World Journal of Advanced Engineering Technology and Sciences W,

World Journal of

eISSN: 2582-8266 En;‘:l"e‘:::g
Cross Ref DOI: 10.30574/wjaets Recoioey
7 and Sciences
WJAETS Journal homepage: https://wjaets.com/
(REVIEW ARTICLE) W) Check for updates

Trustless SSL certificate lifecycle management in multi-cloud ecosystems

Ramkinker Singh *

Carnegie Mellon University, USA.

World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 102-109

Publication history: Received on 27 July 2025; revised on 02 September 2025; accepted on 05 September 2025

Article DOI: https://doi.org/10.30574 /wjaets.2025.16.3.1322

Abstract

The emergence of multi-cloud ecosystems has created unique possibilities, as well as significant issues in securing
online digital communications. One of the fundamental foundations for securing internet transactions is the
infrastructure of Secure Sockets Layer (SSL) certificates. As digital systems begin to decentralize and distribute across
multi-cloud workloads, the trust framework used in managing systems of issuing SSL risk management certificate were
very traditional processes. This research project intended to investigate a trustless model for SSL certificate lifecycle
management, featuring the integration of new technologies including blockchain technologies, data mesh architectures,
and self-sovereign identity (SSI) systems. Through examining current vulnerabilities, studying the latest security
paradigms, and proposing a decentralized model, this research proposes a potential future for resilience, privacy, and
scaling in multi-cloud.

Keywords: Trustless Architecture; SSL Certificate Management; Multi-Cloud Security; Self-Sovereign Identity

1. Introduction

The growing embrace of multi-cloud architectures by organizations to achieve scalability, availability, and price has
brought not-so-simple questions about security, identity verification, and the easy management of the certificate
lifecycle. SSL certificates are foundational in establishing a secure, encrypted channel of communication between clients
and servers, protecting data as it travels over the internet. SSL certificates ensure that this communication is not only
confidential but also integral, ensuring that data has not been modified during transmission. However, traditional SSL
certificate paradigms rely on centralized Certificate Authorities (CAs) to act as trust anchors for groups of users. In a
world of multi-cloud services, centralized trust is an inefficient model that is incompatible with the need for
interoperability, decentralization, and the reduction in single points of failure.

The life-cycle management of SSL Certificates, which includes issuing, renewing, revoking, and validating, is not easy.
For organizations that operate complex cloud architectures where services are being provisioned, updated, or
decomposed on a near-constant basis, the accurate and timely management of SSL Certificates is key to avoiding
latencies, outages, or even security breaches. The traditional approach we highlighted is not only cumbersome but also
prone to delays, mistakes, and even insider threats.

Trustlessness, defined as operating in a secure manner that doesn't require parties to place trust in each other or an
intermediary, provides a new potential for SSL certificate management in multi-cloud environments. This paper will
examine how trustless technologies, particularly those in new areas of technology such as blockchain, decentralized
identity, and graph-based data structures, can change the way organizations manage that lifecycle across multiple cloud
providers.

* Corresponding author: Ramkinker Singh.

Copyright © 2025 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0.

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://www.wjaets.com/
https://doi.org/10.30574/wjaets.2025.16.3.1322
https://crossmark.crossref.org/dialog/?doi=10.30574/wjaets.2025.16.3.1322&domain=pdf

World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 102-109

2. Challenges in Multi-Cloud SSL Certificate Management

Modern multi-cloud environments have their own challenges that arise due to their distributed, heterogeneous, and
dynamic nature. The first challenge to using multiple cloud providers is the lack of a centralized management plane for
SSL certificates among the respective cloud providers. Each cloud platform has its own set tools and APIs for handling
certificates, which complicates the ability to synchronize certificate-related renewal and revocation activities across the
platforms [1].

In addition, multi-cloud systems are much more susceptible to configuration drift, which is when discrepancies develop
between the cloud environments over time due to human error or differing policies. Drifting in this context could lead
to expired or wrongly issued certificates which can cause service disruptions, and could also lead to man-in-the-middle
(MITM) attacks. This is compounded when DevOps teams build CI/CD pipelines, that place importance on agile,
automated, secure/automatic certificate operations.

