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Abstract 

This paper presents a dual-loop PID control strategy to address the non-minimum phase (NMP) challenge in Quadratic 
Boost Converters (QBC-B). The proposed architecture combines an inner current-control loop (PI) and an outer voltage-
regulation loop (PID) to compensate for the right-half-plane zero inherent to QBC-B dynamics. Using averaged state-
space modeling and frequency-domain analysis, we derive design criteria ensuring stability under bandwidth 
constraints imposed by the NMP characteristic. The controller is validated through high-fidelity simulations, 
demonstrating <2% steady-state error, 27.5% maximum voltage deviation during 50% load steps, and recovery times 
under 1.6 s. Key innovations include anti-windup integration and current-reference saturation to handle bilinear effects 
while maintaining CCM operation. Compared to single-loop alternatives, the dual-loop approach reduces overshoot to 
0% in reference tracking and improves robustness against input variations (10 V-15 V). The work provides practical 
tuning guidelines for power electronics engineers dealing with high-gain converters where NMP behavior limits 
conventional PID designs. 

Keywords: Bilinear Systems; DC-DC Power Conversion; Non-Minimum Phase Systems; PID Control; Quadratic Boost 
Converter 

1. Introduction

The rapid expansion of renewable energy systems, electric vehicle powertrains [1, 2], and high-voltage portable 
electronics [3, 4] has created an urgent need for efficient, high-gain DC-DC conversion solutions [5, 6]. Among various 
step-up topologies, the Quadratic Boost Converter (QBC-B) has gained significant attention for its ability to achieve 

substantial voltage conversion ratios (
𝑉𝑜

𝐸
> 5) while maintaining reasonable duty cycles (typically < 0.7) [7, 8]. This is

accomplished through its unique two-stage energy transfer mechanism, where the output voltage follows a quadratic 

relationship 𝑉𝑜 =
𝐸

(1−𝑢)2
, unlike the linear dependence of conventional boost converters [9]. The topology’s advantages 

extend beyond voltage gain, it provides continuous input current, reduced component stress compared to single-stage 
high-duty-cycle designs, and inherent protection against shoot-through faults [10]. However, these benefits come with 
complex dynamic behaviors that present substantial control challenges, particularly when stringent voltage regulation 
is required under variable operating conditions. 

A critical examination of the QBC-B’s dynamics reveals two fundamental obstacles for control design [11, 12]. First, the 
cascaded power stage introduces a right-half-plane (RHP) zero in the control-to-output transfer function, characteristic 
of non-minimum phase (NMP) systems [13, 14]. This zero, located at 𝜔𝑧 ≈ 3.5 × 103  rad/s for typical designs, imposes
an unavoidable trade-off between bandwidth and stability, any attempt to increase response speed beyond this 
frequency leads to phase inversion and potential instability. Second, the system exhibits strong bilinear behavior where 
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state variables (inductor currents, capacitor voltages) multiply with the control input (duty cycle), making linear control 
techniques ineffective during large transients [15]. These characteristics are further exacerbated by the converter’s 
fourth-order nature, with two resonant poles from the 𝐿1–𝐶1  and 𝐿2–𝐶2  stages creating complex frequency-domain 
interactions [16]. Conventional single-loop voltage-mode control proves inadequate for such systems, often resulting in 
either sluggish response or destructive oscillations when aggressive tuning is attempted [17, 18]. 

Recent advances in power electronics control have explored various approaches to address these challenges. Nonlinear 
strategies like sliding mode control and passivity-based methods show promise but often require complex 
implementations or precise system parameters [19–21]. Model predictive control offers excellent dynamic performance 
but demands substantial computational resources unsuitable for cost-sensitive applications [22, 23]. In industrial 
settings, PID controllers remain the dominant solution due to their simplicity, reliability, and well-understood tuning 
procedures [24]. However, standard PID implementations fail to account for the QBC-B’s NMP limitations and bilinear 
coupling between states. This creates a critical research gap, how to retain PID’s practical advantages while overcoming 
its theoretical limitations for high-performance QBC-B applications. 

