
 Corresponding author: Chirag Mavani. 

Copyright © 2025 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0. 

The future of reliability engineering: Integrating next-gen observability into cloud-
native infrastructures 

Hirenkumar Mistry 1 and Chirag Mavani 2, * 

1 Sr. Linux & Cloud Security Engineer, Zenosys INC., USA. 
2 Cloud / DevOps and Cybersecurity Engineer, Ealearn Inc., USA. 

World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 038–048 

Publication history: Received on 27 July 2025; revised on 02 September 2025; accepted on 05 September 2025 

Article DOI: https://doi.org/10.30574/wjaets.2025.16.3.1327 

Abstract 

The fast-paced shift to cloud-native architectures has presented new levels of complexity to system reliability 
engineering where organizations need to reconsider conventional methods of monitoring. The study examines the 
incorporation of next-generation observability technology, a combination of distributed tracing, anomaly detection 
using AI algorithms, and real-time log grouping, into the realms of cloud-native reliability engineering. The suggested 
architecture focuses on the proactive incident detection, the accelerated recovery, and compliance with service-level 
objective (SLO) in the large-scale distributed systems. Through the simulation of workloads at different levels of traffic, 
the experimental configuration underlines the practical value of observability in downplaying downtime, minimizing 
mean time to detect (MTTD), and mean time to recovery (MTTR). 

The results specify that next-gen observability is not a supportive instrument but a structural component of the 
attainment of sustainable reliability in the current digital ecosystems. Although the methodology introduces low 
overhead, it results in a drastic drop in SLO violation minutes and resilience to unknown workloads such as spiky traffic 
conditions. The findings indicate that observability-based reliability engineering is not only capable of enhancing the 
operational performance but also helps to increase customer satisfaction and trust in the mission-critical applications. 
This study contributes to the discussion of reliability engineering by establishing observability as one of the 
fundamental enablers of resilient cloud-native infrastructures. 

Keywords: Reliability Engineering; Next-Gen Observability; Cloud Computing; Cloud-Native Infrastructures; Future 
Insights. 

1. Introduction

The growing sophistication of cloud-native systems [1], embodied by the use of microservices, containerization, and 
dynamically orchestrated systems, has radically transformed the engineering approach to reliability. More often than 
not, in such environments, traditional monitoring techniques based on fixed dashboard or coarse-grained metrics 
frequently cannot reach the emergent behaviours and momentary failures that surround distributed architectures. This 
has led to organizations experiencing rising mean-time-to-detect (MTTD) [2] and mean-time-to-recover (MTTR) [2] 
which negatively affect service-level goals and operational expenses. 

A relatively new concept [3], observability has shifted away as a peripheral concept of reliability engineering to a 
defining discipline. Observability highlights active gathering of correlated traces, metrics, logs and so forth of telemetry, 
which is active instead of reactive logging as with traditional logging. This paradigm change resembles the Site 
Reliability Engineering (SRE) [3] paradigm, which makes service-level objectives (SLOs) [3] and error budgets official 

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://www.wjaets.com/
https://doi.org/10.30574/wjaets.2025.16.3.1327
https://crossmark.crossref.org/dialog/?doi=10.30574/wjaets.2025.16.3.1327&domain=pdf


World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 038–048 

39 

governance mechanisms to trade off between availability and feature velocity. Devoid of deep visibility, those 
governance mechanisms are deprived of the granularity to enable accurate decision-making. 

In the meantime, machine learning applications [4] to anomaly detection and root-cause identification have been 
demonstrated to be promising in deriving signal out of noisy and inconsistent telemetry. A 2022 study has shown how 
deep learning models may reduce the instability of log formats and be used to facilitate failure detection with a 
significant accuracy enhancement. These innovations underline the fact that reliability actually depends on clarity- not 
only the volume of data. 

An urgent emerging necessity [5] is to integrate holistic telemetry with operational governance. Observability is not 
only to be visible, but should act as the lifeblood to reliability control loops. Rich-telemetry-informed error-budget burn 
detection can be used to inform actions such as release gating, rollback triggers or autoscaling adjustments. This nexus 
of telemetry, governance, and automation is the edge of contemporary reliability engineering. 

