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Abstract 

WUSCHEL-related homeobox (WOX) is a large group of transcription factors (WOX1-WOX14) specifically found in plants. 
WUSCHEL homeobox 2 (WOX2) is important for regulating many aspects of plant somatic embryogenesis. Transcription 
factors (TFs) are master regulators involved in controlling different cellular and biological functions as well as diverse 
signaling pathways in plant growth and development. The transcription factors like WUSCHEL-RELATED HOMEOBOX 
(WOX2) are crucial for maintaining cellular totipotency and regulating the developmental pathways of somatic 
embryogenesis. The induction of somatic embryogenesis using shoot apical thin layers has been successful by Malabadi 
and co-workers in few conifers such as Pinus roxburghii, Pinus kesiya, Pinus wallichina, Pinus patula, and Pinus sylvestrus 
(Scots pine). Furthermore, the detection and expression of PrWOX2, and PcWOX2 in embryogenic cultures imitated from 
shoot tip thin layers of mature trees of P. roxburghii and Lodgepole pine (Pinus contorta) could be used as a genetic 
marker for the identification of embryogenic tissue in pines. The findings from this study based on the molecular 
assessment, suggested that the cell lines derived from bud cultures were truly embryogenic, not just cells that imitate 
embryogenic cultures (EC) in morphology. Moreover, these experimental observations also suggest that Pr WOX2 and 
PcWOX2 could be used as an early genetic marker to discriminate embryogenic cultures from callus initiated from thin 
cell layers of mature trees of conifers. The research contribution  of pine tissue culture work by Indian plant 
biotechnology Stalwarts, Professor RN Konar, Nagamani, P Mahshwari, Professor Pramod Tandon, Professor 
Chittaranjan R. Deb, Professor Hiranjit Choudhary, Dr. Sarita Arya, Dr. ID Arya, Dr. RK Kalia, and Dr. Rajani S. Nadagouda 
has been updated and discussed. The Government of India has awarded Professor Pramod Tandon the fourth 
highest civilian honour Padma Sri in 2009, for his outstanding contribution to plant science. However, 
commercialization of pine tissue culture work in India is still facing problems and major bottleneck due to many reasons. 
Applications of cell sorting techniques, embryogenic cell culture identification by Artificial Intelligence (AI) should be 
applied for the future studies of initiatation of embryogenic cultures using thin cell layers of shoot apical domes of 
mature conifers.  
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1. Introduction

The number of WOX genes in the plant body increases as plants grow more complex and varies in different species. 
WUSCHEL-related homeobox (WOX) is a large group of transcription factors specifically found in plants [1-35]. WOX 
members contain the conserved homeodomain essential for plant development by regulating cell division and 
differentiation [1-45]. Transcription factors (TFs) regulate several cellular and metabolic activities, as well as signalling 
pathways in plants during stress, growth and development. The WUSCHEL-RELATED HOMEOBOX (WOX) genes are 
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transcription factors (TFs) that are part of the homeodomain (HD) family, which is important for the maintenance of 
apical meristem, stem cell niche, and other cellular processes [1-25]. Transcription factors (TFs) are crucial for the 
transcriptional and post-transcriptional control of genes involved in response to environment stress response [1]. WOX 
gene family play an important role in the whole plant’s growth and development, such as in the stem, embryo, root, 
flower, and leaf [1-45]. Many studies using Arabidopsis as a model plant have increased our knowledge of the function 
of embryogenesis-related genes in angiosperm [1-35]. Numerous research studies have discovered that the WOX gene 
family play a role in the whole plant’s growth and development, such as in the stem, embryo, root, flower, and leaf [1-
50]. Transcription factors (TFs) are crucial for the transcriptional and post-transcriptional control of genes involved in 
response to environment stress response [1-20]. WOX2 increases the expression of the auxin transporter PIN1 gene to 
regulate stem cell organogenesis in Arabidopsis [4]. PpWOX2 (Pinus pinaster) over-expression enhanced somatic 
embryogenesis and plant organ formation in Arabidopsis transgenic seedlings [5]. 

Linkage analysis of WOX protein sequences demonstrated that amino acid residues 141–145 and 153–160 located in 
the homeodomain are possibly associated with the function of WOXs during the evolution [1-75]. These 350 members 
were grouped into 3 clades: The first clade represents the conservative WOXs from the lower plant algae to higher 
plants; The second clade has the members from vascular plant species; The third clade has the members only from 
spermatophyte species [1-65]. Furthermore, among the members of Arabidopsis thaliana and Oryza sativa, the 
ubiquitous expression of genes in the first clade and the diversified expression pattern of WOX genes in distinct organs 
in the second clade and the third clade has been observed [1-75-79]. 

Sarkar et al., (2007) [44] reported that throughout the lifespan of a plant, which in some cases can last more than one 
thousand years, the stem cell niches in the root and shoot apical meristems provide cells for the formation of complete 
root and shoot systems, respectively [44].  Both niches are superficially different and it has remained unclear whether 
common regulatory mechanisms exist [44].  In the root niche the quiescent centre cells, surrounded by the stem cells, 
express the homeobox gene WOX5 (WUSCHEL-RELATED HOMEOBOX 5), a homologue of the WUSCHEL (WUS) gene 
that non-cell-autonomously maintains stem cells in the shoot meristem [44].  Loss of WOX5 function in the root 
meristem stem cell niche causes terminal differentiation in distal stem cells and, redundantly with other regulators, also 
provokes differentiation of the proximal meristem [44]. Sarkar et al., (2007) [44] also indicated that conversely, gain 
of WOX5 function blocks differentiation of distal stem cell descendents that normally differentiated [44]. Importantly, 
both WOX5 and WUS maintain stem cells in either a root or shoot context [44].  Sarkar et al., (2007) reported that stem 
cell maintenance signalling in both meristems employs related regulators [44]  

Rasheed et al., (2024) [1] reported that the WOX transcription factors (TFs) play a significant role in plant growth and 
development and biotic and abiotic stresses responses [1]. For example, it was found that WOX2 increases the 
expression of the auxin transporter PIN1 gene to regulate stem cell organogenesis in Arabidopsis [4]. Malabadi et al., 
(2011) has reported the expression of PrWOX2 gene during induction of somatic embryogenesis from apical buds of 
mature trees of P. roxburghii [3-5].  Malabadi et al., (2011) confirmed that PrWOX2 gene was used as the marker of 
embryoigenic cultures initiated from mature tree buds of Pinus roxburghii [3-5]. PpWOX2 (Pinus pinaster) 
overexpression enhanced somatic embryogenesis and plant organ formation in Arabidopsis transgenic seedlings [6]. To 
detect the expression of the WUSCHEL (WUS) gene during somatic embryogenesis in plants, one can utilize techniques 
like quantitative real-time PCR (qRT-PCR) to measure mRNA levels or in situ hybridization to visualize WUS expression 
within specific tissues [1-29]. Additionally, reporter gene assays, such as using a WUS promoter-GUS fusion, can help to 
track WUS expression patterns during somatic embryo development. Transcription factors are an extensive group of 
regulatory proteins that play significant roles in different aspects such as growth and development by connecting their 
target genes through particular binding domains and controlling their expression [1-67]. Previous study has shown that 
the WOX transcription factor gene family has a function in the structuring of several early plant cell populations [1-20-
45]. Components of the WOX protein family are crucial for the upkeep and growth of stem cells in the cambium, the 
lateral meristem that gives rise to all of the cellular parts of the wood [1-20]. Prior research has indicated that WOX 
genes are important for the advancement and progress of plants [1-25-44]. 

