeling, Access and configuration management,
change impact analysis chaos engineering, pen testing

analysis, SAST, code
review, container
security, vulnerability
scanning, DAST

Bui Id Pre-production Production oPerate
(PRE-PRODUCTION) (PRODUCTION)
Pre-commit hooks, Log collection, RASP,
software composition Patching, WAF

Test Monitor
(PRE-PRODUCTION) (PRODUCTION)
DAST SIEM, vulnerability monitoring,

access control

Figure 4 Embedding DevSecOps into Program Management

5. Security Practices Across the Agile Lifecycle

Embedding security into Agile practices requires that each phase of the lifecycle has its own safeguards and systematic
controls. The Security-First Agile Playbook ensures that vulnerabilities are anticipated, compliance is continuously
maintained, and resilience is sustained throughout delivery. By mapping practices directly to Agile stages planning,
development, testing/integration, and deployment/operations this approach bridges the gap between security
frameworks and real-world program delivery (Schneier, 2023; ENISA, 2022).

5.1. Planning Phase

5.1.1. Incorporating Threat Modeling and Risk Assessments

Teams use structured methodologies such as STRIDE or PASTA to anticipate adversarial behavior at the feature level.
Threat modeling during backlog refinement surfaces risks early, ensuring that design decisions account for security
from the start (Shostack, 2022; NIST SP 800-218, 2022; Alharthi et al., 2023). Program managers align these identified
risks with business priorities to balance cost, speed, and resilience.

5.1.2. Secure Backlog Prioritization

Security requirements are written into backlogs as user stories or enablers and prioritized alongside functional features.
This embeds security visibility into sprint planning while making it auditable and measurable (OWASP SAMM, 2023;
Hassan et al,, 2022).

22

World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 015-031

5.2. Development Phase

5.2.1. Secure Coding Practices

Developers follow established guidelines (OWASP Top 10, SEI CERT) to avoid insecure APIs, minimize privilege access,
validate inputs, and strengthen authentication flows. Increasingly, organizations assign security champions within Agile
squads to reinforce secure practices at peer level (Microsoft, 2022; Clarke and Molina, 2023).

5.2.2. Code Review with Security Checklists

Peer reviews are augmented with security checklists addressing common errors such as hard-coded secrets, SQL
injections, and misconfigured APIs. These shift-left practices reduce reliance on post-development audits and shorten
remediation cycles (IEEE Security and Privacy, 2022).

5.2.3. Automated Static and Dynamic Testing

SAST and DAST tools are embedded directly into IDEs and CI/CD pipelines to continuously detect risks (Singh and Kaur,
2023; Gartner, 2023).

5.3. Testing and Integration Phase

5.3.1. Cl/CD Pipelines with Embedded Security Gates

Security becomes “pipeline-native” through automated dependency scanning, license validation, and Infrastructure-as-
Code (IaC) checks. Builds containing critical vulnerabilities are automatically blocked, ensuring insecure code cannot
progress to production (Forrester, 2023; Pahl et al., 2022).

53.2. Automated Vulnerability and Penetration Testing

Lightweight penetration testing and fuzzing are integrated into staging environments, producing real-time feedback.
For instance, case studies highlight fintech firms reducing post-release vulnerabilities by up to 40% after embedding
fuzzing in CI/CD (Gartner, 2023; Bohme and Nowotny, 2021).

5.4. Deployment and Operations Phase

54.1. Cloud-Native Security Integration

[aC templates (Terraform, AWS CloudFormation) enforce secure defaults like encryption at rest/in transit, automated
certificate rotation, and restrictive IAM policies. Kubernetes admission controllers block insecure container
deployments (Red Hat, 2022; HashiCorp, 2023).

5.4.2. Continuous Monitoring and Incident Response Readiness
Organizations deploy SIEM and XDR tools with runtime anomaly detection. Automated playbooks accelerate
containment, reducing MTTD and MTTR significantly (Ponemon, 2023; Palo Alto Networks, 2022).

5.4.3. Compliance as Code

Regulatory mandates (HIPAA, PCI-DSS, GDPR) are validated continuously through automation. This transforms
compliance from audit-heavy into continuous, code-driven assurance (NIST SSDF, 2022; ENISA, 2023; Nguyen et al,,
2022).