Lastly, as central trust anchors, Central Certificate Authorities (CAs) are inherently risky due to their high value. If a CA
is ever compromised, which has happened historically, the security posture for an organization will be threatened. It is
also much more dangerous when a centralized risk is combined with a multi-cloud environment due to increased attack
surface area, and the dependency on many services across different platforms [1].

3. Trustless Infrastructure via Self-Sovereign Identity (SSI)

Self-sovereign identity (SSI) frameworks provide the ability for parties to assert their identities without relying on a
central authority. SSI systems can provide decentralized, verifiable credentials in the context of SSL certificate
management, allowing entities to automate and securely manage their activities surrounding SSL certificates at scale.

SSI systems use decentralized identifiers (DIDs) and verifiable credentials that can be cryptographically verified by any
party. This allows service nodes in a multi-cloud environment to issue, distribute, and renew SSL certificates without
requiring trust in a central authority. SSI also allows for less reliance on CAs and centralized directories for issuing and
verifying identity and credentials [2].

A trustworthy framework should be capable of an openly self- sovereign identity control, including provisioning-on-
demand certificates, and observing the issuance of credentials across clouds. Blockchain has the capacity record
issuance, and events associated with certificates, providing immutable audit logs across jurisdictions. This architecture
supports the zero-trust model of security and data sovereignty, all of this is also relevant to multi-cloud and federated
and hybrid cloud arrangements of service environments [2].

4. Privacy Marketplaces and Certificate Revocation

It is important to consider how to protect and how to share Personally Identifiable Information (PII), when you are
managing the lifecycle of certificates in a trustless fashion. When self-sovereignty identity (SSI) systems are deployed
with privacy marketplaces, they will provide participants and services the ability to control the access to their identity
credential while also enabling the revocation of credential without privacy loss.

Privacy marketplaces function as a data bank for user credentials to help individuals manage consent in a decentralised
way. An example is revocation. It is important to revocation is no able to reveal any identifying information about a user.
Using a CRL (Certificate Revocation List) is a poor solution, as most CRLs will end up revealing metadata at a minimum
(of the issuing entity). At a minimum decentralised methods can use blockchain-based revocation registries that
anonymize revocation, and a form of decentralised notification system of revocation, is secure [3].

Privacy marketplaces provide additional incentives for an improvement in secure data sharing, that is through
tokenization of data and smart contracts. Smart contracts can automate trustless negotiation on behalf of the user for
example, a party requesting verification of a user identity and the second party providing that verification of the user
identity. With a multi-cloud instance, the user may be able to maintain private information, reduce administration and
improve regulatory compliance with agnostic information exchanges like the recently enacted GDPR[3].

103

World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 102-109

5. Protection of Personally Identifiable Information (PII)

One of the major security challenges within a certificate management framework is the potential identifiable
information (PII) risk. The typical CA process requires submitting PII through insecure channels, or in a centralized
manner for storage and is susceptible to breaches. Trustless architectures change the risk profile to minimal under
encryption, zero-knowledge proofs, and decentralized storage.

There are now many approaches that are exploring mitigating PII risk through state-of-the-art techniques in PII risk
mitigation, like homomorphic encryption and secure multi-party computation. Both allow for SSL certificate issuance
while continually not exposing the fundamental identity information, complying with privacy-by-design principles [4].
Under a trustless model, the service that requests a certificate only validates the cryptographic proof of identity and not
the raw data itself.

Decentralized key management systems (DKMS) can enhance PII based risk, as cryptographic keys can be distributed
as securely stored and secured keys. With DKMS PII risk is reduced and even eliminated the potential of single points
of compromises on more clouds. During the key management process, it is particularly important in a service provider
using multi-cloud systems supporting a key, provide methods of safe and secure access with a federated system [5].

6. Blockchain as a Trustless Certificate Ledger

Blockchain technology adds immutability, decentralization, and auditability to the certificate lifecycle. By capturing
certificate issuance, renewal, and revocation events in a distributed ledger-based system, organizations can maintain
an incorruptible history of certificate states that can also be validated without a trust anchor or centralized authority.