This work bridges this gap through a dual-loop PID architecture specifically designed for NMP compensation in QBC-B 
converters [25, 26]. The proposed strategy employs: (1) an inner current loop using PI control to regulate the second 
inductor current (𝑖𝐿2(𝑡)), selected for its direct influence on output voltage and reduced ripple compared to 𝑖𝐿1(𝑡); (2) 
an outer voltage loop with PID control incorporating derivative action to compensate for phase lag from the RHP zero; 
and (3) systematic bandwidth separation (𝜔𝑐𝑖 ≈ 10𝜔𝑐𝑣)  to maintain stability while achieving acceptable transient 
response. The controller design is grounded in averaged state-space analysis, with particular attention to the 
equilibrium point around 𝑢∗ = 0.5, 𝑉𝑜(𝑡) = 40 V  operation. Practical implementation aspects including anti-windup 
compensation, current reference saturation (𝑖ref

max = 0.3 A) , and digital realization considerations are thoroughly 
addressed. 

The paper makes four key contributions to the field of power electronics control: First, it provides a complete frequency-
domain design methodology for dual-loop PID controllers in NMP converters, explicitly quantifying the bandwidth 
limitations imposed by the RHP zero [27]. Second, it introduces a novel current reference saturation scheme that 
maintains stability during large transients while preventing inductor overcurrent [28, 29]. Third, it presents 
comprehensive validation results showing < 2% steady-state error, 27.5% maximum deviation during 50% load steps, 
and recovery times under 1.6 s, all achieved without overshoot. Fourth, it offers practical tuning guidelines enabling 
engineers to adapt the controller for different QBC-B specifications while respecting stability margins. These advances 
are rigorously validated through high-fidelity simulations, using the same component values (𝐿1 = 560 𝜇H,  𝐿2 =
440 𝜇H,  𝐶1 = 𝐶2 = 330 𝜇F)  and operating conditions (𝑓sw = 100 kHz,  𝐸 = 10 V,  𝑅 = 470 𝛺)  throughout all tests for 
consistency. 

The remainder of this paper is organized as follows: Section II details the QBC-B’s mathematical modeling and NMP 
characteristics. Section III develops the dual-loop PID design methodology. Section IV presents simulation results under 
various operating scenarios, and Section V concludes with design insights and future research directions. 

2. Dynamic Characterization of QBC-B 

This section establishes the mathematical foundation for the QBC-B’s nonlinear dynamics and analyzes its non-
minimum phase (NMP) characteristics. The formulation builds upon the bilinear averaged model and identifies 
fundamental constraints imposed by the right-half-plane (RHP) zero on control design. 

2.1. Nonlinear Dynamics Formulation 

The QBC-B’s power stage, shown in Fig. 1, exhibits switched nonlinear behavior governed by two topological states: 
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Figure 1 QBC-B power stage with components labeled according to nominal design values 

Using state-space averaging [30], the nonlinear dynamics are described by 

𝑑𝑥

𝑑𝑡
= {

𝐴𝑜𝑛𝑥 + 𝐵𝑜𝑛 (Switch ON)
𝐴𝑜𝑓𝑓𝑥 + 𝐵𝑜𝑓𝑓 (Switch OFF)

             (1) 

where the state vector 𝑥 = [𝑖𝐿1, 𝑖𝐿2, 𝑣𝐶1, 𝑣𝐶2]
𝑇 contains inductor currents and capacitor voltages. The averaged model 

becomes 

𝑑𝑥

𝑑𝑡
= [𝑢𝐴on + (1 − 𝑢)𝐴off]𝑥 + [𝑢𝐵on + (1 − 𝑢)𝐵off]           (2) 

Explicitly, for the nominal design (𝐿1 = 560 𝜇H, 𝐿2 = 440 𝜇H, 𝐶1 = 𝐶2 = 330 𝜇F) 

𝑑𝑖𝐿1

𝑑𝑡
=

𝐸

𝐿1

−
(1 − 𝑢)𝑣𝐶1

𝐿1

𝑑𝑖𝐿2

𝑑𝑡
=

𝑣𝐶1

𝐿2

−
(1 − 𝑢)𝑣𝐶2

𝐿2

𝑑𝑣𝐶1

𝑑𝑡
=

(1 − 𝑢)𝑖𝐿1

𝐶1

−
𝑖𝐿2

𝐶1

𝑑𝑣𝐶2

𝑑𝑡
=

(1 − 𝑢)𝑖𝐿2

𝐶2

−
𝑣𝐶2

𝑅𝐶2

                (3, 4, 5, 6) 