5.5. Contribution of this Playbook

Unlike standard DevSecOps toolchains, the Security-First Agile Playbook integrates governance overlays and case-based
practices across the lifecycle. It moves beyond technical automation to provide program managers with a holistic
framework (IEEE Software, 2022; Gartner, 2023).

e Embedding security requirements into Agile backlogs ensures traceability and audit readiness.

e Applying metrics (e.g, MTTR, vulnerability detection rate, security debt) ensures accountability beyond
delivery velocity.

e Aligning with frameworks (NIST SSDF, OWASP SAMM, SAFe) provides credibility and regulatory defensibility.

23

World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 015-031

This lifecycle approach operationalizes continuous compliance, allowing enterprises to innovate quickly while
maintaining regulatory trust (Forrester, 2022; Shostack, 2022; Clarke and Molina, 2023).

AGILE DEVELOPMENT

Daily Standup

000 —6 -6

Continuous

Product Backlogs Final e
Stage Product fescbeck
Process User
Flow Chart Inputs Daily

Continuous
Feedback

CONTINUOUS DELIVERY

Infrastructure
as code

Product

s}
¢ C
-_ ontinuous
@] H= R
. e
Provisioning Ci Server

UAT Tools

Repository
QA Manager

CONTINUOUS INTEGRATION

Commit Build + Unit Test + Code Quality

DEV Code Cl Server

Repository

Code Quality Repository
Metrics Manager

Continuous

S Feedback

&0

Collaboration Test Scripts Test Suite
-

Auto Ticket [T)

« Creation T
[-

[T

Issue Cl Server
Tracking L ; 1
Testing INT UAT QA

Metrics

Figure 5 Security Practices Across the Agile Lifecycle

6. Cultural transformation

Adopting a Security-First Agile Playbook goes far beyond tools, automation, and governance. Lasting transformation
requires a fundamental cultural shift in how organizations think about and practice security. Without cultural change,
even the most advanced DevSecOps practices risk becoming superficial or unsustainable. Culture provides the
foundation for embedding, scaling, and sustaining security-first principles across the enterprise.

6.1. Breaking Silos: Collaboration Beyond Boundaries

Traditional program management often suffers from functional silos, where development, operations, and security
teams work in isolation. This disjointed approach delays risk identification, weakens accountability, and introduces
blind spots. To counter this, the Security-First Agile Playbook emphasizes cross-functional collaboration

e Developers, security engineers, and operations personnel collaborate from inception to delivery.
e Teams conduct joint stand-ups, retrospectives, and integrated workflows, ensuring that security is embedded
into every iteration.
e Collaboration builds trust, removes the “wall of confusion” between teams, and embeds secure thinking
throughout the Agile lifecycle.

6.2. Upskilling Teams with Security Awareness and Training

Agile teams thrive on speed, but velocity without security competence introduces systemic risks. Cultural
transformation requires continuous education and awareness for every role not just security specialists.
Examples include

Secure coding workshops aligned with OWASP and SEI CERT standards.
Simulated phishing exercises and red-team/blue-team simulations.
Vulnerability management training tied to compliance requirements.
Gamification and pair programming with security engineers, making learning engaging and practical.

The goal is for every team member to understand the security impact of their work, reducing reliance on a small group

of experts.

24

World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 015-031

6.3. Building Security Champions in Agile Squads

A scalable way to embed expertise is through Security Champions designated members within Agile squads who:

e Mentor peers on secure design and coding practices.
e Highlight risks during backlog refinement and sprint planning,.
e Serve as a bridge between development teams and centralized security functions.

Security Champions do not replace security engineers; rather, they extend expertise into day-to-day development,
creating a distributed and proactive defense model. This approach helps identify risks early and fosters collective
accountability across squads.

6.4. Encouraging a “Security as Everyone’s Responsibility” Culture
The most profound cultural transformation occurs when security ceases to be a specialized function and becomes a

shared responsibility across the organization. To embed this mindset:

e Security objectives should be part of performance reviews, sprint definitions of done, and program KPIs.
e Leadership must model secure decision-making, reinforcing that speed and security are not mutually exclusive.
e Recognition and incentives should reward teams that achieve both velocity and resilience.

When consistently reinforced, this mindset reframes security as a foundation for innovation and trust, rather than as a
compliance obligation or delivery obstacle.