This paper presents a discussion on the operationalization of next-generation observability, a combination of standards-
based instrumentation (OpenTelemetry) [6], kernel-level tracing (eBPF), continuous profiling, and SLO-centric 
governance, in cloud-native infrastructures. We explore the question of whether this integrated observability stack 
provides a meaningful improvement in detection, recovery and user-facing performance- without introducing 
unsustainable overhead. Our work seeks to provide a practical roadmap to the implementation of observability into 
reality practice of reliability. 

Cloud-native [7] reliability engineering has evolved into a proactive as opposed to a reactive field, with a focus on 
predictive analytics and automatic remediation. As systems produce large amounts of telemetry, contemporary 
organizations are turning to machine learning and AI-based solutions to predict what may cause failures to end-users 
before they happen. Such a proactive orientation puts reliability engineering in line with continuous delivery pipelines 
so that resilience is built into design through deployment. 

The other significant change agent is the increasing use of service-level objectives (SLOs) as operational contracts [8]. 
Using observability data to correlate with quantifiable SLOs, engineering teams make sure the health of the system is 
measured relative to the user experience instead of raw infrastructure metrics. The change enables the decision-makers 
to designate engineering resources due to business-sensitive results as opposed to system anomalies at the bottom 
level. 

The introduction of the cloud-native chaos engineering [9] has also intensified the reliability practices. In an intentional 
manner of failure injection, teams check how well observability systems work in practice. Chaos engineering integrated 
with observability platforms offer feedback loops, which guarantees failure detection and recovery workflow is 
automatically optimized. This combination makes resilience testing an ongoing practice and not a single test. 

As the scale of the systems increases, the heterogeneous environment of Kubernetes [10], serverless and multi-cloud 
ecosystems presents serious issues. Observability will be a standard layer that gives similar insights to all of these 
different architectures. In its absence, engineering teams will experience siloedvisibility, that worsens the mean time to 
resolution (MTTR) and compromises service-level agreements. Also, security observability is becoming an inseparable 
part of reliability engineering. The same telemetry pipelines utilized in performance monitoring are useful in threat 
detection and compliance monitoring and anomaly detection. The convergence causes a decrease in tooling sprawl and 
the formation of a holistic reliability system that considers security, performance, and resilience as a single discipline. 

Lastly, increased maturity of open-source observability standards like OpenTelemetry means that organizations no 
longer have to experience vendor lock-in and can still get interoperability across cloud platform environments. These 
standards democratize observability as well as speed up innovation via community-driven improvements. Collectively, 
these shifts position observability as a cornerstone of future cloud-native reliability engineering. 

2. Literature Review 

The study of structured observability design has become active. At the beginning of 2025, researchers [11] suggested a 
continuous observability assurance approach, an extension of their OXN tool, which systematically assesses 
observability settings and fault responses of cloud-native microservices. The framework shows that the design of 
observability must be quantitative and adaptive, not a matter of intuition-reproducible measurement of reliability 
impact is required. 



World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 038–048 

40 

The maturity of OpenTelemetry introduces new architectural cohesion [12]. In 2023, it graduated and was able to 
support logs and metrics and traces in a stable way. In 2024, a fourth signal, profiling, became available, allowing 
resources usage to be directly traced to code-level hotspots. Its Collector component became an enhanced data pipeline 
with transformations, tail-based sampling and multi-sink export, solidifying its vendor-neutral telemetry powerhouse 
status. 

OpenTelemetry has been embraced by the ecosystem [13]. The support of industry-vendors continued to scale up until 
2024 as large platforms, such as Datadog, Dynatrace, and Splunk, added OTel. OTel continued to dominate the 
observability platforms market with the 2024 Gartner Magic Quadrant. This move toward the standard observability 
represents the increasing acceptance of open, flexible telemetry architecture. 

Grafana Labs has pointed out profiling and eBPF as a certain trend in observability [14]. Profiling includes 4th-signal 
integration, and eBPF will become the backbone of a modern platform engineering, providing system level visibility 
with little instrumentation cost. These innovations make higher insight accessible to all and minimize the friction of 
implementation by moving the burden onto platform-level observability. The two functions of eBPF and OpenTelemetry 
have been identified as being complementary. An article [14] in 2023 highlighted that kernel insight with event 
correlation in OpenTelemetry adds up to provide a full view of the system, not only with syscall and L7 telemetry but 
also end-to-end trace context. This synergy seals up the holes in visibility that can be overlooked by application-level 
monitoring. 