2. An Overview of WOX Gene Family 

The WUSCHEL (WUS) gene in plants was discovered by Thomas Laux, Klaus F. X. Mayer, Jürgen Berger, and Gerd Jürgens 
[1-70]. They identified it as essential for maintaining the integrity of shoot and floral meristems in Arabidopsis [1-2-
75]. Their work, published in 1996, established WUS as a key player in stem cell regulation in plants. WOX gene family 
was first discovered in Arabidopsis thaliana in 1996, with its essential role in shoot and floral development [1, 7]. The 
term “HOMOBOX” refers to a gene that can cause a single component of the cell to undergo metamorphosis when it 
develops from one embryo stage to another which was first proposed by William Bateson [1, 8]. 
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The WOX transcription factors were classified into 14 subfamilies, which include WOX (homeobox related to WUSCHEL), 
BELL (homeodomain similar to BELL), PINTOX, NDX (homeobox NODULIN), KNOX (homeobox KNOTTED like), LD 
(luminidependens homeodomain), PHD (plant homeodomain with a finger domain), HD-ZIP I–IV (homeodomain leucine 
zipper), ZF-HD (zinc finger home- odomain), and DDT (homeodomain DDT) [1, 10-55]. High-affinity monomers of HDs 
attach to DNA by interactions with the helix–turn–helix (HTH) structure [1, 9]. The WOX gene family is divided into 
three Clades: Ancient, Intermediate, and modern (WUS) based on historical evolution linkage [1, 11]. Among 15 WOX 
genes in Arabidopsis, the protein of the modern clade is the largest which contains WUS, WOX1/6, WOX2, WOX3, WOX4, 
and WOX5/7 subclades and, in the modern/WUS clade, WOX genes also contain conserved domains such as the ERF-
associated amphiphilic repression (EAR) domain and WUS motifs other than the homeodomain [1, 11]. The word 
“Wuschel” refers to the bristling and branched phenotype of altered plants, where ectopic meristems repeatedly form 
and degenerate before they mature [1, 7, 9, 10]. Apart from the highly conserved homeodomain region, there is minimal 
sequence similarity across WOX proteins in the various subfamilies [39]. In several plant domains, WOX roles have 
diversified to provide unique features that regulate cell identification [1, 7, 9, 10]. The WOX family was identified in 
various plants, sunflower, wheat, black cottonwood, European spruce maize, sorghum, rice, arabidopsis, peach, tea 
plant, coffee plant, sweet orange, chinese plum, pine, Chinese red pine, maiden-hair tree, cotton, blueberry, and walnut 
[1, 7, 9, 10-20-75-79]. 

WOX1 works as a controller and detector that takes part in transportation of auxin polarity in leaf-limited area and 
detects the restriction caused by auxin transduction [1-25]. WUSCHEL homeobox 2 (WOX2) is important for regulating 
many aspects of plant somatic embryogenesis [1, 3-6, 16-19, 26, 27, 29]. WOX2 over-expression in Arabidopsis enhanced 
organogenesis and somatic embryogenesis in a portion of the first- and second-generation transgenic seedlings [1-25]. 
Kadri et al., (2021) [29] reported that WUSCHEL over-expression promotes callogenesis and somatic embryogenesis in 
Medicago truncatula Gaertn [29]. Previous research has shown that WOX3 genes are essential for the lateral organs’ 
development of their lateral domains [1-25]. WOX4 is a key regulator of cell identity and division activity in the vascular 
cambium of hybrid aspen [1-25]. In adult Pinus sylvestris, PsWOX4’s maximum transcript level occurred during the 
cambial zone’s active cell proliferation phase [1, 15]. This tree also had the highest cambial age, 63 years, which was 
associated with the cambial zone’s highest number of cell layers [1-25]. The root apical meristem (RAM) and the shoot 
apical meristem (SAM) of higher plants are where stem cell niches are most apparent [1, 30-33]. The WOX5 gene 
encodes a transcription factor, which is an essential regulator, preserving the composition and functionality of the stem 
cell niche in plant root tips [1, 30-33]. WOX5 is essential for maintaining the stem cell niche in the root apical meristem 
[74]. In contrast, WOX5 inappropriately suppresses genes associated with shoot formation, likely via inhibiting shoot 
growth [1, 30-33]. Ectopic expression of WOX5 in Arabidopsis thaliana probably represses shoot-related genes, which 
lead to inhibition of shoot development [1, 30-33]. WOX6/PFS2 controls ovule development and influences ovule 
patterning [1, 33-38]. The low expression of WOX7 resulting from low plant sugar concentration and the promoting 
roles of sugar and other nutrients, such as nitrogen and phosphate, prevent WOX7’s inhibitory effect on lateral root 
development under ideal growth conditions [1, 33-38]. WOX8 and WOX9 are expressed in the zygote throughout 
development and in the basal offspring following zygotic division [1, 33-38]. Both genes are necessary for embryo and 
shoot development [1,33-38]. It was reported that over expression of the CsWOX9 gene in cucumber regulates wart 
formation in cucumber fruit [1, 38]. 

WOX11 has a role in the establishment of unexpected roots (also called adventitious roots) in both Arabidopsis and rice 
[1, 39-40]. WOX11 overexpression can strengthen the capacity of falling leaves to develop roots, whereas WOX11 
suppression can result in a reduction in root formation [1, 39-40]. Arabidopsis WOX11 is essential for starting new 
organs by growing secondary roots from several leaves, rebuilding adventitious lateral roots from wounded primary 
roots, and forming calluses in tissue culture [1, 39-40]. WOX11 promotes overall plant growth and development by 
inhibiting nematode-induced limitation of primary root growth [1, 39-40]. Plants develop more secondary roots to 
modify their root structure in reaction to nematode infection [1]. When the main root is broken, auxin response sites in 
the promoter region of WOX11 produce a local buildup of auxin, activating the protein’s transcriptional activity [1-38]. 
The HOMEOBOX13 (WOX13) gene in Arabidopsis controls fruit patterning by suppressing the expression of the JAG/FIL 
genes in the medial domain which, in turn, permits proper replum formation [1-40]. WOX13 plays a crucial role in 
regulating callus development and organ reconnection [1, 41-43]. Research demonstrates that when tissue is injured in 
the leaf petiole and hypocotyl of Arabidopsis, WOX13 is transcriptionally activated [1, 41-43]. WOX14 functions in the 
cambial zone to promote cell differentiation as compared to cell proliferation [1, 41-43]. This is in opposition to prior 
research that hypothesized WOX14 and WOX4 work in coordination to promote cell proliferation [1, 41-43]. The WOX 
genes work in regulating other genes to activate their function. WUS expression initiates in the embryo at the 16-cell 
stage in the apical cells of domains and during post-embryonic development in the central part of the floral meristem 
and in the inflorescence meristem, as well as in the expressing cells of the organizing center [1, 41-43]. Rasheed et al., 
(2024) [1] reported WUS regulates the expression of genes that are involved in auxin synthesis and response, including 
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TIR1, TAR2/, MP/ARF5, and TMO6 [1, 41-43]. WUS also maintains the level of auxin response in the shoot apical 
meristem at a stable and low level, but not at zero [1-44]. 

Transcription factors (TFs) are master regulators involved in controlling different cellular and biological functions as 
well as diverse signaling pathways in plant growth and development [1, 2, 7- 39-40]. WUSCHEL (WUS) is a 
homeodomain transcription factor necessary for the maintenance of the stem cell niche in the shoot apical meristem, 
the differentiation of lateral primordia, plant cell totipotency and other diverse cellular processes [1- 7- 39-40]. Recent 
research about WUS has uncovered several unique features including the complex signalling pathways that further 
improve the understanding of vital network for meristem biology and crop productivity [1, 2, 7- 39-40].  In addition, 
several reports bridge the gap between WUS expression and plant signaling pathway by identifying different WUS and 
WUS-related homeobox (WOX) genes during the formation of shoot (apical and axillary) meristems, vegetative-to-
embryo transition, genetic transformation, and other aspects of plant growth and development [1- 7- 39-40-75].  In this 
respect, the WOX family of TFs comprises multiple members involved in diverse signaling pathways, but how these 
pathways are regulated remains to be elucidated [1, 2, 7- 39-40-65].   

According to Rasheed et al., (2024) [1] the WOX gene family plays an important role in regulating plant growth and 
development and response to environmental stresses [1-40].   The role of WOX genes in abiotic stress tolerance, such 
as to drought, salt, and cold, highlights their potential for biotechnological applications in crop resilience augmentation 
[1-50].  However, significant problems still exist in transferring insights from model species to economically relevant 
crops. Future studies should focus on extending the functional genomics of WOX genes in non-model plants and 
investigating their interaction networks with other transcription factors [1-50]. Using techniques like CRISPR-based 
gene editing to investigate WOX gene activities across multiple plant species would be useful in developing crops with 
greater resistance to environmental challenges, hence aiding sustainable agriculture [1-50].   

Rasheed et al., (2024) [1] also indicated that the study of WOX genes is promising for future prospects, but it still faces 
various challenges [1-50].  The WOX gene family shows a wide diversity across plant species, contributing to plants’ 
development and abiotic stress response [1-44]. However, limited genomic data make it difficult to implement these 
findings in agricultural applications, especially in non-model plants [1-50].  The complex interactions of WOX genes with 
other transcription factors (e.g., CLAVATA) are also not well understood, which may lead to varied effects depending on 
the species [1-67]. 