Governance

People Process

Technology

Figure 6 Breaking Silos: Collaboration Beyond Boundaries

7. Tools and Technologies Supporting DevSecOps

While the Security-First Agile Playbook is deeply rooted in culture and governance, its successful execution depends
heavily on technological enablement. The right tools ensure that security is integrated seamlessly into the Software
Development Life Cycle (SDLC) without slowing delivery. A well-orchestrated DevSecOps toolchain enables automation,
continuous monitoring, proactive vulnerability detection, and compliance enforcement, all while adapting to evolving
threat landscapes (Mohan and Othmane, 2022; Shackleford, 2023).

7.1. Security Scanning Tools

Security scanning ensures that vulnerabilities are detected early and consistently, reducing the cost and impact of
remediation. Key categories include:

25

World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 015-031

e Static Application Security Testing (SAST): Analyzes source code or binaries before deployment to detect
vulnerabilities such as SQL injection or buffer overflows at build time (e.g., SonarQube, Fortify) (OWASP, 2023).

e Dynamic Application Security Testing (DAST): Simulates attacks on running applications to identify runtime
issues such as misconfigurations or authentication flaws (e.g., OWASP ZAP, Burp Suite) (ENISA, 2022).

e Interactive Application Security Testing (IAST): Combines the strengths of SAST and DAST by observing
code execution in real time during functional testing (e.g., Contrast Security) (Gartner, 2023).

e Runtime Application Self-Protection (RASP): Embedded into applications to monitor and block malicious
behavior in production, providing a last line of defense (NIST SP 800-218, 2022).

Together, these tools form a layered security approach, protecting applications at build, test, and runtime stages (Jin et
al,, 2021).

7.2. Container and Cloud-Native Security Solutions

As organizations embrace microservices, containerization, and cloud-native architectures, protecting these
environments becomes central to DevSecOps.

e Container Security: Tools such as Aqua Security, Prisma Cloud, and Anchore scan container images for
vulnerabilities, enforce compliance policies, and monitor runtime anomalies (CSA, 2023).

e Kubernetes Security: Policy enforcement solutions (e.g.,, OPA Gatekeeper, Kyverno) and runtime protection
platforms prevent misconfigurations, privilege escalations, and lateral movement attacks (Red Hat, 2022).

e C(Cloud-Native Security: Cloud Security Posture Management (CSPM) tools (e.g., Wiz, Lacework, Orca Security)
and Cloud Workload Protection Platforms (CWPP) continuously monitor cloud resources for
misconfigurations, policy violations, and suspicious behaviors (Gartner, 2023; HashiCorp, 2022).

This ensures that security and compliance scale alongside dynamic cloud-native infrastructures (Miller and
Kossakowski, 2022).

7.3. Secrets Management and Identity Access Controls

Poor credential management remains a leading cause of security breaches. Proper secrets management and identity
governance are essential safeguards.

e Secrets Management: Platforms like HashiCorp Vault, CyberArk, and AWS Secrets Manager securely store,
rotate, and audit API keys, passwords, and certificates (Kandek, 2022).

e Identity and Access Management (IAM): Solutions such as Okta, Azure Active Directory, and AWS IAM
enforce the principle of least privilege across users and systems. Multi-factor authentication (MFA), single sign-
on (SSO), and Just-In-Time (JIT) access provide additional defense layers against credential theft and misuse
(Ponemon Institute, 2023).

Integrating IAM and secrets management ensures that only the right people and services access the right resources at
the right time (CSA, 2022).

7.4. Continuous Compliance Platforms

For regulated industries, compliance with GDPR, HIPAA, PCI-DSS, SOX, and FedRAMP is non-negotiable. Manual
compliance checks are slow and error-prone, but continuous compliance platforms automate adherence, reducing audit
fatigue and regulatory risk (ISACA, 2023).

e Infrastructure as Code (IaC) Security: Tools such as Terraform with Sentinel, Pulumi, and Checkov validate
IaC templates against compliance and security policies before provisioning (SANS Institute, 2023).

e Compliance Automation: Platforms like Drata, Vanta, and JupiterOne continuously monitor controls, generate
audit-ready evidence, and flag violations in near real-time (Forrester, 2023).

e This approach transforms compliance from a reactive checkpoint into an ongoing, automated assurance
mechanism (CNCF, 2022).