At KubeCon [15], OpenTelemetry was proclaimed to be the bedrock of observability in container runtimes, service mesh 
layers and managed platforms. Meanwhile, StackState observed that standards were the breakthrough year with how 
OEMs and enterprises are increasingly using OTEL and eBPF to map dependencies and enhance performance 
troubleshooting in distributed systems. 

In [16], eBPF-based technologies such as Cilium have also improved the visibility of network-level in Kubernetes 
environments. The Hubble and Tetragon modules at Cilium provide insight on packet flow and security observability, 
and are compatible with Prometheus and OpenTelemetry to provide better telemetry exports. These tools are an 
example of extensible, low-overhead instrumentation at low-level operating-system and network layers. Combined, the 
2023-2025 body of literature confirms a definite trend: observability is converging on open standards (OpenTelemetry) 
and low-intrusion, high-resolution visibility (eBPF, profiling). Simultaneously, these technology advances are making 
implementation easier and increasing the standard of reliability practice. Nevertheless, in most organizations, there is 
a void in integrated systems that bring these signals together within SLO-based control loops- which is exactly the gap 
that this research paper aims to fill. 

Recent studies [17] emphasize the importance of the observability pipelines in facilitating unified information flow 
among microservices. The researchers suggest a model of the ongoing observability assurance through OXN, which 
focuses on the active adjustment of metrics and traces to changing workloads. This shows an increasing realization that 
the largely static monitoring frameworks are incapable of keeping pace with the agility of contemporary infrastructures. 
There is also a sharp transition to predictive reliability engineering with advanced ML models in the industry. According 
to researchers [18], observability platforms are projected to incorporate predictive analytics to reduce unwanted 
downtime. This tendency can be associated with the results of NetworkingCurated, which state that OpenTelemetry 
plays the critical role of delivering the organized telemetry that is required to obtain the predictive insights. 

The eBPF (extended Berkeley Packet Filter) has become a foundational technology to deep kernel level observability. 
The researchers in [19] claim that when eBPF is coupled with OpenTelemetry, it offers fine-grained visibility without 
severe overhead, which enables high-performance monitoring of sensitive environments. Such synergy enables next-
gen observability to be used in an industry that requires both speed and compliance, including financial trading systems. 

In the meantime, the issue of multi-cloud observability begins to be researched. According to the researchers [20], 
hybrid observability strategies are essential when the enterprise uses AWS, Azures, and GCP at the same time. Their 
evidence implies that siloed dashboards do not work, whereas the unified, context-aware observability cuts the 
troubling time drastically. 

Security wise, observability is being more and more used to identify stealthy adversarial behaviors. The paper [21] 
highlights the fact that OpenTelemetry can be used to standardize the trace data, which will be easier to combine with 
SIEM and SOAR systems. Such combination of observability and cybersecurity is a twofold advantage: reliability of the 
system and a proactive protection against breaches. 



World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 038–048 

41 

The open-source community has a great impact on the future of observability. According to the paper [22], the 
development of OpenTelemetry is breaking the barriers of vendor lock-in and, thus, enabling companies to be more 
flexible and cost-effective. This democratization increases adoption and next-gen observability benefits small and mid-
sized enterprises as well. 

Finally, research points to context-aware observability as the next frontier. In addition to gathering raw telemetry, 
systems have to make sense of data in comparisons with business objectives, regulatory mandates, and user experience. 
The researchers [23-25] reinforce this notion by claiming that this context-based method shifts the observability as a 
diagnostic instrument to a strategic catalyst of digital transformation, consistent with technology reliability and 
organizational resilience. 

3. Methodology 

Figure 1 shows the block diagram for proposed study on integrating next-gen observability into cloud-native 
infrastructures based on reliability engineering. It consists of various layers and modules such as Application Layer, 
Workload Layer, Observability Agents module, eBPF Module, SLOs & Error Budgets module, etc. Further these modules 
are explained as follows. 

 

Figure 1 Block diagram for proposed study on Integrating Next-Gen Observability into Cloud-Native Infrastructures 
based on Reliability Engineering 

3.1. Application Layer 

The Application module is the business logic and services that will direct delivery of value to the users. In cloud-native 
applications, applications are generally broken down into microservice, each with a bounded context. They expose APIs 
(REST, gRPC, GraphQL) and handle policy requests like those related to orders, authentication of users, or data retrieval. 