WOX genes comprise a large plant-specific gene family that belongs to the homeodomain (HD) class of transcription 
factors [1-60]. WUS HDs are critical for early-phase embryogenesis and lateral organ development [1-76]. HD proteins 
typically contain a highly conserved motif of 60 amino acids encoded by a characteristic DNA fragment called the 
homeobox and consisting of a helix-loop-helix-turn-helix structure [1-76]. In one of the studies reported by Zhao et al., 
(2015) [76], the WUSCHEL (WUS)-related homeobox (WOX) gene family coordinates transcription during the early 
phases of embryogenesis [1-76]. In this study by Zhao et al., (2015) [76] a putative WOX2 homolog was isolated and 
characterized from Aegilops tauschii, the donor of D genome of Triticum aestivum [76]. The sequence consisted of 2045 
bp, and contained an open reading frame (ORF), encoded 322 amino acids [76]. The predicted protein sequence 
contained a highly conserved homeodomain and the WUS-box domain, which is present in some members of the WOX 
protein family [76]. The full-length ORF was subcloned into prokaryotic expression vector pET-30a, and an 
approximately 34-kDa protein was expressed in Escherichia coli BL21 (DE3) cells with IPTG induction [1-50]. The 
molecular mass of the expressed protein was identical to that predicted by the cDNA sequence [76]. Phylogenetic 
analysis suggested that, Ae. tauschiiWOX2 is closely related to the rice and maize orthologs [76]. Quantitative PCR 
analysis showed that WOX2 from Ae. tauschii was primarily expressed in the seeds; transcription increased during seed 
development and declined after the embryos matured, suggesting that WOX2 is associated with embryo development 
in Ae. tauschii[76]. 

Somatic embryogenesis is one of the important pathways for forest tree propagation and genetic improvement 
[268]. WOX8 is essential for maintenance cell proliferation during both embryonic and post-embryonic development 
[268]. In this study, JmWOX8 gene was cloned, containing a 906-bp CDS sequence encoding 301 amino acids [271]. 
Subcellular localization confirmed its nuclear localization. The amino acid sequence of JmWOX8 contains a conserved 
homeobox domain belonging to the Homeodomain super family, and shares > 70% sequence similarity with WOX8 
homologs from other species [271]. The qRT-PCR results revealed JmWOX8 expression in both embryogenic callus (EC) 
and non-embryogenic callus (NEC) followed a unimodal pattern, peaking on the 21st day and then dropping sharply by 
the 28th day[271]. These results suggest that JmWOX8 plays an important role in the early stage of somatic 
embryogenesis of J. mandshurica [271]. This research work by Li et al., (2025) [271] provides a foundation for 
elucidating the molecular mechanisms of somatic embryogenesis of J. mandshurica[271]. 
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3. Plant Somatic Embryogenesis and Organogenesis 

Somatic embryogenesis (SE) is a critical process in plant tissue culture, enabling the regeneration of entire plants from 
somatic cells rather than through traditional sexual reproduction pathways [80-179, 180-227, 244-246]. SE has 
significant applications in agriculture, particularly for the propagation of genetically identical plants at a large scale, 
which is especially valuable for crops that are difficult to reproduce through conventional methods, such as soybeans 
and bamboo [80-179-227, 244]. This process involves inducing somatic cells to become totipotent, allowing them to 
differentiate into any cell type and ultimately form a complete plant [80-179-227, 244]. The success of SE is influenced 
by several factors, including the plant’s genotype, the type of explant used, and the composition of the growth medium 
[80-179-227, 244]. Plant growth regulators, particularly auxins such as 2,4-Dichlorophenoxyacetic acid (2,4-D), play a 
pivotal role in promoting callus formation and embryo initiation during SE [80-179-227, 244-246]. Additionally, 
transcription factors like WUSCHEL-RELATED HOMEOBOX (WOX2) are crucial for maintaining cellular totipotency and 
regulating the developmental pathways of somatic embryo [1-79].  

Malabadi and coworkers induced and established somatic embryogenesis and plant regeneration in many 
commercially important plants in India such as grape [80], sugarcane [81], Catharanthus roseus [82], Vigna aconitifolia 
[83, 84], Clitoria ternatea [85, 87], papaya [88], and mango [89]. In addition to this, Malabadi and coworkers also 
established an in vitro micropropagation and in vitro seed germination methods for many commercially important 
orchids in India [135-145, 172] such as Pholidota pallida [136], Xenikophyton smeeanum [137, 138], Liparis elliptica 
[139], Aerides maculosum[140], Eria dalzelli [141], Cymbidium bicolor [142], Dendrobium nobile[143], Vanda parviflora 
[144], Vanda coerulea[145], and Cymbidium elegans [172]. In addition to this, for an example, Malabadi et al., (2012) 
[267] also established a successful in vitro cloning and plant regeneration of sugar maple (Acer saccharum) (Figure-1) 
at the Department of Agriculture, University of Guelph, Ontario, Canada (Unpublished work) [267]. 

 

Figure 1 In vitro cloning and plant regeneration of Sugar maple (Acer saccharum)  [Reference, 267] 

In case of organogenesis, the explants of selected plant produce plants via callus formation [80-179, 269, 270]. 
Organogenesis allows for the effective regeneration of new plants from callus [80-179]. Organogenesis is the production 
of plant organs from a specific tissue in order to develop complete plants [80-179, 269, 270]. It is characterized by being 
polar, which means clonal propagation of high-value forest trees, medicinal plants, endangered /threatened plant 
species through somatic embryogenesis has the potential to rapidly capture the benefits of breeding or genetic 
engineering programs and to improve the uniformity and quality of the nursery stock [80-179, 244-246, 269]. 

Plant tissue culture is an in vitro aseptic culture of cells, tissues, organs or whole plant under controlled defined 
nutritional medium conditions often to produce the clones of plants [80- 227, 244-246]. Plant tissue culture can be used 
for a wide range of purposes with various applications in research and industry [80- 227, 244-246]. The resulting clones 
are true to type of selected genotypes and used for the large-scale plant multiplication [80-179-227, 244]. The principle 
of totipotency, the ability of a single plant cell to regenerate into a whole plant, is the foundation of plant tissue culture 
[80- 227, 244]. Key to this process is the regulation of growth hormones, particularly auxins, which promote root 
formation, and cytokinins, which encourage shoot development [80-179-227, 244]. The balance between these 
hormones determines the regenerative pathway, making them essential for tissue culture success [[80- 227, 244]. 
Tissue culture technique depends mainly on the concept of totipotentiality of plant cells, which refers to the ability of 
single cell to express the full genome by cell division [80- 227, 244-246]. 
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The shoot apical meristems are organized pools of undifferentiated or embryonic cells (stem cells) maintained by a 
dynamic balance between cell division and differentiation [126]. On the basis of study reported by Malabari  et al., 
(2012) [126] it is found that actively dividing and totipotent cells (stem cells) are positioned only at the cambial layer 
of the apical meristematic tissue in conifers, so that their growth and division under in vitro conditions leading to a 
continuous flow of progeny cells (Figure-2, 3, 4) [ [126].  These progeny cells (stem cells) under stress conditions 
(cold/heat) undergo differentiation due to signal activation in cambial region and leading to the embryogenic pathway 
in conifers (Figure-2, 3, 4) [126]. On the other hand, the rest of the layers (epidermis, cortex region and central pith or 
medulla) of the transverse thin section of shoot apical meristems of mature trees have induced non-embryogenic tissue 
under in vitro conditions in conifers [126].  

 

Figure 2 Initiation of embryogenic tissue growth from the cambial region of thin shoot apical dome of mature Pinus 
patula 

Cloning of selected superior mature tree is recognized as a powerful tool in forest tree improvement [80- 227]. Somatic 
cells of many plant species can be cultured and induced to form embryos that are able to develop into mature plants, 
and termed as somatic embryogenesis [80- 227]. During this somatic-to embryogenic transition, cells have to 
dedifferentiate, activate their cell division cycle and reorganize their physiology, metabolism and gene expression 
system [80- 227].  These procedures were accompanied by increased expression of diverse stress related genes; evoking 
the hypothesis that somatic embryogenesis is an adaptation process of in vitro cultured plant cells [80- 227]. 

This will also resulted in the micropropagation of a particular tree line under study, and the somatic seedlings could be 
used for commercial forestry since they have defined genetic characters of superior genotypes [80- 227, 244].  