26

8.

World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 015-031

= sunbytes ¥ o o

06 e,

3

O B #iira Pl <L RG
DevSecOps - Ensuring

N M
Security in CI/CD Pipeline m @ ,;M

Figure 7 Tools and Technologies Supporting DevSecOps

Challenges and Solutions

Despite the appeal of embedding security into Agile workflows, the transition is rarely seamless. Organizations face
cultural, technical, and financial barriers that must be addressed strategically.

8.1.

Resistance to Change in Agile Environments

Cultural resistance remains the largest obstacle. Agile teams often perceive security practices as slowing down delivery,
while security staff view Agile demands as undermining rigor (Shah et al., 2022). Developers may resist additional
reviews, and operations teams may feel overburdened by cross-functional requirements.

811

8.2.

Solution

Foster collaboration through cross-functional workshops and security awareness sessions.

Appoint security champions within Agile squads who bridge developers and security specialists (Gartner,
2023).

Implement incremental adoption, starting with lightweight measures like automated SAST before scaling up.

Balancing Speed with Security Rigor

Agile prioritizes rapid iteration, while security requires thorough validation. This tension leads some teams to treat
compliance as a “checkbox exercise,” undermining real protection (Forrester, 2022).

821

Solution

Shift security left by embedding controls (threat modeling, IaC validation, automated scans) early.

Employ CI/CD pipeline automation to minimize delays.

Use risk-based prioritization, addressing critical vulnerabilities immediately while deferring low-severity
issues to later sprints.

27

World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 015-031

8.3. Managing Costs of Security Integration

DevSecOps requires investments in tooling, training, and workflow restructuring. Small and mid-sized firms often
perceive this as cost-prohibitive (IEEE Security and Privacy, 2022).

83.1. Solution

e Adopt open-source and hybrid tools (e.g., OWASP ZAP, Trivy).

e Leverage cloud-native security services from AWS, Azure, and GCP.

e Build a security ROI model, demonstrating that preventing breaches reduces long-term costs versus
remediation or regulatory fines (NIST SP 800-218, 2022).

8.4. Overcoming Tool Sprawl with Integrated Platforms

Fragmented toolchains lead to redundancy and data silos. A 2023 survey showed 58% of enterprises suffer from tool
sprawl, complicating visibility (Forrester, 2023).

84.1. Solution

e Migrate to platform-based ecosystems that consolidate functions.
Standardize toolchains across programs.
e Deploy unified dashboards aggregating metrics, logs, and vulnerabilities into a single view.

8.5. Case Studies of Failures and Lessons Learned

e Retail Case (Failure): A retailer bypassed security testing to meet sprint deadlines, resulting in a breach of
10M+ customer records (Gartner, 2022). Lesson: Speed without security has long-term financial and
reputational consequences.

e Financial Case (Failure): A financial services firm deployed 12 unintegrated tools, creating duplication and
blind spots. Lesson: Integration and governance are as critical as tool adoption.

e Healthcare Startup (Success): A cloud-native healthcare provider embedded security champions and
automated compliance checks, reducing vulnerabilities by 40% and audit time by 60% (IEEE, 2023). Lesson:
Cultural integration and automation drive measurable impact.

9. Future of Security-First Agile

Embedding DevSecOps into Agile program management is not an endpoint but a foundation. The next decade will see
significant evolution across automation, architectures, intelligence, and regulation.

9.1. Al-Driven Security Automation

Al and ML are reshaping security practices. Rule-based systems often fail against polymorphic and zero-day threats. By
2025, 60% of DevSecOps pipelines will include Al-based anomaly detection (Gartner, 2024).

9.1.1. Applications

e Detect anomalies in code, infrastructure, and user behavior in real time.
e Prioritize vulnerabilities based on exploitability and business impact.
e Enable self-healing pipelines, auto-patching misconfigurations or injecting controls dynamically.

This marks a transition from reactive defense to predictive resilience.

9.2. Zero Trust Architecture (ZTA) Integration

Perimeter-based security is insufficient in cloud-native, multi-tenant, and remote-first ecosystems. Zero Trust mandates
continuous authentication, least privilege, and context-aware access (NIST SP 800-207A, 2023).