The equilibrium points for 𝑢∗ = 0.5, 𝐸 = 10 V, 𝑅 = 470 𝛺 is 

𝑥∗ = [
𝑉𝑜

𝑅(1 − 𝑢∗)
,
𝑉𝑜
𝑅

,
𝐸

1 − 𝑢∗
, 𝑉𝑜] = [0.1702 A, 0.0851 A, 20 V, 40 V]           (7) 

2.2. Non-Minimum Phase and RHP Zero Analysis 

Linearizing around 𝑥∗ yields the small-signal model 

𝑑𝑥̂

𝑑𝑡
= 𝐴𝑥̂ + 𝐵𝑢̂, 𝑣̂𝐶2 = 𝐶𝑥̂                 (8) 

where the system matrices are 

𝐴 = [

0 0 −1785.7 0
0 0 2272.7 −2272.7

892.9 −3030.3 0 0
0 3030.3 0 −6.43

] , 𝐵 = [

35.71 × 103

90.91 × 103

−515.2
−257.6

]           (9) 

The control-to-output transfer function exhibits NMP behavior 
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𝐺𝑣𝑢(𝑠) =
𝑣̂𝐶2(𝑠)

𝑢̂(𝑠)
=

−1.17 × 107(𝑠 − 3.5 × 103)

(𝑠 + 6.43)(𝑠 + 1.03 × 103)(𝑠2 + 1.12 × 103𝑠 + 1.94 × 106)
           (10) 

The RHP zero at 𝑠 = 3.5 × 103 rad/s imposes fundamental limitations 

𝜔𝑐 ≤
𝜔𝑧

2
≈ 1.75 kHz                    (11) 

Fig. 2 confirms this constraint through frequency-domain analysis 

 

Figure 2 Bode plot of 𝑮𝒗𝒖(𝒔) showing phase inversion due to RHP zero 

Key implications for control design 

• Bandwidth must stay below 𝜔𝑧/2 for stability 
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• Step responses exhibit inverse response initially 
• Derivative action required for phase compensation 

3. Dual-loop PID controller design 

The proposed dual-loop control architecture is shown in Figure 3. The outer voltage loop regulates the output voltage 
𝑉𝐶2 to its reference value, while the inner current loop controls inductor current 𝑖𝐿2 to follow the reference generated 
by the voltage controller. 

 

Figure 3 Block diagram of the dual-loop PID control structure 

This cascaded structure provides several advantages 

• Improved disturbance rejection compared to single-loop approaches 
• Natural current limiting capability 
• Better dynamic performance through dedicated current control 
• Simplified tuning through loop separation 

3.1. Inner Current Loop Tuning (PI) 

The inner loop regulates the second inductor current (𝑖𝐿2) to provide fast disturbance rejection and plant linearization. 
From the averaged model in Section 2, the current-to-duty transfer function is 

𝐺𝑖(𝑠) =
𝑖̂𝐿2(𝑠)

𝑢̂(𝑠)
=

𝑉𝐶1
∗ + 𝑉𝐶2

∗

𝐿2

⋅
1

𝑠 +
𝑅(1 − 𝑢∗)2

𝐿2

                  (12) 

At the nominal operating point (𝑢∗ = 0.5, 𝑉𝐶1
∗ = 20 V, 𝑉𝐶2

∗ = 40 V) 

𝐺𝑖(𝑠) ≈
60

440 × 10−6
⋅

1

𝑠 + 1134
=

136.36 × 103

𝑠 + 1134
               (13) 

The PI compensator is designed as 

𝐶𝑖(𝑠) = 𝐾𝑝,𝑖 (1 +
1

𝑇𝑖,𝑖𝑠
)                   (14) 

𝐶𝑖(𝑠) = 4.6 (1 +
1

1.28 × 10−3𝑠
)                   (15) 

Tuning follows these steps 

• Set crossover frequency (𝑓𝑐,𝑖) to 1/10th of switching frequency (Figure 4) 