 

Figure 3 Initiation of embryogenic tissue growth from the cambial region of thin shoot apical dome of mature Pinus 
roxburghii 
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Figure 4 Initiation of embryogenic tissue growth from the cambial region of thin shoot apical dome of mature Pinus 
patula, Pinus roxburghii, and showing early sign of embryonal head formation  

 

 

Figure 5 Initiation of cell division showing the early sign of embryonal head formaion in Pinus roxburghii and Pinus 
patula 

 

 

Figure 6 Initiation of cell division showing the embryonal head formaion in Pinus roxburghii and Pinus patula 

 

 

Figure 7 Embryonal head formation in adult tissue of Maritime pine and Scots pine (Pinus sylvestris) 
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Plants continuously maintain pools of totipotent cells in their apical meristems from which root and shoot systems are 
produced. Most plant organs are formed during the postembryonic stages from the meristems [80- 227]. The shoot 
meristem is the source of all above ground post-embryonic organs in higher plants [126]. It carries out organ formation 
by balancing the maintenance and proliferation of undifferentiated totipotent cells (stem cells), and the direction of 
these cells towards differentiation. In case of pines, the transverse thin layer showed outermost epidermis layer, then 
internal layer of cortex region, followed by thin cambial region and central pith or medullar region respectively [80- 
227]. Actively dividing and totipotent cells (stem cells) are positioned only at the cambial layer of the apical 
meristematic tissue in conifers, so that their growth and division lead to a continuous flow of progeny stem cells [80- 
227]. The activation of the cambial layer cells (stem cells) is one of the important phenomenons for the successful 
induction of somatic embryogenesis in conifers. This has been achieved   in many recalcitrant conifers [126]. 

 

Figure 8 Embryonal head formation and a mixture of normal and abnormal somatic embryos derived from the in vitro 
culture of shoot apical domes of Pinus roxburghii 

The embryogenic cells (stem cells) are very small in size, richly cytoplasmic and actively dividing with a prominent 
nucleus, rich in starch grains, and very slow in growth under in vitro conditions at the initial stages of the development 
(Figure-3, 4, 5, 6) [ [126].  The slow growth of these cells might be due to reprogramming of the stem cells towards 
embryogenic pathway. During this phase, cells might be readjusting their metabolic processes due to the stress 
conditions. After programming of the stem cells towards embryogenic pathway, the growth of cells is regaining to 
normal [126].  These cells were generally present in small, compact aggregates and showed competence for 
embryogenesis [126].  These cambial layer cells (stem cells) under stress conditions undergo differentiation and leading 
to the embryogenic pathway in conifers [126]. On the other hand, the rest of the layers (epidermis, cortex region and 
central pith or medulla) have induced non-embryogenic tissue in conifers [126]. Microscopic observation of non-
embryogenic tissue confirmed loosely arranged, vacuolated and often elongated thin parenchymatous cells with sparse 
cytoplasm and few starch grains [126]. Such cells did not show morphogenetic competence for somatic embryogenesis 
in conifers [126]. These cells can survive up to 6 months with multiple subcultures, ultimately leading to death due to 
the exudation of high phenolic compounds and other factors [126].  The non-embryogenic tissue is often mixed with 
cambial layer cells, and it is very difficult to separate the embryogenic cells [126].   

A simple and inexpensive method to separate embryogenic cells from the mixture of the tissue clumps has been widely 
adopted in many plant species for the selection of embryogenic cells [126]. In this method, non-embryogenic cells could 
be largely eliminated by the application of selection procedure and culture of embryogenic cells [126].  Vigorous shaking 
of the suspension leads to the sinking of larger and denser clumps of embryogenic cells to the bottom of the flask within 
a few seconds [126].  On the other hand, vacuolated non-embryogenic cells remained in the upper portion [126].  The 
middle part of the suspension consisting of small clumps of embryogenic cells was used as the inoculums for subculture 
[126]. Very recently a convenient method has been developed for the selection of embryogenic cells in our lab, and this 
technique particularly holds good for conifer tissue culture [126].  During this method, a mixture of non-embryogenic 
tissue and unidentified embryogenic cells should be made into a suspension often mixed with 70% alcohol and sterile 
antioxidant solution (2ml) [126].  The suspension is centrifuged at the lower speed for about 10-15min resulting in the 
clear separation of two layers [126].  The bottom layer is composed of minute and small rich embryogenic cells, whereas 
the upper layer separated as the empty elongated parachymatous non-embryogenic cells [126].  This method is used in 
our laboratory for the selection of embryogenic cells particularly for the conifer tissue culture experiments [80- 227].  
These cells were plated on media under in vitro conditions for the induction of somatic embryogenesis in mature 
conifers [126]. The resulting cultures were composed predominantly of embryogenic cells originated from cambial 
layer only [126].  If the embryogenic cells were not separated within the stipulated time of the growth, overgrowth of 



World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 552-582 

560 

non-embryogenic tissue could lead to the death of the cells ultimately ends up with the failure of the entire somatic 
embryogenesis process [126].  At this stage one cannot proceed further and all the cultures will be turning brown in 
spite of successful initiation of somatic embryogenesis [126]. Identification and separation of embryogenic cells is one 
of the tedious processes during mature tree cloning of conifers [126].  Therefore, activation of cambial layer is very 
important in the initiation of embryogenic cultures during the cloning of mature conifers [126]. On the other hand, the 
thin layer of shoot tip explants cultured under in vitro conditions without activation of the cambial layer also produces 
a mixture of the callus tissue [126]. This tissue cannot be used for the induction of somatic embryogenesis in conifers 
since cambial layer cells are not programmed towards embryogenesis [126]. This is very much evidenced by the 
microscopic observation of the tissue. For the successful programming of the cambial layer cells, activation is very much 
needed [126]. This activation again depends upon many factors such as type of buds collected, timing of bud’s collection, 
stress conditions, and also signaling molecules [126]. These factors should be optimized before starting cloning 
experiments of mature trees of a particular pine species under study [126].  During this activation step, formulated 
media composition only activate the cambial layer cells and inactivate the rest of the layer cells. Therefore, cambial layer 
cells only produce a callus and rest of the layers failed to produce callus tissue and callus tissue growth is inhibited 
(Figure-2, 3, 4). This is just like a magic show where only  cambial layer is activated to produce a callus and rest of the 
layers are inhibited to produce callus tissue (Figure-2, 3, 4).  

Another important factor is growth cycle of the particular pine species should be studied before starting mature tree 
cloning experiments [126]. Furthermore, all the cambial layer cells are not programmed towards embryogenesis under 
the given in vitro conditions; only a few are programmed and proceed further for the successful embryogenesis [126]. 
For example, only small no of cells is reprogrammed towards somatic embryogenesis [126].  The further growth of the 
cells is bloked or arrested due to unknown factors [126].  Under this condition, cells might develop head and suspensor 
but failed to produce embryos [126]. In another situation, cells are embryogenic but resulted in abnormal embryo 
formation, embryo-like structures, fake embryos which failed to germinate is very common in conifer somatic 
embryogenes using buds from mature trees [126].  This also largely depends upon the pine species, and type of the 
stress conditions used, and signal molecules [126]. Hence activation of the cambial layer is species-specific [126]. In our 
study the tissue produced from activated cambial layer produced embryogenic cells [126]. Therefore, tissue produced 
from cambial layer without activation under stress conditions failed to produce embryogenic cells due to the failure of 
programming of cells towards embryogenesis [126].  This is one of the important steps when we work on cloning of 
mature conifers [126].  The best way to avoid this problem is to activate the cambial layer of cells and inactivation of 
rest of the layers (epidermis, cortex, and central medulla or pith) under in vitro conditions for the successful initiation 
of embryogenic cultures [126].  During activation, only cambial layer of cells produces callus and inhibits callus 
formation from the rest of the layers (epidermis, cortex region and central pith or medulla) under in vitro conditions 
[126]. The activation of cambial region is a very interesting phenomenon during cloning of mature conifers [126]. This 
again depends upon the transmission of the signal to the cambial region [126]. As per our previous discussion in one of 
the review papers, there are many signaling molecules and stress factor, which directly trigger the activation of the 
cambial layer (stem cells) leading to the initiation of embryogenic tissue [126].  The callus is embryogenic and resulted 
in the successful induction of the somatic embryogenesis in mature conifers. But till today, how this signal triggers the 
activation of cambial layer (stem cells) in conifers is largely unknown [126]. Another important question is whether this 
signal is transmitted from epidermis region to cambial region or central pith or medulla region to cambium region and 
the entire phenomenon is still unknown in conifers [126]. 