Advanced blockchain enables near real-time consensus and low latency to better perform operational tasks such as
dynamic certificate renewal and revocation. The decentralized consensus achieved through blockchains is useful for
synchronizing certificate states across operational areas in multi-cloud environments with many microservices
communicating with services running on disparate clouds. By eliminating the need to rely on a central manager while
using distributed trust mechanisms, organizations working across clouds can leverage on-demand consensus to manage
their certificates [6].

The use of smart contracts can allow organizations to execute policy enforcement automated by algorithms such as
certificates getting auto-revoked after inactivity, or a credential has expired, or after violating the organizational policy
— which are all easily verifiable actions that could be performed based on blockchain logic protocols [6].

Table 1 Comparison of Certificate Lifecycle Models

Feature Traditional CA-Based Model | SSI + Blockchain Model
Centralized Trust Required Not required
Certificate Revocation Speed | Slow Near real-time
Privacy of Identity Data Low High
Compliance Auditability Manual Automated & Immutable
Multi-Cloud Compatibility Low High

Source: [6]

7. Graph-Based Data Mesh and Kubernetes Integration

Data mesh architecture, based on property graphs, can model complicated dependencies between services, identities,
and certificates. Property graphs can treat relationships like "issued by," “revoked due to,” or "belongs to" as first-class
entities to support advanced querying and analytics over certificate lifecycles [7].

On Kubernetes- the de facto orchestration platform in multi-cloud environments- this would streamline the deployment
and monitoring of SSL certificates. There are many Kubernetes-native tools that could be extended, such as cert-

104

World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 102-109

manager and Secrets Store CSI Driver, and integrated with graph databases and/or blockchain networks to track
certificates status, automated renewals, and trigger alerts based on deviation/detection of anomalies [8].

Self-Sovereign Identity (SS5I)

'

Vernfiable Credentials Registry

'

Service/Application Nodes

A \

Blockchain Smart Contracts
- Issue Certificate
- Revoke Certificate
-Log Events

'

Distributed Ledger (DLT)

l

Property Graph / Data Mesh Layer
(Track Relationships & Dependencies)

f 2

Kubemetes Cluster

Figure 1 Architecture showing integration of SSI, blockchain, and Kubernetes for certificate lifecycle management [8]

Figure 1 outlines a conceptual picture of the interactions between SSI, blockchain, and Kubernetes components to
construct a trustless SSL certificate lifecycle. While abstract, this picture closely resembles the practical configurations
of a trustless SSL certificate lifecycle. For example, an orchestrator in a Kubernetes-native sense, such as a tool like cert-
manager, operates within each cloud cluster and requests valid, verifiable credentials (VCs) from an external identity
validation service that is working with, for example, a Aries Cloud Agent. cert-manager and the external identity
validation service communicate either via REST or gRPC APIs. The VCs cert-manager receives in response to its issuance
request, will have been issued using Decentralized Identifiers (DIDs), which will confirm validity regarding the service
identities when processing the SSL certificate request.

When cert-manager has approved the certificate request to the Kubernetes service it will log the issuance event on-
chain (Hyperledger Fabric) using smart contracts and pontentially revoke experiences as well. These actions create an
immutable log of events - an audit trail - that encourages compliance and therefore accountability and transparency.
The system has at least a connection to a graph-based data mesh (e.g, Neo4j) representing the relationships of
certificates, services, and the underlying identities. In this case, the graph can be leveraged for queries relating to usage
of certificates, dependencies mappings, and potential anomaly detection based on the amalgamation of events across
distributed environments. While the diagram is intentionally a high-level abstraction, the flow is representable - upon
the use of the tools -as is done today, using available open-source tools and Kubernetes APIs, without reliance on a
centralized Certificate Authority [8].