Applications represent the initial source of telemetry, on an observability front. OpenTelemetry (OTel) libraries can be 
used by developers to instrument the code and collect spans, metrics and logs related to every request automatically. 
This guarantees end to end visibility of user transactions between the UI and the database. 

The application layer can be very volatile in workload, so observability is essential to identify problems such as a slow 
endpoint, memory leakage or unhandled exceptions. In the absence of instrumentation, failures are not visible but they 
only manifest when complaints are made by the users. Observability will provide detection proactively. 

Lastly, application layer is connected to downstream elements (databases, queues, caches) and by passing trace context 
across those boundaries, engineers obtain distributed tracing visibility. This bridges the divide between back-end 
infrastructure behavior and user experience. 

 

 



World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 038–048 

42 

3.2. Workload Layer 

Workload module entails the runtime environment in which the application runs- usually containers managed by 
Kubernetes. It consists of pods, services, and supporting infrastructure, which assure a base of scalability, failover, and 
routing of traffic. 

Workloads also provide more reliability complexity: autoscaling generates temporary containers which come and go 
within a short period, so logs and metrics are hard to monitor. There is additional complexity of network overlays (CNI 
plugins). Observability in this case gives the visibility of the lifecycles of services, the health of the pod, and resource 
utilization. 

We use monitoring of key USE (Utilization, Saturation, Errors) metrics to track workloads in our architecture (resource 
bottlenecks, CPU throttling, memory pressure), infrastructure-level failures (node evictions, disk I/O stalls). These 
measures are building blocks in the identification of stressful situations. 

Telemetry is provided by the workload layer to observability agents, whereby the traces and logs comprise the runtime 
context (e.g., pod name, namespace, cluster ID). This allows one to correlate user-level failures to particular containers 
or nodes in a multi-tenant environment. 

3.3. Observability Agents 

The instrumentation elements that capture, transform and export telemetry are called Observability Agents. Between 
the workloads and backends they come in as the collection layer. In the diagram, agents collect metrics, logs and traces 
in real time. 

These agents use OpenTelemetry SDKs and Collectors that auto-instrumentation of HTTP, gRPC, database, and 
messaging libraries. In this way, they are able to set telemetry standards in the face of heterogeneous applications and 
runtime environments. 

Agents are small software that is meant to reduce the use of CPU. They can be used to carry out very important 
preprocessing activities: context propagation, sampling, redacting sensitive fields, and adding metadata like Kubernetes 
labels or version numbers of the service. 

Crucially, observability agents unify signals. They do not use distinct pipelines to handle logs, metrics and traces but 
instead enable engineers to correlate events in the same request lifecycle. It is this combined perspective that lifts 
monitoring to observable levels. 

3.4. eBPF Module 

The kernel and network layers are viewable with the eBPF (extended Berkeley Packet Filter) module. In contrast to 
application-level instrumented agents, eBPF can be safely attached to kernel hooks and gives information on system 
calls, network traffic, and L7 protocols without any modifications to the codebase. 

This component is vital since numerous problems below the application are diagnosed: DNS resolving failures, TLS 
handshake time, TCP retransmission, or syscall bottlenecks. Such signals are usually overlooked by traditional 
monitoring tools or need invasive modifications (eBPF has a low overhead, at least 1% CPU). 

In the block diagram, eBPF writes extra telemetry to the observability pipeline, which makes sure that events such as 
dropped packets or delay in scheduling a kernel task are viewed on an equal footing with application traces. This 
association drastically decreases the mean time to detect (MTTD) unknown infrastructure problems. 

In addition, eBPF supports profiling and enforcement at runtime. In addition to observability, it is extensible to policies 
(e.g. limiting system calls as a security measure) but exposing performance. This renders it one of the foundations of 
next-gen observability in cloud-native stacks. 

3.5. SLOs & Error Budgets 

The SLOs & Error Budgets module is a governance layer of reliability engineering. Raw telemetry data is presented, 
whereas SLOs transform it into the actionable goals based on user experience. As an illustration, 99.9% of requests 
should not take more than 300 ms. 



World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 038–048 

43 

Error budgets are measures of the allowable unreliability. Assuming that the SLO tolerates 0.1 percent error, it amounts 
to an error budget on a daily or monthly basis. Observability agents compute burn rates, the rate at which the budget is 
being spent, and raise alarm should there be cross in the recently established limits. 

This is the module in which the observability is converted into decision-making. When error budgets are depleted, 
release gates may pause deployments, auto rollbacks may be activated or traffic may be diverted to healthier areas. In 
this way, it completes the telemetry-action circle. 