4. Totipotency of Somatic Plant Cells 

The totipotency of somatic plant cells is a specific and scientifically exciting phenomenon, which is based on the 
developmental program of plants [80- 227, 244-246]. It can be best demonstrated in an in vitro system where somatic 
plant cells can regain their totipotency and are capable of forming embryos through the developmental pathway of 
somatic embryogenesis [80- 227, 243, 244-246]. This triggers the reprogramming of plant cells into the pathway of 
embryogenic development (commitment) leading to somatic embryo formation (Figure-5, 6, 7, 8) [80- 227]. These 
conditions include proper supply of nutrients, source of carbohydrate, pH of the medium, adequate temperature and 
proper gaseous and liquid environment [80- 227, 244-246]. The controlled conditions provide the culture of explants 
on a defined nutrient medium with the source of carbohydrate in an environment conducive for their growth and 
multiplication [80- 227, 243, 244-246]. The disadvantages associated with zygotic explants may be overcome if mass 
propagation of elite, mature trees can be achieved from vegetative tissue explants, such as secondary needles or apical 
shoots, because the regenerated plantlets will be uniform and possess elite characteristics from clearly defined parents 
[80- 227, 243]. The successful cloning of mature trees of conifers was also demonstrated by Bonga and coworkers [205 
2219], DR Smith in 1997 [212], Westcot and co-workers [214] and Litz et al., 1995 [194]. 
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Somatic or body cells have the capability to reinitiate an entire ontogenic program, termed somatic embryogenesis [80- 
227, 232-246]. The totipotency of somatic plant cells is a specific and scientifically exciting phenomenon, which is based 
on the developmental program of plants [80- 227, 232-246]. Therefore, the differentiation of somatic cells is reversible 
[80- 227, 232-240]. It can be best demonstrated in an in vitro system where somatic plant cells can regain their 
totipotency and are capable of forming embryos through the developmental pathway of somatic embryogenesis [80- 
227, 232-246]. This is due to the presence of specific undifferentiated organ cells, the meristems. The activity of 
meristematic cells is maintained, initiated or stopped by endogenous as well as environmental signals [80- 227, 232-
240]. Environmental and endogenous factors together determine the developmental fate of plants through the 
activation or inactivation of meristems [80- 227, 232-240]. Plant cells attempt to establish a new programme through 
changes in pH gradients of all cell compartments, arresting differentiated functions, reactivating the compartments, 
arresting differentiated functions, reactivating the cell cycle and re-organizing gene expression as well as metabolism 
[80- 227, 232-246].  

Under in vitro conditions, one or a few somatic cells of the plant or explant have to be competent to receive a signal 
(endogenous or exogenous). This triggers the pathway of embryogenic development (commitment) leading to somatic 
embryo formation [80- 227, 232-246]. For a particular genotype or plant, the in vitro forms of somatic embryogenesis, 
the optimum conditions (potential, competence, induction, and commitment) have to be experimentally optimized [80- 
227, 232-246]. Although in vitro somatic embryogenesis is practiced in many tissue culture laboratories throughout the 
world using many conifer species, genotypes and explants, the biological background of the process is still largely 
unknown and not well studied [80- 227, 232-246]. Therefore, we still do not know how and why competence or 
commitment is achieved by a somatic cell or what is the real trigger (signal) initiating embryo development [80- 227, 
232-240]. It was presumed earlier that the potential of somatic embryogenesis is determined at the level of the 
genotype, which is clearly proved by the successful transfer of the embryogenic capacity between embryogenic and 
recalci- trant genotypes via sexual crossing [80- 227, 232-240].  

Recalcitrance could be resolved by optimizing in vitro growth conditions of plants or by proper explant selection. 
Genetic determinants therefore, may only serve to define the conditions when and where embryogenic competence can 
be expressed [80- 227, 232-240]. Thus, embryogenic potential is largely defined by the developmental programme of 
the plant as well as by environmental cues or stimuli [80- 227, 232-246]. Unlike carrot or alfalfa, where somatic 
embryogenesis can develop on all organs of seedlings, in conifers, embryogenic competence is restricted to certain 
tissues of a given genotype. Tissue culture studies supported the view that there exists a kind of gradient in the 
embryogenic response among various plant organs [80- 227, 232-240-244-246]. The embryogenic potential is highest 
in tissues with embryonic origin and decreases in other explants of the same plant species. Therefore, immature zygotic 
embryos are genetically programmed to produced embryos. On the other hand, somatic cells or body cells are not 
genetically programmed towards embryo formation. But somatic cells can be reprogrammed towards somatic 
embryogenesis under stress conditions, influence of media and growth regulators, time of the bud collections, and many 
other factors. However, even if embryogenic competence seems to be lost in somatic plant cells, it can potentially be 
regained [80- 227, 232-240, 244-246]. In this indirect somatic embryogenesis pathway, an intermediate callus 
formation phase is required in order to express embryogenic potential [80- 227, 232-240]. Therefore, differentiated 
plant cells do not lose their developmental potential during normal development but retain plasticity, that is, they are 
capable of dedifferentiating and acquiring new developmental fates (the so-called universal totipotency of plant cells 
[80- 227, 232-240-246]. 

5. Story of Pine Tissue Culture in India (1960-2000) 

In India, pine tissue culture research has started in 1960-1970 under the guidance of Professor RN Konar funded by the 
Government of India project at the University of Delhi, New Delhi, India and successfully initiated the conifer tissue 
culture research and published in Physiologia Plantarum in 1974 [199, 200, 232-237-262]. Maheshwari P, Nagamani R 
and Konar RN have also published the results of the pine tissue culture in Botanical Monograph. CSIR Publications, New 
Delhi, India in 1971 [199, 200, 232-234-262]. But during initial years, there are many failures in establishing the pine 
tissue culture work in India. 

Professor K. Nataraja was also worked (1960-1965) under the guidance of Professor RN Konar interested in tissue 
culture studies particularly induction of somatic embryogenesis in plants at the University of Delhi, New Delhi, India 
[199, 232-234-262]. After that, Professor K. Nataraja has also started working on induction of somatic embryogenesis 
in plants and other tissue culture studies. Professor K. Nataraja has guided more than 28 Ph. D students including Dr. 
Ravindra B. Malabadi at the Department of Botany, Karnatak University, Dharwad, Karnataka State, India. In addition to 
this, Professor K. Nataraja also guided M. Phil students in the plant tissue culture studies. Nataraja K and RN. Konar at 
the Department of Botany, University of Delhi, New Delhi, India were Indian botanists who published influential 
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research in the 1960s and 1980s on experimental embryogenesis in the plant Ranunculus sceleratus L., demonstrating 
how plant tissues could be used to form plantlets and contribute to advances in plant tissue culture [198, 250-252-256]. 
Double haploid technology (DH) is an essential tool in plant breeding, enabling the rapid production of homozygous 
lines. However, doubled haploids (DH) were not highly relevant in plant breeding until researchers at the Department 
of Botany in the University of Delhi, India, reported a major breakthrough in the production of haploids from another 
culture in Datura innoxia (Guha and Maheshwari, 1964, 1966) [269, 270]. Their research revolutionized the use of 
doubled haploid (DH) technology in plant breeding worldwide [269, 270].  

This long legacy (1960-2000) of the research work of Professor RN Konar and Professor Pramod Tandon, NEHU, 
Shillong, Meghalaya, India (1996-2000) has led to the successful initiation of embrygenic culture from the shoot apical 
meristem culture of mature trees of Pinus kesiya by Malabadi and other co-workers [98-102]. Later, Professor Pramod 
Tandon and co- workers in India successfully initiated, established and plantlet regeneration from different explants 
(shoot apical meristem, secondary needles, mature zygotic embryo and immature zygotic embryos) of mature trees of 
Pinus kesiya [180-184, 172, 186, 188, 189-192, 193, 185]. This project during 1996-2000 was funded by the Department 
of Biotechnolgoy (DBT), Government of India, New Delhi, India under the guidance of Professor Pramod Tandon, Plant 
Biotechnology Laboratory, North Eastern Hill University (NEHU), Shillong, Meghalaya State, India [180-184, 172, 186, 
188, 189-192, 193, 185]. Dr. Sartia Arya and co-workers, Scientist at Arid Forest Research Institute (AFRI), New Pali 
Road, Jodhpur- 342005, Rajasthan State, India and Tissue Culture Laboratory, Division of Genetics and Tree 
Propagation, Forest Research Institute (FRI), Dehradun-248006, Uttaranchal state, India has also initiated and 
established embryogenic cultures and plantlet regeneration of Pinus roxburghii in India [219-225]. Furthermore, more 
systematic, and refined study has been done successfully by Dr. Ravindra B. Malabadi and co-workers established the 
pine tissue culture studies in Pinus kesiya, Pinus roxburghii and Pinus wallichiana, Pinus caribaea and Pinus gerardiana 
in India [80-179]. Therefore, knowledge and research work of Professor RN Konar, Professor P. Maheshwari, and 
Professor K. Nataraja and Professor Pramod Tandon, (1960-2000) has helped for the establishment of pine tissue 
culture studies in India [80- 227]. In addition to this Government of India has recognized this outstanding contribution 
of Professor Pramod Tandon for the initiation, establishment and successful regeneration of pine tissue culture in India 
[180-184, 172, 186, 188, 189-192, 193, 185]. Professor Pramod Tandon is an Indian Plant Biotechnologist and 
academic. He is a former Professor of Botany and Vice-Chancellor of North-Eastern Hill University (NEHU), Shillong, 
Meghalaya, India and Chief Executive Officer of Biotech Park, Lucknow. UP, India. The Government of India has awarded 
Professor Pramod Tandon the fourth highest civilian honour Padma Sri in 2009, for his outstanding contribution to 
plant science, Professor Pramod Tandon is a Fellow of the National Academy of Sciences, India, Indian Botanical Society, 
Indian Botanical Society, Linnean Society of London, and International Society of Environmental Botanists and served 
as a member of many Academic bodies and National Task Forces including Scientific Advisory Committee to the Cabinet, 
GOI. The other pine tissue culture work in India was also done by Dr. Sarita Arya, Dr. ID Arya, Dr. RK Kalia, and Dr. Rajani 
S. Nadagouda [220-230].  Further the research work in pine tissue culture work done by Dr. Pramod k. Gupta (USA) and 
shri Mohan Jain (Finland) is also acknowledged [220-230].  

