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Abstract

This paper presents a dual-loop PID control strategy to address the non-minimum phase (NMP) challenge in Quadratic
Boost Converters (QBC-B). The proposed architecture combines an inner current-control loop (PI) and an outer voltage-
regulation loop (PID) to compensate for the right-half-plane zero inherent to QBC-B dynamics. Using averaged state-
space modeling and frequency-domain analysis, we derive design criteria ensuring stability under bandwidth
constraints imposed by the NMP characteristic. The controller is validated through high-fidelity simulations,
demonstrating <2% steady-state error, 27.5% maximum voltage deviation during 50% load steps, and recovery times
under 1.6 s. Key innovations include anti-windup integration and current-reference saturation to handle bilinear effects
while maintaining CCM operation. Compared to single-loop alternatives, the dual-loop approach reduces overshoot to
0% in reference tracking and improves robustness against input variations (10 V-15 V). The work provides practical
tuning guidelines for power electronics engineers dealing with high-gain converters where NMP behavior limits
conventional PID designs.

Keywords: Bilinear Systems; DC-DC Power Conversion; Non-Minimum Phase Systems; PID Control; Quadratic Boost
Converter

1. Introduction

The rapid expansion of renewable energy systems, electric vehicle powertrains [1, 2], and high-voltage portable
electronics [3, 4] has created an urgent need for efficient, high-gain DC-DC conversion solutions [5, 6]. Among various
step-up topologies, the Quadratic Boost Converter (QBC-B) has gained significant attention for its ability to achieve

substantial voltage conversion ratios (% > 5) while maintaining reasonable duty cycles (typically < 0.7) [7, 8]. This is

accomplished through its unique two-stage energy transfer mechanism, where the output voltage follows a quadratic
relationship V, = #, unlike the linear dependence of conventional boost converters [9]. The topology’s advantages
extend beyond voltage gain, it provides continuous input current, reduced component stress compared to single-stage
high-duty-cycle designs, and inherent protection against shoot-through faults [10]. However, these benefits come with
complex dynamic behaviors that present substantial control challenges, particularly when stringent voltage regulation

is required under variable operating conditions.

A critical examination of the QBC-B’s dynamics reveals two fundamental obstacles for control design [11, 12]. First, the
cascaded power stage introduces a right-half-plane (RHP) zero in the control-to-output transfer function, characteristic
of non-minimum phase (NMP) systems [13, 14]. This zero, located at w, ~ 3.5 X 103 rad/s for typical designs, imposes
an unavoidable trade-off between bandwidth and stability, any attempt to increase response speed beyond this
frequency leads to phase inversion and potential instability. Second, the system exhibits strong bilinear behavior where
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state variables (inductor currents, capacitor voltages) multiply with the control input (duty cycle), making linear control
techniques ineffective during large transients [15]. These characteristics are further exacerbated by the converter’s
fourth-order nature, with two resonant poles from the L;-C; and L,-C, stages creating complex frequency-domain
interactions [16]. Conventional single-loop voltage-mode control proves inadequate for such systems, often resulting in
either sluggish response or destructive oscillations when aggressive tuning is attempted [17, 18].

Recent advances in power electronics control have explored various approaches to address these challenges. Nonlinear
strategies like sliding mode control and passivity-based methods show promise but often require complex
implementations or precise system parameters [19-21]. Model predictive control offers excellent dynamic performance
but demands substantial computational resources unsuitable for cost-sensitive applications [22, 23]. In industrial
settings, PID controllers remain the dominant solution due to their simplicity, reliability, and well-understood tuning
procedures [24]. However, standard PID implementations fail to account for the QBC-B’s NMP limitations and bilinear
coupling between states. This creates a critical research gap, how to retain PID’s practical advantages while overcoming
its theoretical limitations for high-performance QBC-B applications.

This work bridges this gap through a dual-loop PID architecture specifically designed for NMP compensation in QBC-B
converters [25, 26]. The proposed strategy employs: (1) an inner current loop using PI control to regulate the second
inductor current (i;,(t)), selected for its direct influence on output voltage and reduced ripple compared to i;,(t); (2)
an outer voltage loop with PID control incorporating derivative action to compensate for phase lag from the RHP zero;
and (3) systematic bandwidth separation (w.; = 10w,,) to maintain stability while achieving acceptable transient
response. The controller design is grounded in averaged state-space analysis, with particular attention to the
equilibrium point around u* = 0.5, V,(t) = 40V operation. Practical implementation aspects including anti-windup
compensation, current reference saturation (iof* = 0.3A), and digital realization considerations are thoroughly
addressed.