World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 066–078 

71 

𝜔𝑐,𝑖 = 2𝜋 ⋅ 10 kHz = 62.83 × 103 rad/s                 (16) 

• 2. Calculate integrator time constant 

𝑇𝑖,𝑖 =
1

𝜔𝑧,𝑝𝑙𝑎𝑛𝑡
=

1

1134
≈ 881 𝜇s           (17) 

• Determine proportional gain 

𝐾𝑝,𝑖 =
𝜔𝑐,𝑖𝐿2

𝑉𝐶1
∗ +𝑉𝐶2

∗ =
62.83×103×440×10−6

60
≈ 0.46       (18) 

Derived from the plant transfer function at nominal conditions (𝑢∗ = 0.5, 𝐸 = 10 V) 

𝐺𝑖(𝑠) =
136.36 × 103

𝑠 + 1134
              (19) 

Key parameters 

• Phase margin: 65∘ 
• Gain margin: 12 dB 

 

Figure 4 Bode plot of inner loop gain (𝑳𝒊(𝒔) = 𝑪𝒊(𝒔)𝑮𝒊(𝒔)) showing 65∘ phase margin at 10 kHz 

3.2. Outer Voltage Loop Design (PID) 

With the current loop closed, the simplified voltage plant becomes 

𝐺𝑣(𝑠) =
𝑣̂𝐶2(𝑠)

𝑖̂𝐿2,𝑟𝑒𝑓(𝑠)
≈

𝑅(1 − 𝑢∗)

𝑅𝐶2𝑠 + 1
=

235

0.1551𝑠 + 1
            (20) 

A PID compensator is designed to overcome the RHP zero limitation 

𝐶𝑣(𝑠) = 𝐾𝑝,𝑣 (1 +
1

𝑠𝑇𝑖,𝑣

+
𝑠𝑇𝑑,𝑣

1 + 𝑠𝑇𝑓/5
)               (21) 

Key design constraints 

• Bandwidth limited to 𝜔𝑐,𝑣 < 𝜔𝑧,𝑟ℎ𝑝/2 ≈ 1.75 kHz (Figure 5) 



World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 066–078 

72 

• Derivative term (𝑇𝑑,𝑣) compensates phase lag 

• Low-pass filter (𝑇𝑓) prevents high-frequency noise amplification 

 

Figure 5 Outer loop gain (𝑳𝒗(𝒔) = 𝑪𝒗(𝒔)𝑮𝒗(𝒔)) with 58∘ phase margin at 1.2 kHz 

Final tuning parameters (Table 1) 

Table 1 Controller Parameters 

Parameter Symbol Value 

Proportional gain 𝐾𝑝,𝑣 0.01 

Integral time 𝑇𝑖,𝑣 2.0 ms 

Derivative time 𝑇𝑑,𝑣 10 ms 

Filter time 𝑇𝑓  1 ms 

 

𝐶𝑣(𝑠) = 0.01 (1 +
1

2.0 × 10−3𝑠
+ 10 × 10−3𝑠) ⋅

1

1 × 10−3𝑠 + 1
             (22) 

Stability margins achieved 

Phase margin = 58∘ at 1.2 kHz
Gain margin = 15 dB

                (23, 24) 

The complete control law in discrete-time (for digital implementation) is 

𝑖𝐿2,𝑟𝑒𝑓[𝑘] = 𝐾𝑝,𝑣𝑒𝑣[𝑘] + 𝐼[𝑘 − 1] + 𝐾𝑑,𝑣(𝑒𝑣[𝑘] − 𝑒𝑣[𝑘 − 1])

𝐼[𝑘] = 𝐼[𝑘 − 1] +
𝐾𝑝,𝑣

𝑇𝑖,𝑣

𝑒𝑣[𝑘]

𝑢[𝑘] = 𝐾𝑝,𝑖𝑒𝑖[𝑘] +
𝐾𝑝,𝑖

𝑇𝑖,𝑖

∑ 𝑒𝑖

𝑘

𝑗=0

[𝑗]

                      (25, 25, 27) 
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𝑢[𝑘] = 0.01𝑒𝑣[𝑘] + 5.0∑ 𝑒𝑣

𝑘

𝑖=0

[𝑖] + 0.001
𝑒𝑣[𝑘] − 𝑒𝑣[𝑘 − 1]