In addition to this, Dr. Chittaranjan R. Deb and Professor Pramod Tandon in India have also initiated, established 
embryogenic cultures and successful regeneration of plants from shoot apical meristem cultures of mature trees of Pinus 
kesiya [180-185, 188]. Chittaranjan R. Deb and Tandon (2002) reported successful initiation, establishment, and plant 
regeneration from secondary needles of mature trees of Pinus kesiya [180-185, 188]. Deb and Tandon (2004) also 
reported successful regeneration of plantlets from different explants (shoot apical meristem, secondary needles, 
immature zygotic embryo, zygotic embryo) of mature trees of Pinus kesiya [180-183-184, 188]. In addition to this, Dr. 
Hiranjit Choudhury and co-workers in India also reported successful initiation, establishment ad plantlet regeneration 
from different explants (shoot apical meristem, secondary needles, immature zygotic embryo, zygotic embryo) of 
mature trees of Pinus kesiya [187, 188, 189-192, 193, 194]. Dr. Sanghamitra Purkayastha [186] also reported the 
developmental physiology and biochemistry of somatic embryogenesis from different explants in Pinus Kesiya Royle Ex. 
Gord [186]. 

Indian plant biotechnologists established a legacy, history and championship in pine plant tissue research work which 
is evidenced, demonstrated and acknowledged by published research work in national and international journals since 
1960 to 2010 [180-184, 172, 186, 188, 189-192, 193, 185, 219-228]. However, in spite of a legacy, history and 
championship, commercialization of pine tissue culture work in India is still facing problems and major bottleneck due 
to the many reasons, lack of financial funding for this work, lack of laboratory resources, no job market for pine tissue 
culture work, shift in the research area, no one is interested in pine tissue culture due to low commercial value, low 
yield of plantlets, high risk of failure, waste of time in achieving project goals, end result is not worth, shifting cultivation 
for more exotic and commercially important tree species like Sandal wood (Santalum album), Teak (Tectona grandis), 
red cedar, rosewood (Dalbergia latifolia), sal (Shorea robusta), banyan tree, oak, birch, aspen, elm, maple, bamboo, and 
palm,  and already Government of India has supported and funded the pine tissue culture work for long period of time 
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(1965-2000). Another major problem in India is that most of the senior Scientists those who have wet laboratory 
experience in pine tissue culture work were retired and this rich hidden knowledge of pine plant tissue culture has not 
been transferred to future younger generation. Therefore, there is a major gap of almost 25 years in pine plant tissue 
culture studies in India. At this point of time, pine tissue culture work in India is dead and remained as the academic 
research of the experimental model and failed commercialization. Furthermore, the protocol also suffered due to low 
plantlet regeneration, pine tissue culture is time consuming, and very slow. There is a major shift in research funding in 
India for more current issues like accumulation of microplastic pollution, hydroponics, application of 3D printing 
technology, plant based wound healing, plant-based leather production, nanotechnology, bioinformatics, cancer 
biology, genome editing CRISPR/Cas9, vaccine research, biodiesel and Cannabis research. Furthermore, plant tissue 
culture is also used for the preservation and conservation of Indian endangered plant species. More research work is 
funded in the micro propagation of commercially important orchids, medicinal plant and molecular docking studies. 
Recently India has legalized Industrial Cannabis sativa (hemp), and more funding is available from Government of India 
and private companies [175-177]. Therefore, Cannabis sativa research is of prime importance in India and funding is 
available [175-177]. This new ray of hope opened door for many Indian biotech companies for the commercialization 
of hemp products in the Indian market. This also creates more opportunities and job market in India. One of the success 
story in 2025 is that India has released biodegradable plastic by corn starch in market and more demand has been 
observed in Indian market [229-231]. In 2025, Nandini milk company in Bengalore, Karnataka State, India is the first in 
India using corn based biodegradable plastic for packaging and supplying milk [229-231].  

6. The concept of Reprogramming Somatic cells 

The somatic cells of the plants cultured under in vitro conditions are reprogrammed towards somatic embryogenesis 
[80-119]. The concept of reprogramming somatic cells is only possible due to some of the stress related factors, then 
interaction of growth hormones, selection of proper explants, the particular stage growth explants. and role of signalling 
molecules [80-119].  

According to the study conducted by Malabadi  et al., (2012) [124] pine bud break (burst) timing is very important 
factor, which influences the in vitro cloning mature trees of conifers [124]. The timing of bud break of pines is also varied 
from one location to another location area within the country or from one country to another country within the same 
continent or different geographical location throughout the world. Survival of pine species depends on synchronization 
of their annual growthdormancy cycle, bud break or burst with local climate [124]. Bud burst depends on dormancy 
release by chilling or heats due to increase in the day temperature, and accumulation of thermal time above a species-
specific threshold [124]. The buds collected immediately after the bud burst were found very responsive for the in vitro 
cloning of P. kesiya, P. roxburghii and P. wallichiana, P. patula, and P. sylvestris [124]. This might be due the activation of 
the apical meristematic cells showing active growth of shoots in most of the conifers. The active dividing and totipotent 
cells might be positioned only at the cambial layer of the apical meristematic tissue in conifers, so that their growth and 
division lead to a continuous flow of progeny cells [124]. According to the study conducted by Malabadi RB et al., (2012) 
[124] these cambial layer cells under stress conditions undergo differentiation and leading to the embryogenic pathway 
in conifers [124]. 

In vitro tissue culture conditions expose the explants to significant stresses, as they are removed from their original 
tissue environment and placed on synthetic media containing non-physiological concentrations of growth regulators, 
salts and organic components. Wounding itself is a significant signal in the induction of dedifferentiation [124]. Stresses 
not only promote dedifferentiation, but also can be used to induce somatic embryo formation [124]. Wounding, high 
salt concentration, heavy metal ions or osmotic stress positively influenced somatic embryo induction in diverse plant 
species. These procedures were accompanied by increased expression of diverse stress related genes; evoking the 
hypothesis that somatic embryogenesis is an adaptation process of in vitro cultured plant cells [124]. 

Malabadi  et al., (2012) [124] reported that plants continuously maintain pools of totipotent cells in their apical 
meristems from which root and shoot systems are produced [124]. Most plant organs are formed during the 
postembryonic stages from the meristems [124]. The shoot meristem is the source of all aboveground post-embryonic 
organs in higher plants. It carries out organ formation by balancing the maintenance and proliferation of 
undifferentiated totipotent cells, and the direction of these cells towards differentiation. The shoot apical meristems are 
organized pools of undifferentiated or embryonic cells maintained by a dynamic balance between cell division and 
differentiation [124]. In case of pines, the transverse thin layer showed outermost epidermis layer, then internal layer 
of cortex region, followed by thin cambial region and central pith or medullar region respectively [124]. The actively 
dividing totipotent cells are positioned only at the cambial layer of the apical meristematic tissue in conifers, so that 
their growth and division lead to a continuous flow of progeny cells [124]. These cambial layer cells under stress 
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conditions undergo differentiation and leading to the embryogenic pathway in conifers. On the other hand, the rest of 
the layers (epidermis, cortex region and central pith or medulla) have induced nonembryogenic tissue in conifers [124]. 

Signal molecules regulating embryo development have been described in angiosperms, but very little is known about 
somatic rejuvenation in conifers [123]. Recent studies on cloning of mature conifers provide new perspectives on signal 
molecules on cellular dedifferentiation into the embryogenic pathway. According to the study conducted by Teixeira da 
Silva JA and Malabadi RB [123] the signal molecules such as butenolide, calcium ions, salicylic acid, antioxidants, amino 
acids, triacontanol and 24-epibrassinolide all play an important role in the conversion of somatic cells into an 
embryogenic pathway in many recalcitrant pines [123]. This constitutes a major breakthrough in forest biotechnology 
with many practical applications in clonal forestry [123]. 