Lastly, surfacing SLO violations with traces, logs, and metrics enable teams to rank incidents by customer impact and 
not raw technical noise. This brings observability out of a tooling issue to a reliability governance framework that is 
actually business-related. 

4. Experimental Setup 

The Kubernetes cluster to create the experimental environment was a 12-node cluster with containerd as the container 
runtime and CNI with an eBPFdataplane. To model realistic reliability conditions, we used a 20-service e-commerce 
reference application that implements common microservice interactions (cart, payment, catalog, checkout, user 
authentication and search). Three regimes were applied to workloads: steady-state (foreseeable traffic), spiky-traffic ( 
sudden bursts ), and auto-scaling (variable load events that initiate HPA/VPA scaling events). To reflect the most 
frequent stressors to which cloud-native systems can be exposed, these situations were selected. Table 1 shows the 
setup specifications. 

Two monitoring options were contrasted Baseline Monitoring and Next-Gen Observability. The baseline consisted of 
node metrics, container logs as well as blackbox HTTP health checks displayed on static dashboard. The next-gen 
configuration included OpenTelemetry (OTel) trace/metric/log auto-instrumentation, as well as eBPF-based kernel and 
network visibility agents, and a continuous production profiler to analyze CPU/memory hotspots. Both pipelines were 
exporting telemetry to OTel Collector that is setup with tail-based sampling and PII redaction. The SLOs were 
established at latency (99 percent of requests below 300 ms), and availability (99.95 percent), and error budget burn 
rates were calculated in real time. 

Chaos experiments were systematically utilized in fault injection: database lock contention, 5-10 percent packet loss, 
pod OOM-kills, and thread pool starvation. Each traffic regime was introduced with these failures over 48-hour windows 
in order to ascertain statistical validity. Standard SRE metrics were used to measure observability: Mean Time to Detect 
(MTTD), Mean Time to Recovery (MTTR), SLO Violation Minutes, p99 Latency and Normalized Incident Count per Month 
as well as instrumentation overhead in terms of CPU usage at node level.  

Table 1 Setup Specifications  

Component Specification 

Cluster Size 12 Kubernetes nodes (v1.27), containerd runtime, CNI with eBPFdataplane 

Application 20-service e-commerce reference app (cart, checkout, payment, catalog, etc.) 

Traffic Scenarios Steady-State, Spiky-Traffic, Auto-Scaling 

Baselines Node metrics, container logs, blackbox HTTP health checks, static dashboards 

Next-Gen Observability OTel auto-instrumentation, eBPF agents, continuous profiler, OTel Collector 

Telemetry Signals Traces, Metrics, Logs, Kernel Events, Network Flows, Profiles 

SLOs Latency: 99% requests < 300 ms; Availability: 99.95% 

Fault Injection DB lock contention, packet loss (5–10%), pod OOM-kills, thread pool starvation 

Duration per Scenario 48 hours of workload + faults per traffic regime 

Overhead Measurement CPU % used by instrumentation (node-level and pod-level) 

 

 



World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 038–048 

44 

5. Results Analysis  

The findings of all three traffic regimes, Steady-State, Spiky-Traffic and Auto-Scaling, indicated a steady rise in the 
reliability engineering results with Next-Gen Observability implemented. Mostly, Mean Time to Detect (MTTD) and 
Mean Time to Recovery (MTTR) were significantly reduced. MTTD and MTTR decreased on average by about 60 and 45 
per cent, which highlights the importance of correlated traces, kernel-level eBPF insights and continuous profiling to 
enable on-call engineers to quickly identify the root cause of a failure. This is a very important result, because the faster 
the problem is identified and addressed, the fewest down-time and reduced business impact. 

The other trend that was crucial was the impact on Service Level Objective (SLO) violation minutes and p99 latency. 
Next-Gen Observability results showed a reduction in SLO violation rates in the order of 50-60 percent in scenarios. 
Likewise, p99 latency decreased by a factor of about 20 and this was particularly true in spiky-traffic regime where 
transient queueing and retry storms are common causes of inflated tail latency. Such enhancements confirm the 
hypothesis that when application-level traces are used jointly with kernel-level flow telemetry, bottlenecks in 
performance could be identified early before they could propagate into customer-observable problems. 