105

World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 102-109

Graph 1: Certificate Revocation Time Comparison

1600 + 1500 ms

1400 -

1200 A
m
E
o 1000 4
E
}7
c
.2 800 4
S
(]
o
o
>
& 600

400 A
200 ms
200
0 T T
Traditional CA Blockchain-Based
Certificate Management Model
Legend
Left Bar: Traditional CA-Based Revocation {~1500 ms)
Right Bar: Blockchain-Based Revocation (~200 ms)

Figure 2 Revocation speed of traditional CA model vs. blockchain-based revocation in a multi-cloud setting [6]

Figure 2 provides a comparison of overall certificate revocation performance between standard CA-based systems and
a blockchain-based trustless model. The latency in the standard model, reaching over a second typically, is due to OCSP
and CRL lookups that require waiting on a network for replies and any number of different delays, bottlenecks, and
availability issues centrally in the event of trust hierarchy operation. The blockchain-based version of revocation
propagates invalidation events to all distributed nodes via trustless consensus protocols (such as Raft and PBFT) in a
matter of milliseconds. Trustless consortia deployments afforded the ability to reduce revocation windows to under
200ms, and with it the ability to perform real-time (sub-second) multi-cloud security traffic response [6].

8. Discussion

The study into trustless architecture for SSL certificate lifecycle management in multi-cloud environments is indicative
of both the state of the technology and the strategic imperative to infiltrate these changes. Traditional certificate
infrastructures, despite their maturity, cannot meet the requirements for managing the potential complexities in a
multi-cloud environment, especially under conditions requiring service deployment without operational or
administrative intervention.

The trustless certificate model breaks new ground by offering a model that is based on Self-Sovereign Identity (SSI),
blockchain, data mesh and Kubernetes, allowing for greater innovation across multiple layers. It at least ambitiously
addresses pain-points such as single-point of failure, delay in certificate issuance or revocation, and reliance on
centralised authorities for identity. One of the most notable advantages in switching to a trustless certificate model is
decoupling trust from centralised authorities with respect to certificates. This is a fundamental change for the better as
itimproves security, and is consistent with the principles of zero-trust architecture - that no participant is trusted either
internally or externally, by default.

Embedding SSI frameworks is essential in order to ensure identities during certificate issuance. With traditional models,
a CA verifies identity and issues certificates, however, trustless models enable service nodes to present
cryptographically verifiable credentials which can be logged and audited within and among service delivery platforms.
These features are crucial to organizations deploying in hybrid cloud where governance and compliance rules vary

106

World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 102-109

across regions. This dynamic permits the organization to have more detailed and user-centric control over its identities
delivering on global movements towards data sovereignty and user privacy [2][3].

The blockchain layer enhances the distinction between these models as it openly records the certificate related events
(issuance, renewal, revocation, and validation) to the immutable ledger allowing organizations to fully automate
compliance audits and reduce to zero instances of the issuance of fraudulent or expired certificates and provide a sense
of security that can often be beyond reproach for organizations who are in the most regulated industries such as finance
and health care in which, by law, security events need to trackable [6].

Graph-based data models have one more significant advantage. PKI systems are notoriously difficult to analyze because
the metadata associated with identifiers is compartmentalized and not easy to correlate. However, creating property
graphs offers real-time transparency into the relationships between entities, e.g., which microservices are using which
certificates, which identities were signed to ensure mapping to each key, and allowing security personnel to visualize
and query that data, which enables proactive identification of anomalies and policy noncompliance [7].

Kubernetes, as the orchestration backbone of so many multi-cloud architectures, plays a critical role in enabling
automation. By extending Kubernetes-native components with hooks to SSI registries, blockchain ledgers, and property
graphs, organizations can implement policy-driven SSL lifecycle automation. For example, a Kubernetes controller
could detect an expiring certificate, validate the identity of the requesting pod with SSI credentials, trigger a smart
contract to approve the renewal, and log the event to the blockchain, all without human involvement [8].

While there are advantages to this process, we blame operationalization of a fully trustless verifiable credential lifecycle.
First, interoperability of SSI protocols is still being developed. Each ecosystem has developed their own variations on
an implementation; Hyperledger Indy has developed its own methods for DIDs and credentials, while Ethereum
ecosystems and Sovrin have developed credential encoders that allow W3C Verifiable Credentials based on differing
cryptographic primitives. The ecosystem variability in credential schema and verification protocol compounds the final
integration dilemma. In practice, an organization would need to implement interoperability layers (like the Universal
Resolver) and leverage Hyperledger Aries Interop Profiles (AIP 2.0) to migrate between systems on a continuous basis

[2](3].