The paper makes four key contributions to the field of power electronics control: First, it provides a complete frequency-
domain design methodology for dual-loop PID controllers in NMP converters, explicitly quantifying the bandwidth
limitations imposed by the RHP zero [27]. Second, it introduces a novel current reference saturation scheme that
maintains stability during large transients while preventing inductor overcurrent [28, 29]. Third, it presents
comprehensive validation results showing < 2% steady-state error, 27.5% maximum deviation during 50% load steps,
and recovery times under 1.6 s, all achieved without overshoot. Fourth, it offers practical tuning guidelines enabling
engineers to adapt the controller for different QBC-B specifications while respecting stability margins. These advances
are rigorously validated through high-fidelity simulations, using the same component values (L, = 560 uH, L, =
440 uH, C; = C, = 330 uF) and operating conditions (f,, = 100kHz, £ = 10V, R = 470) throughout all tests for
consistency.

The remainder of this paper is organized as follows: Section II details the QBC-B’s mathematical modeling and NMP
characteristics. Section 11 develops the dual-loop PID design methodology. Section IV presents simulation results under
various operating scenarios, and Section V concludes with design insights and future research directions.

2. Dynamic Characterization of QBC-B

This section establishes the mathematical foundation for the QBC-B’s nonlinear dynamics and analyzes its non-
minimum phase (NMP) characteristics. The formulation builds upon the bilinear averaged model and identifies
fundamental constraints imposed by the right-half-plane (RHP) zero on control design.

2.1. Nonlinear Dynamics Formulation

The QBC-B’s power stage, shown in Fig. 1, exhibits switched nonlinear behavior governed by two topological states:
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Figure 1 QBC-B power stage with components labeled according to nominal design values

Using state-space averaging [30], the nonlinear dynamics are described by

dx {Aonx + By, (Switch ON) o)

where the state vector x = [i;, 12, Vc1,Vc2]" contains inductor currents and capacitor voltages. The averaged model
becomes

% = [qun + (1 - u)Aoff]x + [uBon + (1 - u)Boff] (2)

Explicitly, for the nominal design (L; = 560 uH, L, = 440 uH, C; = C, = 330 uF)

diLl E (1 - u)vm

dr L, L

@ _ Va1 (1 - wve,
dt L, L,

dvey (1 —wiy, _ lL_z (3.4.5.6)
dt C, C,

dve, (1 —wip, _ Ve2
dt c, RC,

The equilibrium points for u* = 0.5,E = 10V,R =470 is

_ Vo Vw E
T lRA-u)'R'1-u’

*

X

V,| =[0.1702 A,0.0851 A,20V,40V] (7)

2.2. Non-Minimum Phase and RHP Zero Analysis

Linearizing around x* yields the small-signal model

dx R o R
P AX + Bt, V., =Cx (8)
where the system matrices are
0 0 —1785.7 0 35.71 x 103
1 o0 0 2272.7 =2272.7 _[90.91 x 103
A= 8929 -3030.3 0 0 » B= —515.2 )
0 3030.3 0 —6.43 —257.6

The control-to-output transfer function exhibits NMP behavior
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Dea(s) —1.17 X 107(s — 3.5 x 10%)

= 10
a(s) (s +6.43)(s + 1.03 x 103)(s% + 1.12 x 103s + 1.94 x 10) o

Gvu(s) =
The RHP zero at s = 3.5 x 103 rad/s imposes fundamental limitations
wZ
W, < 5~ 1.75 kHz (11

Fig. 2 confirms this constraint through frequency-domain analysis
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Figure 2 Bode plot of G, (s) showing phase inversion due to RHP zero
Key implications for control design

e Bandwidth must stay below w,/2 for stability
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e Step responses exhibit inverse response initially
e Derivative action required for phase compensation

3. Dual-loop PID controller design

The proposed dual-loop control architecture is shown in Figure 3. The outer voltage loop regulates the output voltage
V¢, to its reference value, while the inner current loop controls inductor current i;, to follow the reference generated
by the voltage controller.

i2(t)

DC-DC Converter
(QBC-B)

A

1

Vief

Figure 3 Block diagram of the dual-loop PID control structure
This cascaded structure provides several advantages

Improved disturbance rejection compared to single-loop approaches
Natural current limiting capability

Better dynamic performance through dedicated current control
Simplified tuning through loop separation

3.1. Inner Current Loop Tuning (PI)

The inner loop regulates the second inductor current (i;,) to provide fast disturbance rejection and plant linearization.
From the averaged model in Section 2, the current-to-duty transfer function is

_ I12(s) _ Ver + Ve ) 1

GO =90 T L R(L—u)? 12
L,

s+

At the nominal operating point (u* = 0.5, V5, = 20V, V5 =40V)