9.2.1. InAgile Workflows

e Enforce IAM at every pipeline stage.
e Apply dynamic privilege adjustment based on risk context.
e Distribute trust boundaries across the software supply chain.

28

World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 015-031

9.3. Predictive Threat Intelligence and Risk-Aware Management
Agile program management is evolving toward risk-adaptive planning. Predictive intelligence uses global feeds,
behavioral analytics, and dark web signals to anticipate attacks before they materialize (Forrester, 2023).
9.3.1. Benefits
e Provide risk dashboards that balance sprint velocity with threat exposure.
e Prioritize security-sensitive features during backlog grooming.
e Transition PMOs from task-driven oversight to risk-aware governance.
9.4, Evolving Standards and Regulatory Frameworks
Regulatory landscapes are dynamic, especially in Al, cloud, and supply chain security. New rules around Al ethics,
SBOMs (Software Bill of Materials), and data sovereignty are emerging (IEEE, 2024).
9.4.1. Trends

e Compliance-as-Code 2.0: Continuous integration of evolving standards into CI/CD.
e Sector-specific compliance: e.g., FDA for digital health, PCI DSS 4.0 for fintech.
e Global harmonization: Multinationals must adapt to GDPR, CCPA, and APAC data regimes simultaneously.

10. Conclusion

The accelerating pace of digital transformation demands that enterprises no longer treat agility and security as opposing
forces but as mutually reinforcing drivers of innovation and resilience. This paper has advanced the Security-First Agile
Playbook as a blueprint for embedding DevSecOps principles directly into program management ensuring delivery
environments that are fast, adaptive, and continuously compliant, without compromising trust.

The central lesson is clear: security can no longer be bolted on after delivery; it must be engineered into the DNA of
every Agile phase from planning and coding to deployment and operations. Through automated pipelines, proactive
governance, and cross-functional accountability, organizations can anticipate risks rather than merely react to them.

For industries such as healthcare, finance, and government, where the cost of failure is measured in both dollars and
lives, this approach delivers a dual advantage: accelerated delivery velocity and uncompromising assurance. Beyond
regulatory alignment, a security-first mindset strengthens cyber resilience, safeguards customer trust, and establishes
credibility with regulators and stakeholders.

Yet this transformation is not purely technical it is cultural and strategic. It requires dismantling silos, embedding shared
responsibility for security across all roles, and empowering teams with automation and adaptive governance. By doing

so, enterprises shift from being passive bearers of risk to proactive stewards of trust and innovation.

Call to Action

The time to act is now. Organizations must decisively adopt the Security-First Agile Playbook, not as a defensive measure
but as a growth strategy. In doing so, they will equip themselves with a shield against evolving threats and a platform
for sustainable innovation where agility, resilience, and compliance converge to define success in the digital age.

Compliance with ethical standards

Disclosure of Conflict of Interest

The authors declare that they have no conflict of interest.
References

[1] Agile Alliance. (2001). Manifesto for Agile software development. https://agilemanifesto.org
[2] Bass, L, Weber, [, and Zhu, L. (2015). DevOps: A software architect’s perspective. Addison-Wesley.

29

(3]

[4]

[5]

(6]
[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]
[21]

[22]

[23]

[24]
[25]

[26]

[27]

World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 015-031

Binbeshr, F., and Imam, M. (2025, April 27). Comparative analysis of Al-driven security approaches in
DevSecOps: Challenges, solutions, and future directions [Preprint]. arXiv. https://arxiv.org/abs/2504.19154

Cheenepallj,]., Hastings,]. D., Ahmed, K. M., and Fenner, C. (2025, March 28). Advancing DevSecOps in SMEs:
Challenges and best practices for secure CI/CD pipelines [Preprint]. arXiv. https://arxiv.org/abs/2503.22612

Department of Defense. (2024). DoD enterprise DevSecOps fundamentals (Version 2.5). U.S. Department of
Defense. https://dodcio.defense.gov

EC-Council. (2023). What is shift-left security in DevOps and DevSecOps? https://www.eccouncil.org

Fitzgerald, B., and Stol, K. (2017). Continuous software engineering: A roadmap and agenda. Journal of Systems
and Software, 123, 176-189. https://doi.org/10.1016/j.jss.2015.06.063