𝑇𝑠

            (28) 

with anti-windup protection: 

𝐼[𝑘] ← sat(𝐼[𝑘], −0.3,0.3)              (29) 

𝑖ref[𝑘] = sat(𝑢[𝑘], 0,0.3)                 (30) 

4. Performance validation 

This section presents comprehensive validation results of the dual-loop PID controller under both transient and steady-
state conditions. The evaluation uses high-fidelity simulations with the nominal parameters: 𝐿1 = 560 𝜇H, 𝐿2 = 440 𝜇H, 
𝐶1 = 𝐶2 = 330 𝜇F, 𝑓𝑠 = 100 kHz, 𝐸 = 10 V, and 𝑅 = 470 𝛺. 

4.1. Transient Response Under Disturbances 

The controller’s dynamic performance was tested under three critical disturbance scenarios: 

• Load steps: 470𝛺 to 220𝛺 (50% increase) 
• Input variations: 10V to 8V (20% sag) and 10V to 15V (50% surge) 
• Reference tracking: 40V to 45V step change 

4.1.1. Load Step Response 

The converter’s behavior during a 50% load increase at 𝑡 = 0.9 s is shown in Fig. 6. The output voltage exhibits 

𝛥𝑉𝑜,max = 𝑉𝑜
∗ − 𝑚𝑖𝑛(𝑉𝑜(𝑡)) = 40 V − 29 V = 11 V (27.5% deviation)           (31) 

𝑡recovery = 1.22 s (to 39.2 V)                   (32) 

 

Figure 6 Transient response to 50% load step disturbance at t=0.9 s. Output voltage (𝑽𝑪𝟐) 

The inner current loop responds within 3 switching cycles (30 𝜇s), while the voltage loop’s recovery is constrained by 

𝜔𝑐,𝑣 <
𝜔𝑧

2
≈ 1.75 kHz             (33) 

4.1.2. Input Voltage Variations 

Fig. 7 shows responses to input changes 

Sag (10V → 8V): 𝛥𝑉𝑜,max = 3 V (7.5%),  𝑡recovery = 1.57 s

Surge (10V → 15V): 𝛥𝑉𝑜,max = 4.7 V (11.75%),  𝑡recovery = 1.17 s
               (34, 35) 
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Figure 7 Output voltage response to input variations. Left: 20% sag (10V→8V), Right: 50% surge (10V→15V) 

The asymmetric response stems from 

𝜕𝑉𝑜
𝜕𝐸

=
1

(1 − 𝑢)2
|𝑢=0.5 = 4                 (36) 

4.1.3. Reference Tracking 

For a 40V→45V reference step (Fig. 8) 

𝑡90% = 1.45 s (to 44.1 V), Overshoot = 0%               (37) 

 

Figure 8 Reference tracking performance for 40V→45V step change 

The response is governed by 

𝐺𝑐𝑙(𝑠) =
𝐶𝑣(𝑠)𝐺𝑣(𝑠)

1 + 𝐶𝑣(𝑠)𝐺𝑣(𝑠)
≈

1

1 + 2𝜁 (
𝑠

𝜔𝑛
) + (

𝑠
𝜔𝑛

)
2                (38) 

where 𝜁 = 0.8, 𝜔𝑛 = 1.2 krad/s. 

4.2. Steady-State Regulation Accuracy 

Under nominal conditions, the controller achieves 

𝑒𝑠𝑠 = 𝑙𝑖𝑚
𝑡→∞

(𝑉𝑟𝑒𝑓 − 𝑉𝑜(𝑡)) = 0 V                   (39) 

The current-loop performance is quantified by 

THD𝑖𝐿2
= 1.2%, Ripple = ±0.015 A (17.6% of 𝐼𝐿2

∗ )                   (40) 
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Fig. 9 shows the steady-state waveforms 

 

Figure 9 Steady-state operation at nominal conditions (40V output) 

Key metrics across all tests are summarized in Table 2 

Table 2 Summary of performance metrics 

Test Case Max Deviation Recovery Time Overshoot Steady-State Error 

Load Step (50%) 27.5% 1.22 s 0% 0 V 

Input Sag (20%) 7.5% 1.57 s 0% 0.8 V 

Input Surge (50%) 11.75% 1.17 s 0% 0.8 V 

Ref. Step (12.5%) 2% 1.45 s 0% 0 V 

The dual-loop structure demonstrates superior performance compared to single-loop approaches 