The induction of somatic embryogenesis using shoot apical thin layers has been successful by Malabadi and co-workers 
in few conifers such as Pinus roxburghii [98-102, 104], Pinus kesiya [95], Pinus wallichina [97], Pinus patula [105-113], 
Pinus sylvestrus (Scots pine) [121, 122], and Maritime pine, Pinus pinea [119].  The somatic cells (cells from the bud 
culture) are not genetically programmed towards somatic embryogenesis [80-119]. Somatic cells are re-programmed 
towards somatic embryogenesis pathway under stress conditions/growth harmones applications/media formulations 
applied. The best explanation is that during reprogramming, all the cells are not programmed in pines. However, only 
few cells are progrmmed and proceed towards altered pathway that is somatic embryogenesis. Sometimes, the growth 
of these cells is arrested or blocked the pathway. Rest of the cells are not programmed and produce non-embryogenic 
callus. Only cambial cells containing stem cells are reprogrammed towards embryogenic pathway. Suppose, in an 
example, small percetage of cells (5-20%) are reprogrammed towards embryogenic pathway, these cells proceed to 
some extent and will not survive due to high percentage of non-embryogenic tissue growth. On the basis of studies, it is 
found that epidermis and cortex laters produced non-embryogenic tissue (80%) and this has created a major problem 
and inhibited the further growth of embryogenic tissue growth by small percentage of reprogrammed cells towards 
somatic embryogenesis. These reprogrammed cells towards somatic embryogenesis should be identified, separated, 
and cultured immediately (Figure: 5, 6, 7, 8). Furthermore, this altered pathway might be blocked or arrested or 
inhibited by several factors. Therefore, these cells will not proceed further. During these altered pathways, cells can 
produce head, suspensor, and like embryo-like structures, abnormal embryos, fake embryos and failed to germinate 
(Figure-8). This is a common phenomenon in pines. Sometimes, growth of cells is arrested leading to the failure of 
embryo formation. In another case, cells are programmed, proceeded to few stages and further growth is 
arrested/blocked and failed to produce somatic embryos and resulted in embryo-like structures and fake embryos 
(Figure-7). During altered pathway, cells are forced to form the embryo like structures, fake embryos, and somatic 
embryos. Therefore, there is a mixture of embryos formed. Only healthy somatic embryos have produced plantlets. Each 
pine species is genetically different and cells behavior on particular cultured media is different. Therefore, there are 
many external and internal factors govern the process. Hence, stress conditions applied, time of the bud collections and 
effect of particular growth hormone, used and media formulations plays an important role in inducing reprogramming 
cells towards somatic embryogenesis in pines. Each pine species in different geographical region is genetically different. 
In addition to this, re-formulation of the media, with new precursor moleculs inducing somatic embryogenesis should 
also be applied and studied. There are two types of precursor molecules, natural precursor and synthetic precursor 
molecules should also be studied. However, this is a time-consuming studies leading to the long-term research. These 
treatments might induce 70-80% of cells towards somatic embryogenesis and successful healthy plantlet regeneration.  
During last 25 years, there are many natural  precursor and synthetic precursor molecules have been identified. 
However, there are no studies reported till today on these molecules triggering reprogramming plant cells towards 
somatic embryogenic pathway and breaking the recalcitrance. 

Recalcitrant is very common in many plant species under in vitro conditions. But many recalcitrant plant species have 
been cloned successfully via organogenesis or somatic embryogenesis. This could be possible only by reprogramming 
the cell pathway towards somatic embryogenesis. There are many signalling molecules which can re-programme the 
dipoloid (somatic cell) cell to somatic embryogenesis. The totipotency of somatic plant cells is a specific and 
scientifically exciting phenomenon, which is based on the developmental program of plants. Many of the recent studies 
showed that signaling molecules such as butenolide, calcium ions, salicylic acid, antioxidants, amino acids, triacontanol, 
melatonin, and 24-epibrassinolide all play an important role in the conversion of somatic cells into an embryogenic 
pathway in many recalcitrant pines, and tree species. It can be best demonstrated in an in vitro system where somatic 
plant cells can regain their totipotency and are capable of forming embryos through the developmental pathway of 
somatic embryogenesis. Another important factor is that one has to develop natural or synthetic precursor molecules 
which can trigger and reprogramming of the cells towards somatic embryogenesis. These precursor molecules can 
break the recalcitrant nature of plant cells and resulted in successful organogenesis or somatic embryogenesis. 
However, the interaction studies of new precursor molecules with plant cells under in vitro conditions is a long-term 
study which needs funding, good laboratories facilities, well trained scientists particularly in the field of somatic 
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embryogenesis and challenging too. Sometimes, these studies might end up as experimental models and 
commercialization is still a bottleneck. Therefore, commercialization of plant tissue protocols in many plant species is 
a major problem and challenging too. Artificial neural networks (ANNs) and machine learning (ML) are widely used in 
science and technology, and have been successfully applied in cannabis plant tissue cultures [271] 

Another best way is to culture only central cambial layer cells and remove the outer epidermis and cortex layers. In 
another development, one should also apply modern cell sorting techniques to separate the embryogenic cells. 
Identification and seperation of embryogenic cells might help to solve problems. Artificial Intelligence (AI) and 
machine learning should also be applied in order to identify these cells, separated and cultured [271]. 

7. Pinus Roxburghii: Induction of SE from shoot apical domes of Mature trees 

7.1. Pinus Roxburghii: Initiation of embryogenic tissue  

According to method described by Malabadi et al., (2012) [3], shoot apical domes from mature trees (14- years old) of 
Pinus roxburghii or Chir pine of 3 genotypes (PR11, PR105, and PR521) were collected from the Western Ghat Forests, 
India (140 5’ to 15 0 25’ N latitude and 74 0 45’ to 76 0 E longitude with an average rainfall of 80 cm.). They were 
cleansed with 1% Citramide (Sodium hypochlorite 3.5%) for 5 min and rinsed thoroughly with sterilized distilled water. 
These were surface decontaminated with 70% ethanol for 5 min followed by immersion in 0.5% HgCl2 for 2 min and 
rinsed 4-times with sterile double distilled water. Transverse-thin sections of approximately 0.5-1.0 mm thick were cut 
using sharp sterilized blade or scalpel from shoot apical domes (upper part with 2 to 3 sections only) for the initiation 
of embryogenic tissue. These shoot apical dome sections were cultured individually on full strength (Inorganic salts) 
DCR (Gupta and Durzan, 1985) medium containing 0.2 g l-1 polyvinyl pyrollidine (PVP), 2.0 g l-1 Gellan gum (Sigma), 
30 g l-1 maltose (Analar, Sigma) and 0.3 % activated charcoal (Sigma without growth regulators. The cultures were 
raised in 25 mm X 145 mm glass culture tubes (Borosil) containing 15 ml of medium. These cultures were incubated in 
dark at 40 C for 3 days. Thin apical dome sections after incubation in dark at 40o C for 3 days were subcultured on full 
strength DCR medium supplemented with 22.62 µM 2, 4-D, 26.85 µM NAA, and 8.87 µM BA (initiation medium) 
(Malabadi and Nataraja, 2006ab). The pH of the medium was adjusted to 5.8 with NaOH or HCl before Gellan gum was 
added. The media were then sterilized by autoclaving at 121oC and 1.05 kg/cm2 for 15 min. L- glutamine and casein 
hydrosylate were filter sterilized and added to the media after it had cooled to below 50o C. All the cultures were 
maintained in the dark at 25 ± 2 o C with 55- 60% relative humidity. All the cultures were maintained in the dark at 25 
± 2o C for four weeks. Embryogenic tissue was initiated according to our previous existing protocols (Malabadi et al., 
2004; Malabadi and Nataraja, 2006ab; Malabadi and van Staden, 2006). For the initiation of non-embryogenic tissue, 
thin sections of shoot apical dome without cold- pretreatment subcultured on the initiation medium (Malabadi and 
Nataraja, 2006ab) were served as the control. They were also maintained in dark for four weeks. 

7.2. Pinus roxburghii: Maintenance of embryogenic tissue 

The embryogenic tissue showing proembryonal masses was again subcultured onto maintenance medium. The full-
strength DCR (Gupta and Durzan, 1985) basal medium containing 60 g l-1 maltose, 2 g l-1 Gellan gum supplemented with 
2.26 µM 2,4- D, 2.68 µM NAA and 0.88 µM BA (maintenance medium) was used for this purpose in accordance with our 
existing previous protocols (Malabadi and Nataraja, 2006ab). On the maintenance medium, embryonal suspensor 
masses were cultured for 30 days with two subcultures. The presence of embryonal masses was determined by 
morphological and microscopic observations. The non- embryogenic cultures (control) were also subcultured on the 
maintenance medium and maintained in dark condition. 