60 1 _136.36 x 103

G: ~ . =
() 440x107% s+ 1134 s+ 1134

(13)

The PI compensator is designed as

Cl'(S) = Kp,i <1 + Tls) (14)
—aef1e— 1 15
Ci(s) = 4'6( 128 x 10‘35) (15

Tuning follows these steps

e Setcrossover frequency (f; ;) to 1/10th of switching frequency (Figure 4)
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we; = 2m - 10kHz = 62.83 x 103 rad/s

e 2. Calculate integrator time constant

1 1
Ty =

Wzplant 1134

e Determine proportional gain

we il 62.83x10%x440x10~°
K,, === =
B * *
p Ve +Vis 60

~ 0.46

— = 881yus a7

(16)

(18)

Derived from the plant transfer function at nominal conditions (u* = 0.5, E = 10V)

136.36 x 103

G. =
i) = =311

(19)

Key parameters

e Phase margin: 65°
e Gain margin: 12 dB

Bode Plot of Tnner Current Loop (Open-Loop Transfer Function)
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Figure 4 Bode plot of inner loop gain (L;(s) = C;(s)G;(s)) showing 65° phase margin at 10 kHz

3.2. Outer Voltage Loop Design (PID)

With the current loop closed, the simplified voltage plant becomes

6.(s) = Do (S) _ R(1—u") B 235

" larer(s)  RCps+1  0.1551s +1

A PID compensator is designed to overcome the RHP zero limitation

C,(s)=K,,[1+ ! STaw
S = R\ T, T T4 ST, /5

Key design constraints

e Bandwidth limited to ., < w,.pp/2 = 1.75 kHz (Figure 5)

(20)

21
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e Derivative term (T, ,,) compensates phase lag
e Low-pass filter (7;) prevents high-frequency noise amplification
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Figure 5 Outer loop gain (L, (s) = C,(s)G,(s)) with 58° phase margin at 1.2 kHz

Final tuning parameters (Table 1)

Table 1 Controller Parameters

Parameter Symbol | Value

Proportional gain Ky 0.01

Integral time Ty 2.0 ms
Derivative time Ty 10 ms
Filter time Tr 1ms

1
=001({1+———+—+1 1‘3)-— 22
Cr(s) =00 ( Toox108s PO ) s v (22)
Stability margins achieved
Phase margin = 58°at1.2kHz
Gain margin = 15dB (23,24)
The complete control law in discrete-time (for digital implementation) is
iLZ,ref [k] = Kp,vev[k] + I[k - 1] + Kd,v(ev [k] — €y [k - 1])
Ky
I[k] =1I[k-1]+ T' ey k]
iy . (25,25,27)
Kp,i .
ulk] = Kygelel +22 " e, []
Ll Z
e
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k
ulk] =0.01e,[k] + 5.02 e, [i] + 0.001 elkl _;"[k — 4 (28)

N

=0
with anti-windup protection:
I[k] « sat(I[k], —0.3,0.3) (29)

ief[k] = sat(u[k],0,0.3) (30)

4. Performance validation

This section presents comprehensive validation results of the dual-loop PID controller under both transient and steady-
state conditions. The evaluation uses high-fidelity simulations with the nominal parameters: L; = 560 uH, L, = 440 uH,
C, =C, =330uF, f; =100kHz, E =10V,and R = 470 (2.

4.1. Transient Response Under Disturbances

The controller’s dynamic performance was tested under three critical disturbance scenarios:

e Load steps: 4702 to 2202 (50% increase)

e Inputvariations: 10V to 8V (20% sag) and 10V to 15V (50% surge)

o Reference tracking: 40V to 45V step change

4.1.1. Load Step Response

The converter’s behavior during a 50% load increase at t = 0.9 s is shown in Fig. 6. The output voltage exhibits

AV, ax = Vo' = min(V,(£)) =40V —-29V =11V (27.5% deviation) (31)

trecovery = 1.22'S (to 39.2V) (32)
Vo(t) [V] —
30.2 v-40 . | _ | | |
35
30
25
20
I . 122s |
10
0
0.7 1 12 14 16 18 2 |22 24 26 t[s]
900 ms 214 s

Figure 6 Transient response to 50% load step disturbance at t=0.9 s. Output voltage (V¢2)

The inner current loop responds within 3 switching cycles (30 us), while the voltage loop’s recovery is constrained by
wZ
Wep < 5 1.75kHz (33)

4.1.2. Input Voltage Variations

Fig. 7 shows responses to input changes

Sag (10V = 8V): AV, oy = 3V (7.5%), trecovery = 1.57

Surge (10V > 15V): AV e = 4.7V (11.75%), trecovery = 117 (34,35)
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Figure 7 Output voltage response to input variations. Left: 20% sag (10V—8V), Right: 50% surge (10V—>15V)