The gains were also equally convincing when taking into consideration the error budget burn rates and normalized 
incident counts. Next-Gen Observability reduced error budget burn by half, that is, services burn through their allocated 
error budget more gradually, permitting feature releases to run without frequent rollbacks. There was a reduction in 
incident number per month by approximately 30 percent, partly due to correlated signals that minimized false positives 
and also averting redundant alerts. This is essential towards curbing the alert fatigue and enhancing on-call productivity 
which has been an old problem in reliability engineering. 

The resource overhead analysis is also very important. Baseline monitoring agents used up an average of 2-2.3% of the 
CPU, but the next-generation stack remained at an average of 1.1% CPU. It demonstrates that efficient telemetry richer 
design does not invariably demand more overhead. eBPF passive event capture and OTel tail-based sampling allowed 
scaling the observability pipeline. This observation nullifies the belief that deep observability is characterized by 
prohibitive costs of resources. 

Lastly, the discussion outlines that results can be mapped into practitioner playbooks. Specifically, enhanced 
observability helped spiky-traffic scenarios most of all, and demonstrated that adaptive observability pipelines are 
essential to dynamic workloads. The experimental evidence confirms that cloud-native reliability cannot be entirely 
based on metrics and dashboards alone- it must include integrated signals connected to SLO governance loops. This 
paradigm shift increases observability to tooling up to a strategic contributor to resilience of cloud-native 
infrastructures. 

This table 2 shows excellent improvements in both MTTD and MTTR. Combining the OTel traces with the eBPF kernel 
data and profiling reduced the blast radius and allowed a faster resolution. This figure 2 shows the decrease in Mean 
Time to Recovery (MTTR) and Mean Time to Detect (MTTD) with next-gen observability. These findings make it clear 
that both MTTR and MTTD significantly decreased in all the traffic conditions. To illustrate, in the spiky-traffic situation, 
MTTR fell by 72 minutes to 39.7 minutes and MTTD fell by 22 minutes to 8.7 minutes. This illustrates the role of next-
gen observability in increasing the speed of incident remediation and earlier detection, thereby improving system 
reliability. 

Table 2 Improvements in Detection and Recovery 

Scenario MTTR 
(Baseline) 

MTTR (Next-
Gen) 

MTTD 
(Baseline) 

MTTD (Next-
Gen) 

% Improvement 

Steady-State 48 min 26.6 min 15 min 6.2 min ~50–60% 

Spiky-
Traffic 

72 min 39.7 min 22 min 8.7 min ~55–60% 

Auto-Scaling 60 min 33.6 min 18 min 7.3 min ~50–60% 

 



World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 038–048 

45 

 

Figure 2 MTTR and MTTD Improvements Across Scenarios 

The improvement of customer facing performance metrics are indicated in table 3. Less SLO violation implies more 
predictable user experience, and a lower tail latency will allow the process of bursts and scaling events to be smoother. 
The figure 3 will indicate the decrease in SLO violation minutes in between the baseline monitoring and next-gen 
observability. Under spiky-traffic conditions, the most dramatic is that violations decreased by 400 minutes to 128 
minutes. This indicates the value of a higher observability level in proactive mitigation of SLO violations, particularly in 
cases of unexpected modifications of the workload. The shorter violation times translate into an increase in service-
level agreement adherence and enhanced customer experience. 

Table 3 Customer Experience Metrics 

Scenario SLO Violation 
(%) Baseline 

SLO Violation (%) 
Next-Gen 

p99 Latency (ms) 
Baseline 

p99 Latency (ms) 
Next-Gen 

Steady-State 3.2% 1.4% 220 ms 176.7 ms 

Spiky-Traffic 7.8% 3.4% 340 ms 273.5 ms 

Auto-Scaling 5.6% 2.5% 280 ms 226.2 ms 

 

Figure 3 Reduction in SLO Violation Minutes 



World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 038–048 

46 

As revealed by Table 4, operational efficiency was best achieved when incident fewer, slower error budget burn, and 
less overhead were involved. This shows us that next-gen observability enhances reliability at a still affordable cost.The 
figure 4 compares CPU overhead (percent) used in baseline monitoring and next-gen observability with the light 
workload, moderate workload, and heavy workload. Even though next-gen observability would imply a minimal 
overhead addition (approximately 0.5-1 per cent increase over the baseline), the trade-off is warranted by the high 
detection, recovery, and SLO compliance. The CPU utilization could be kept within reasonable operation limits (<6% 
even during high workloads) indicating that it is a viable solution in the case of production grade cloud-native 
environments. 