Equally challenging is the compute burden associated with consensus mechanisms on blockchains, especially for a
larger scale cloud-native workloads. Public chains with varying transaction times and costs are including inefficient.
Permissioned chains are also an inconvenience and add additional compute overhead (state management) on frequent
updates; but it would be possible to implement a complete verifiable credential lifecycle with a public chain by
transitioning into Web3 ecosystems, like a non-fungible token (NFT) standard. Our prototype's use of Raft consensus
does provide relevant performance upgrades while substantially lowering trust assumptions. However, they also
sacrifice a bit of fault tolerance, and if our goals are to qualitatively batch smaller workloads into larger workloads, we
might artificially construct trust at the discretion of the consumer (this retroactively does the trusting) as a new
transaction on a previous transaction. Next-generation considerations could adopt a hybrid model of consensus, or
perhaps, utilize Layer 2 scaling solutions to lower latency, while preserving immutability [6].

Governance is another major factor in these systems. Although trustless systems produce some trust reduction in
centralized parties, they involve shared management of policies across all cloud domains. Governance of smart contracts
— revocation thresholds, certificate expiration policies, retention of audit logging — must be mutually agreed upon
ahead of time. Requiring any change to these parameters is not an easy thing once you have deployed your services. The
situation is similarly complex from a data mesh perspective, where each data domain enforces a balance between local
autonomy and global compliance, while also dealing with compliance constraints. There are instances, where
governance is poorly defined amongst important stakeholders. Even in decentralized systems, slowly things drift into
inconsistency or, worse, conflict [5][7].

Finally, it will be important for organizations with legacy CA-dependent infrastructure to have a roadmap for
transitional execution. Operating systems and web browsers trust public CAs out of the box, and do not yet support
verification chains anchored in a blockchain. Developing a hybrid system (X.509 certificate, CA, and verifiable
credential-based) using middleware gateways or proxies with certificate, issuing to verifiable credentials, is one way to
offer organizations the opportunity to transition and preserve backwards compatibility for their users (clients) [5].

107

World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 102-109

The ostensible drawbacks of trustless certificate management can now be observed, as within these privacy-preserving
trustless certificate systems using homomorphic encryption as well as, zero-knowledge proofs, sensitive identity
information is still kept C-locked up, and it may still be shared between a network of decentralized systems. As these
approaches include privacy-preserving means to ensure not only theoretical but compliance with new and evolving
data heavy legislation such as GDPR, which has strict regulations on how personal data is processed and
transferred[4][5].

It is also worth noting the comparative performance of trustless based certificate revocation models. As highlighted in
Graph 1, the revocation speeds of blockchain and distributed ledger technology systems are inferior in comparison to
that of traditional CRLs which can suffer from latency and availability problems in semi-centralized OCSP based systems.
By propagating real-time revocation updates across decentralized networks, the number of potential attack vectors in
areas where revoked certificates exist occurs instantaneously[6].

In summary, the integration of SSI, Blockchain and graph-structured data represents a shift in SSL certificate lifecycle
management. Although still in maturation, it provides the building blocks for strong, reproducible, recoverable and
resilient certificate ecosystems across and between heterogeneous cloud environments. Future research and
development should focus on framework development, standardization and cross-chain interoperability and human-
centered governance that will enable the wider adoption of practical trustless security infrastructure.

8.1. Prototype Implementation Overview and Evaluation Scenario

To validate the suggested architecture in a real-world context, a prototype implementation was created to simulate a
trustless SSL certificate lifecycle management system in a controlled multi-cloud environment. The test setup involves
Kubernetes clusters that are deployed by two leading cloud providers (AWS and Azure), a blockchain layer built using
Hyperledger Fabric, and an SSI registry setup and configured with the Aries Cloud Agent framework.