Improvement =
𝑡𝑠,single − 𝑡𝑠,dual

𝑡𝑠,single

× 100% ≈ 35%             (41) 

where single-loop settling times (𝑡𝑠,single ) are typically 1.8-2.0 s for similar test cases. The current-limiting strategy 

effectively prevents inductor saturation 

𝑖𝐿2,peak = 0.115 A < 1.2 × 𝐼𝐿2,rated = 0.3 A                   (42) 

5. Conclusion 

This paper has presented a comprehensive analysis and implementation of a dual-loop PID control strategy for 
Quadratic Boost Converters (QBC-B), specifically addressing the challenges posed by their non-minimum phase (NMP) 
characteristics. The key contributions and findings can be summarized as follows 

• NMP Compensation: The proposed cascaded control architecture successfully mitigates the destabilizing effects 

of the right-half-plane zero located at 𝜔𝑧 = 3.5 × 103 rad/s through systematic bandwidth separation: 

𝜔𝑐𝑖 ≈ 10𝜔𝑐𝑣 , 𝜔𝑐𝑣 <
𝜔𝑧

2
≈ 1.75 kHz             (43) 

• Performance Validation: Extensive simulations demonstrate robust operation under various disturbances: 
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Load steps (50%): 𝑡𝑠 = 1.22 s,  𝛥𝑉𝑜,max = 27.5%

Input variations (20-50%): 𝑡𝑠 ≤ 1.57 s,  𝛥𝑉𝑜,max ≤ 11.75%

Reference tracking: 𝑒𝑠𝑠 = 0 V,  Overshoot = 0%

            (44, 45, 46) 

• Implementation Advantages: The practical design incorporates: 

o Anti-windup protection: 𝑖ref
max = 0.3 A 

o Current limiting: 𝑖𝐿2,peak < 1.2 × 𝐼𝐿2,rated 

o Digital-friendly structure with 𝑓𝑠 = 100 kHz update rate 

The controller’s performance fundamentally depends on the bilinear nature of the QBC-B dynamics, as captured in the 
averaged model: 

𝑑𝑥

𝑑𝑡
=

[
 
 
 
 
 
 
 
 0 0 −

1 − 𝑢

𝐿1

0

0 0
1

𝐿2

−
1 − 𝑢

𝐿2

1 − 𝑢

𝐶1

−
1

𝐶1

0 0

0
1 − 𝑢

𝐶2

0 −
1

𝑅𝐶2 ]
 
 
 
 
 
 
 
 

𝑥 +

[
 
 
 
 
𝐸

𝐿1

0
0
0 ]

 
 
 
 

                  (47) 

Three critical insights emerge from this work 

• The inner current loop’s bandwidth (𝜔𝑐𝑖 ≈ 10 kHz) must satisfy 

𝜔𝑐𝑖 ≫
1

𝑇𝐿2

=
𝑅(1 − 𝑢∗)2

𝐿2

 ≈ 1.13          (48)
krad

s
 

to effectively linearize the plant for the outer loop. 

• 2. The derivative action in the outer PID controller compensates for the phase lag introduced by 

             (49) 

• 3. The quadratic conversion ratio 

𝑉𝑜
𝐸

=
1

(1 − 𝑢)2
             (50) 

necessitates conservative tuning to maintain stability across the operating range. 

Compared to single-loop approaches, the dual-loop strategy demonstrates 

Improvement = (1 −
𝑡𝑠,dual

𝑡𝑠,single

) × 100% ≈ 35%                  (51) 

in settling time while eliminating overshoot. However, the fundamental limitation imposed by the RHP zero remains 

𝑡𝑠 ≥
1

𝜔𝑧

≈ 286 𝜇s           (52) 
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Future research directions include: 

• Adaptive tuning mechanisms for varying operating points 
• Hybrid control combining PID with sliding mode techniques 

Experimental validation under extreme conditions (𝐸 ∈ [6,18] V, 𝑅 ∈ [200,1000] 𝛺)  
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