Grispos, G., Glisson, W. B., and Storer, T. (2014). Rethinking security incident response: The integration of Agile
principles. arXiv. https://arxiv.org/abs/1408.2431

Hashizume, K., Rosado, D. G., Fernandez-Medina, E., and Fernandez, E. B. (2013). An analysis of security issues
for cloud computing. Journal of Internet Services and Applications, 4(1), 5. https://doi.org/10.1186/1869-
0238-4-5

Hasan, M. M., and Salah, K. (2019). Cloud computing security: A survey of service-based models. Computers and
Security, 83, 30-48. https://doi.org/10.1016/j.cose.2019.01.002

Humble,], and Farley, D. (2010). Continuous delivery: Reliable software releases through build, test, and
deployment automation. Addison-Wesley.

IBM. (2023). What is DevSecOps? IBM Knowledge Center. https://www.ibm.com/think/topics/devsecops

Jabbari, R, bin Alj, N., Petersen, K., and Tanveer, B. (2016). What is DevOps? A systematic mapping study on
definitions and practices. Proceedings of the Scientific Workshop of XP2016.
https://doi.org/10.1145/2962695.2962707

Kerzner, H. (2022). Project management best practices: Achieving global excellence (5th ed.). Wiley.

Khan, S., and Akhunzada, A. (2020). DevSecOps: Incorporating security into DevOps. IEEE Access, 8, 165134-
165150. https://doi.org/10.1109/ACCESS.2020.3021920

Kim, G., Humble,], Debois, P., and Willis, J. (2016). The DevOps handbook: How to create world-class agility,
reliability, and security in technology organizations. IT Revolution.

Kuehl, C. (2021). Implementing DevSecOps: Practical steps for secure CI/CD. ISACA Journal, 5, 12-20.

Leite, L., Rocha, C., Kon, F., Milojicic, D., and Meirelles, P. (2019). A survey of DevOps concepts and challenges.
ACM Computing Surveys, 52(6), 1-35. https://doi.org/10.1145/3359981

McCarty, P. (2022, March 3). The DevSecOps playbook [Blog post]. SecureStack.
https://securestack.com/devsecops-playbook/

Microsoft. (2024). DevSecOps: Security in DevOps. Microsoft Azure. https://learn.microsoft.com

National Institute of Standards and Technology. (2025). Secure software development (DevSecOps) practices.
NIST. https://www.nccoe.nist.gov

Nuseibeh, B., and Easterbrook, S. (2000). Requirements engineering: A roadmap. Proceedings of the Conference
on The Future of Software Engineering, 35-46. https://doi.org/10.1145/336512.336523

Open Group. (n.d.). 0-AA™ security playbook: Agile architecture guidance. The Open Group. Retrieved August
21,2025, from https://pubs.opengroup.org/architecture/o-aa-standard/o-aa-security-playbook

OWASP Foundation. (2024). OWASP DevSecOps guidelines. https://owasp.org

Pohl, C, and Hof, H.-J. (2015). Secure Scrum: Development of secure software with Scrum. arXiv.
https://arxiv.org/abs/1507.02992

Rajapakse, R. N., Zahedi, M., and Babar, M. A. (2021). An empirical analysis of practitioners’ perspectives on
security tool integration into DevOps. arXiv. https://arxiv.org/abs/2107.02096

Rajapakse, R. N., Zahedi, M., Babar, M. A, and Shen, H. (2021). Challenges and solutions when adopting
DevSecOps: A systematic review. arXiv. https://arxiv.org/abs/2103.08266

30

World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 015-031

[28] Security Boulevard. (2024, March). The Synopsys integrated DevSecOps playbook: Steps for successful
DevSecOps. Security Boulevard. https://securityboulevard.com/2024/03/the-synopsys-integrated-
devsecops-playbook-steps-for-successful-devsecops/

[29] Sedgewick, A., and Souppaya, M. (2020). NIST special publication 800-204C: Implementation of DevSecOps for
a microservices-based application with service mesh. National Institute of Standards and Technology.
https://doi.org/10.6028/NIST.SP.800-204C

[30] Singh, B. (2025). Shifting security left: Integrating DevSecOps into Agile workflow. SSRN Electronic Journal.
https://doi.org/10.2139/ssrn.5267963

31

https://doi.org/10.2139/ssrn.5267963