In this prototype, Kubernetes-native tools (cert-manager and Secrets Store CSI Driver) were extended to interact with
the verifiable credential registries using a gRPC middleware layer. So, when a service pod requires a new certificate, it
sends a request through cert-manager, but this request is intercepted by a webhook which checks the identify of the
service with the Aries agent. The agent contacts the SSI registry with a DID and, when successful, returns a verifiable
credential. The agent checks the verifiable credential and, when valid, cert-manager is informed, successfully verified, a
Certificate is issued and stored as a Kubernetes secret. At the same time, the issuance event is recorded immutably on
the Hyperledger ledger.

In terms of revocation, if a verifiable credential associated with a service is identified as invalid or expired, the
Hyperledger smart contract will trigger a revocation event. When the revocation event occurs, it is broadcast to peers
and consumed by the Kubernetes webhook, which revokes the related secret. In this manner, revocation happens with
near real-time capabilities, and there is no manual operation.

Empirical evaluation, based on this setup, showed the following average timings:

Certificate Issuance Time: ~680ms

SSI Credential Verification Time: ~250ms

Blockchain Logging Time (with Raft consensus): ~320ms
Revocation Propagation Time: ~190ms

These results are consistent with the expectations of latency noted in [6] as optimized blockchain configurations (for
example, Raft instead of PBFT) result in consensus times of less than a second. The experiment also affirmed that using
SSI for identity checks greatly reduced the necessity for manual identity verification, resulting in expedited issuance
and fewer identity errors [2][6][8]-

Resource usage was within limits that were expected to be achieved. The Hyperledger peer nodes consumed around 0.5
vCPU and 512MB of memory; Aries Cloud Agent nodes maintained a low resource footprint. The overhead of using
Kubernetes due to certificate operations was also negligible (less than 1% CPU usage per node).

The prototype demonstrates not only the technological feasibility of the trustless architecture, but also early
benchmarks to help identify further optimization opportunities, and how to plan for scale when implementing in

108

World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 102-109

production. Most importantly, it showed that with SSI, blockchain, and Kubernetes, a cessation of reliance on centralized
CA is possible and therefore was an important step toward reducing trust in a multi-cloud ecosystem.

9, Conclusion

Multi-cloud environments are forcing a new approach to SSL certificate management. The centralized method is no
longer adequate in a decentralized, autonomous, and rapidly scalable model. Trustless architecture incorporating self-
sovereign identity (SSI), blockchain, and data mesh provides an attractive solution to the inherent shortcomings of
legacy models.

By utilizing decentralized identity management, immutable event storage, and automated certificate processes,
trustless architecture enables security, availability, privacy, and compliance, to be more efficient. Kubernetes makes a
scalable and automated deployment method more accessible and enables the model to be useful for legitimate multi-
cloud situations.

The transformation to trustless technology of the SSL certificate lifecycle represents a new era for a cybersecurity
strategy. When these technologies mature and become commonplace, they will likely change security standards for
communicating securely across a distributed digital landscape.

References
[1] Sivaseelan, S. (2024). Enhancing Cyber Resilience in Multi-Cloud Environments.

[2] Zeydan, E., Baranda,], Mangues-Bafalluy,], Arslan, S. S., & Turk, Y. (2024). A trustworthy framework for multi-
cloud service management: Self-sovereign identity integration. [EEE Transactions on Network Science and
Engineering, 11(3), 3135-3147.

[3] Masmanidis, V. (2022). Hybrid cloud computing user data banks and privacy marketplace for SSI Systems
(TI) (Master's thesis, [Tavemiotiuio Melpaiwg).

[4] Makhdoom, I, Abolhasan, M., Lipman, J.,, Shariati, N., Franklin, D., & Piccardi, M. (2024). Securing personally
identifiable information: a survey of Sota techniques, and a way forward. IEEE Access.

[5] FRANKLIN, D., & PICCARDI, M. Securing Personally Identifiable Information: A Survey of SOTA Techniques, and
a Way Forward.

[6] Amjad, M. (2023). Novel information and data exchange within power systems using enhanced blockchain
technologies (Doctoral dissertation, Brunel University London).

[71 Dolhopolov, A. (2024). Changement de paradigme dans les architectures de lacs de données: utilisation de graphes
de propriétés et d’architecture data mesh (Doctoral dissertation, Université de Montpellier).

[8] Johnston, C. Advanced Platform Development with Kubernetes.

109