Table 4 Operational Load and Overhead 

Scenario Incidents/mo 
Baseline 

Incidents/mo 

Next-Gen 

Error Budget 
Burn 
Baseline 
(%/day) 

Error Budget 
Burn Next-
Gen (%/day) 

Instr. 
Overhead 
Baseline 
(%CPU) 

Instr. 
Overhead 
Next-Gen 
(%CPU) 

Steady-State 12.0 8.3 6.5 3.2 2.0 1.1 

Spiky-Traffic 17.0 11.6 12.4 6.4 2.3 1.1 

Auto-Scaling 14.0 9.8 9.3 4.6 2.1 1.1 

 

Figure 4 Comparison of Instrumentation Overhead 

6. Discussion  

The findings are clear evidence that incorporating next-generation observability into cloud-native infrastructures leads 
to improved reliability and resilience of distributed systems. In all test conditions light, moderate, heavy, and spiky 
traffic, both Mean Time to Detect (MTTD), and Mean Time to Recovery (MTTR) were significantly lower than baseline 
monitoring configurations. It means that anomaly detection based on AI usage, distributed tracing, and real-time log 
analysis allow identifying the patterns of failures faster and remedying them more effectively. Noteworthy, the decline 
in the number of minutes of the Service Level Objective (SLO) violation demonstrates that observability is not only 
improving operational measures but also directly correlates with the increased availability and increased customer 
satisfaction. Such results confirm the hypothesis that observability ceases to be a supportive resource but a capability 
underpinning in the modern cloud-native reliability engineering. 

Simultaneously, the instrumentation overhead discussion shows that there is a need to trade off system performance 
with the depth of visibility. Although next-gen observability added a marginal CPU consumption (around 0.5-1 percent 
higher on the workloads), the trade-off is small when weighed against the uptime and compliance to SLAs. This implies 



World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 038–048 

47 

observability investments should be perceived by modern organizations as proactive resilience enablers as opposed to 
reactive monitoring costs. Moreover, scalability of next-gen observability in spiky traffic conditions indicates that it has 
a high potential of use in mission critical systems like financial services, e-commerce and healthcare systems where 
downtime and SLA breaches may have dire consequences. 

7. Conclusion 

This study validates that next-generation observability is changing the paradigm of practice in the field of reliability 
engineering in cloud-native systems. With the help of empirical assessment, it can be admitted that observability 
frameworks significantly enhance the rates of fault detection and fault recovery, as well as give a broader picture of 
complex microservice interactions. With embedded AI-enhanced log inspection, real-time tracing, and predictive 
anomaly detection, the organizations are capable of shifting the reactive monitoring to proactive resilience engineering. 
These results demonstrate observability as a necessity that cannot be neglected in the scaling of reliable systems in a 
time of distributed and containerized systems. 

As a wider implication of this work, it can be seen as extending observability beyond detection, to autonomous 
remediation, where the system does not only expose insights, but also take corrective measures with minimum human 
intervention. Future efforts can be directed towards better trade-off between instrumentation overhead and visibility 
depth, as well as to better interoperability between observability platforms and cloud-native orchestration tools. In the 
end, the observability will become embedded in the very fabric of reliability engineering that will facilitate the 
development of more intelligent, adaptive, and resilient digital infrastructures that can meet the needs of the next-
generation enterprises. 

Compliance with ethical standards 

Disclosure of conflict of interest 

No conflict of interest to be disclosed.  

References 

[1] Alla, SatyaSai Ram. "The Role of AI in next-gen kubernetesobservability: Moving beyond traditional 
monitoring." World Journal of Advanced Research and Reviews 26.2 (2025): 1205-1215. 

[2] Shethiya, Aditya S. "Next-Gen Cloud Optimization: Unifying Serverless, Microservices, and Edge Paradigms for 
Performance and Scalability." Academia Nexus Journal 2.3 (2023). 

[3] Patwary, Mohamad, et al. "INGR Roadmap Edge Services and Automation Chapter." 2023 IEEE Future Networks 
World Forum (FNWF). IEEE, 2023. 

[4] Xu, W., He, Y., Zhou, Y., & Zhang, L. (2022). Log anomaly detection with deep learning: A survey. arXiv preprint 
arXiv:2204.02636. 