The asymmetric response stems from

0 _ ! =4 36
oE - (1 _ u)z |u:0.5 - ( )
4.1.3. Reference Tracking
For a 40V—-45V reference step (Fig. 8)
tooy, = 1.45s (to44.1V), Overshoot = 0% (37
V(o) [V] R1.V [V]
44.1v 40
40—
35
30
25
20
15 1.45s
10
0
0.7 1 1.3 1.5 1.8 2 2.3 2.5 2.8 3 t[s]
900 ms 2.35s

Figure 8 Reference tracking performance for 40V—45V step change

The response is governed by

C,(s)G,(s) 1
Go(s) = — ~ (38)
14 Cy(s)Gy(s) S\, (S
1+ 2 (5)+ (@)

where { = 0.8, w, = 1.2 krad/s.

4.2. Steady-State Regulation Accuracy

Under nominal conditions, the controller achieves

€ss = fl_?orf, (Vref - Vo(t)) =0V (39)

The current-loop performance is quantified by

THD;

L2

= 1.2%, Ripple = +0.015A (17.6% ofI},) (40)
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Fig. 9 shows the steady-state waveforms

Vo(£) [V] R1.V [V]
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Figure 9 Steady-state operation at nominal conditions (40V output)
Key metrics across all tests are summarized in Table 2

Table 2 Summary of performance metrics

Test Case Max Deviation | Recovery Time | Overshoot | Steady-State Error
Load Step (50%) 27.5% 1.22s 0% ov

Input Sag (20%) 7.5% 1.57s 0% 0.8V

Input Surge (50%) | 11.75% 1.17s 0% 0.8V

Ref. Step (12.5%) | 2% 1.45s 0% ov

The dual-loop structure demonstrates superior performance compared to single-loop approaches

ts,single - ts,dual

Improvement = x 100% =~ 35% (41)

ts,single

where single-loop settling times (tgge) are typically 1.8-2.0's for similar test cases. The current-limiting strategy
effectively prevents inductor saturation

i2peak = 0.115A < 1.2 X I;5 1q0e¢ = 0.3 A (42)

5. Conclusion

This paper has presented a comprehensive analysis and implementation of a dual-loop PID control strategy for
Quadratic Boost Converters (QBC-B), specifically addressing the challenges posed by their non-minimum phase (NMP)
characteristics. The key contributions and findings can be summarized as follows

e NMP Compensation: The proposed cascaded control architecture successfully mitigates the destabilizing effects

of the right-half-plane zero located at w, = 3.5 X 103 rad/s through systematic bandwidth separation:
wZ
wei = 10wy, We < 5 1.75kHz (43)

e Performance Validation: Extensive simulations demonstrate robust operation under various disturbances:
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Load steps (50%):
Input variations (20-50%):
Reference tracking:

ts = 1.22s, AVypax = 27.5%
ts £ 1.57s, AV, nax < 11.75%
ess = 0V, Overshoot = 0%

(44, 45, 46)

e Implementation Advantages: The practical design incorporates:
o Anti-windup protection: ifgf* = 0.3 A
o Current limiting: i} peax < 1.2 X I13 rated

o Digital-friendly structure with f; = 100 kHz update rate

The controller’s performance fundamentally depends on the bilinear nature of the QBC-B dynamics, as captured in the
averaged model:

1—-u

0 0 - 0
Ly
. . 1 1-u £
dx L, L Ly
E “l1-u 1 . . x + 8 (47)
Cl Cl 0
0 1-u 0 1
C, RC,
Three critical insights emerge from this work
e The inner current loop’s bandwidth (w.; = 10 kHz) must satisfy
> 1 R(-u)? 113 18 krad
Wi TLZ - L2 ~ o ( ) S

to effectively linearize the plant for the outer loop.
e 2.The derivative action in the outer PID controller compensates for the phase lag introduced by

LG yu(jwe) = —180° + tan ! (w—:)

i1
b1

(49)
e 3.The quadratic conversion ratio
o _ ! 50
E (1-u)? (50)
necessitates conservative tuning to maintain stability across the operating range.
Compared to single-loop approaches, the dual-loop strategy demonstrates
t
Improvement = <1 - ﬂ) X 100% = 35% (51)
s,single

in settling time while eliminating overshoot. However, the fundamental limitation imposed by the RHP zero remains

1
ts = o ~ 286 us (52)

Z
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Future research directions include:

Adaptive tuning mechanisms for varying operating points
Hybrid control combining PID with sliding mode techniques

Experimental validation under extreme conditions (E € [6,18] V, R € [200,1000] 2)
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