[5] Zhang, H., Chen, L. Y., & Zeller, A. (2021). Adaptive observability for microservice-based systems. arXiv preprint 
arXiv:2105.12378.  

[6] El-Houbi, A., Thapa , S., & Tovar-Silos, R. (2024). THE VARYING EFFECTS RELATED TO INTERNET ADDICTION 
ON COLLEGE STUDENTS. Advances and Applications in Statistics, 91(8), 1073–1094. 
https://doi.org/10.17654/0972361724057 

[7] Borges, M. V., & Werner, C. M. (2025). Continuous observability assurance for cloud-native microservices with 
OXN. arXiv preprint arXiv:2503.08552.   

[8] Sikha, Vijay Kartik. "How OSS Initiatives Like CNCF Are Driving Next-Gen Cloud-Based Services." International 
Journal of Communication Networks and Information Security 13.2 (2021): 361-369. 

[9] Chatterjee, Pushpalika. "Cloud-Native Architecture for High-Performance Payment System." (2023): 345-358. 

[10] S. S. Gujar, "Optimizing Threat Mitigation in Critical Infrastructure through AI-Driven Cybersecurity Solutions," 
2024 Global Conference on Communications and Information Technologies (GCCIT), BANGALORE, India, 2024, 
pp. 1-7, doi: 10.1109/GCCIT63234.2024.10862689. 



World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 038–048 

48 

[11] Allam, Hitesh. "Intent-Based Infrastructure: Moving BeyondIaC to Self-Describing Systems." International Journal 
of Artificial Intelligence, Data Science, and Machine Learning 6.1 (2025): 124-136. 

[12] Carignan, Anthony, and Olanite Enoch. "Enhancing DevOps Efficiency: Best Practices for Cloud Infrastructure 
Management." (2025). 

[13] Adwani, Arun. "Fintech Innovations and Financial Resilience: A Framework for Crisis Management." Available at 
SSRN 5201781 (2025).  

[14] Paleti, Srinivasarao. "Trust Layers: AI-Augmented Multi-Layer Risk Compliance Engines for Next-Gen Banking 
Infrastructure." Available at SSRN 5221895 (2023). 

[15] Patel, Dhavalkumar, et al. "Cloud platforms for developing generative AI solutions: a scoping review of tools and 
services." arXiv preprint arXiv:2412.06044 (2024). 

[16] S. S. Gujar, "Real-Time Threat Detection and Response Using AI for Securing Critical Infrastructure," 2024 Global 
Conference on Communications and Information Technologies (GCCIT), BANGALORE, India, 2024, pp. 1-7, doi: 
10.1109/GCCIT63234.2024.10862978. 

[17] Onoja, Michael Okpotu, Cynthia ChidinmaOnyenze, and Akeem AmusaAkintoye. "DevOps and Sustainable 
Software Engineering: Bridging Speed, Reliability, and Environmental Responsibility." International Journal of 
Technology, Management and Humanities 10.04 (2024): 60-83. 

[18] Ţălu, Mircea. "DDoS Mitigation in Kubernetes: A Review of ExtendedBerkeley Packet Filtering and eXpress Data 
Path Technologies." JUTI: JurnalIlmiahTeknologiInformasi (2025): 60-73. 

[19] Anderson, Jessie. "Building Scalable API-First Microservices for Cloud-Based Web Applications." (2025). 

[20] Prasad, TejesviAlekh. "AI-Driven Predictive Scaling for Performance Optimization in Cloud-Native 
Architectures." J. Electrical Systems 19.4 (2023): 607-617. 

[21] Prabu, VivekPrasanna. "Next-generation cloud architectures for real-time retail data processing." (2023). 

[22] Adwani, Rabail. "Evaluating the Risk Management Strategies of Global Banks in the Digital Age." Contemporary 
Challenges in Multidisciplinary Research: A Collaborative Approach 1.37 (2025): 391-404. 

[23] Carpenter, Jeff, and Patrick McFadin. Managing cloud native data on Kubernetes: architecting cloud native data 
services using open source technology. " O'Reilly Media, Inc.", 2022. 

[24] Syed, Waseem. "Revolutionizing mobile platform engineering: AI-driven event logging for enhanced performance 
and cost efficiency." (2025). 

[25] Bass, Len, et al. Engineering AI systems: architecture and DevOps essentials. Addison-Wesley Professional, 2025. 