For the following experiments of WUSCHEL (WOX2) (Palovaara and Hakman, 2008) gene expression studies, two types 
of plant material, 1) embryogenic tissue initiated by cold-pretreatment, and 2) control (non- embryogenic tissue) 
induced without cold pre-treatment have been used for the isolation of total RNA. For total RNA isolation, one-gram 
fresh wt of embryogenic tissue and control (non-embryogenic tissue) were then placed in a cryostorage vial partially 
immersed in liquid nitrogen. Ten vials of plant tissues (embryogenic tissue and non-embryogenic tissue-control) were 
collected. Frozen tissues were stored at -70oC until further analyses were performed. 

7.3. Pinus roxburghii: RNA preparation and cDNA synthesis 

Mature bud-derived cell lines and all other tissues analyzed were collected in duplicate, and immediately frozen in liquid 
nitrogen. Frozen samples of embryogenic tissue and control (non-embryogenic tissue) derived from the apical shoot 
buds of Pinus roxburghii of 3 genotypes (PR11, PR105, and PR521) were ground in a mortar and pestle with liquid 
nitrogen. Approximately 0.5 g of fresh frozen tissue from each sample was ground in a mortar and pestle with liquid 
nitrogen.  Total RNA was isolated according to the modified method of Chang et al. (1993). To remove residual genomic 
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DNA, 25 µg of RNA was treated with TURBO-DNase™ (Ambion, Austin, TX, USA). cDNA was generated from 1 µg of 
DNase-treated RNA using the Superscript II RT system (Invitrogen, CA, USA) according to the manufacturer’s protocol 
and previously reported protocols (Park et al. 2009 and Malabadi et al., (2012) [3]. Each reaction was run in duplicate, 
generating two independent cDNA samples for each RNA sample isolated from 3 genotypes (PR11, PR105, and PR521) 
of P. roxburghii as reported by  Malabadi et al., (2012) [3]. 

7.4. Cloning of P. roxburghii WOX2 

For the isolation of the WOX2 gene, following gene specific primers were designed based on homologous sequences 
publically available, including PaWOX2 (P. abies WOX2, Acc. AM286747), PtWOX2 (P. taeda WOX2, Acc. DR693345; 
Cairney et al. 2006) and Pc WOX2 Pinus contora WOX2. GenBank Acc no: HM852976.1; Park et al. 2009[26]). The gene 
specific primers were custom synthesized and used for the PCR amplification of the PR WOX2 gene using cDNA as the 
template. Gene alignment was done using Bio Edit programme. Following PCR amplification from P. roxburghii cDNAs, 
the resulting amplicons were cloned into the TOPO-TA cloning vector (Invitrogen) (Park et al. 2009 [26]; Malabadi et 
al., (2012) [3]. The gene WOX2 was confirmed by the DNA sequence analysis. (Forward: 5’-ATG GCC GAG GGT CAA TCC 
ACC ATG A-3’); (Reverse 3’ CTT GCC AGG ATG CTG AGG GAT A-5’). 

For further characterization of the embryogenic tissue, Malabadi et al., (2012) [3] have developed a potential molecular 
marker on the basis of the expression of one of the important transcription factors, WOX2 (WUSCHEL homeobox 2) in 
the embryogenic tissue of P. roxburghii. Transcription factor, WOX2 (WUSCHEL homeobox 2) was strongly expressed in 
the embryogenic tissue but not in non-embryogenic tissue (control). In Malabadi et al., (2012) [3] study, embryogenic 
tissue was developed under cold stress conditions. On the other hand, non-embryogenic tissue was induced without 
cold treatment. Expression of WOX2 (WUSCHEL homeobox 2) in the embryogenic tissue of 3 genotypes (PR11, PR105, 
and PR521) of P. roxburghii clearly confirmed its involvement in the somatic embryogenic pathway and might be 
directly related to stress conditions. Therefore, stress conditions always induce somatic embryogenesis in many plant 
species which also directly related to the expression of genes. This is the first evidence of expression of WOX2 in P. 
roxburghii and could be used as marker for the identification of embryogenic tissue in pines. In gymnosperms, no WUS 
homolog was found (Palovaara and Hakman, 2008) and as such it is believed that the WOX and WUS genes have not 
diverged in some species (Kiselev et al. 2009; Park et al. 2009). 

An interrogation of the WOX family members in gymnosperms obtained from the public databases identified that 
PrWOX2 has 80% similarity to P. abies PaWOX2 and is almost identical to other pine species sequence such as PsWOX2 
of Pinus sylvestris (99% homology) and PtWOX2 of P. taeda (100% homology) (Park et al. 2009), and PrWOX2 of P. 
roxburghii (Malabadi et al., 2012) [3]. These findings are consistent with previous findings (Malik et al. 2007, Palovaara 
and Hakman, 2008, Palovaara et al. 2010) which suggested that WOX2 may be a potential marker to predict the 
embryogenic potential of spruce and Brassica cultivars (Park et al. 2009 [26]; Malabadi et al., (2012) [3]. Therefore, on 
the basis study by Malabadi et al., (2012) [3] further strengthens the concept of cloning of mature trees of pines. PrWOX2 
could be used as a potential genetic marker for the identification of the embryogenic cultures, which is just an added 
advantage for developing SE protocols for recalcitrant pines (Malabadi et al., (2012) [3].  

8. Lodgepole pine (Pinus contorta) 

8.1. Cloning of PcWOX2 and PcHAP3A  

Park et al., (2009) [26, 245] reported SE propagation system for MPB-resistant lodge- pole pine, several families 
displaying varying levels of resistance were selected for experimentation involving shoot bud and immature seed 
explants [26]. In bud cultures, eight embryogenic lines were induced from 2 of 15 genotypes following various 
treatments [26]. Park et al., (2009) [26] also indicated that genotype had an important influence on embryogenic culture 
initiation, and this effect was consistent over time [26, 245].  These lines were identified by microscopic observation 
and genetic markers. Despite the abundance of early somatic embryos, the cultures have yet to develop into mature 
embryos [26, 245]. In contrast, immature zygotic embryos (ZEs) cultured from megagametophytes initiated SE at an 
early dominance stage via nodule-type callus in 1 of 10 genotypes [26, 245].  As part of the study by Park et al., (2009) 
[26, 245], putative embryogenesis-specific genes, WOX2 (WUSCHELL homeobox 2) and HAP3A, were analyzed in 
cultures of both shoot bud explants and ZEs [26].  On the basis of these analyses, Park et al., (2009), postulated that 
PcHAP3A was expressed mainly in callus and may be involved in cell division, whereas WOX2 was expressed mainly in 
embryonal mass (EM)-like tissues [26, 245]. The findings from this study, based on molecular assessment, suggest that 
the cell lines derived from bud cultures were truly EM [26, 245]. Moreover, these experimental observations suggest 
that PcWOX2 could be used as an early genetic marker to discriminate embryogenic cultures from callus [26, 245]. 
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In an attempt to isolate the putative WOX2-ortholog from P. contorta EM culture, Park et al., (2009) [26, 245] designed 
the primers (forward: 5' -ATGGCCG AGGGTCAATCCACCATGA-3'; reverse: 3'-CTACTT GCCAGGATGCTGAGGGATA-5') 
based on homologous sequences publically available, including PaWOX2 (Picea abies WOX2, Acc. AM286747) and 
PtWOX2 (Pinus taeda WOX2, Acc. DR693345; Cairney et al. 2006) [245]. For the HAP3A ortholog, primers (forward: 50-
TTGTAGGT ATGATGTCCGAAGTTGG-30; reverse: 30-CCATCAGTCT ATTCTCAACAGTTTA-50) were designed from 
homologous sequence regions of Picea glauca HAP3A (Acc. DR548381) and a cDNA expressed sequence tag (EST) of P. 
taeda HAP3A (Acc. DT627043) [26, 245]. Gene alignment was performed with the BioEdit program. Following PCR 
amplification from P. contorta cDNAs, the resulting amplicons were cloned into the TOPO-TA cloning vector (Invitrogen) 
and sequence was confirmed [26, 245]. 

8.2. Pinus contorta: Absolute real-time qRT–PCR 

Park et al., (2009) [26, 245] reported that Critical threshold (ct) values for PcWOX2 and PcHAP3A were quantified in 
triplicate with Platinum SYBR Green qPCR SuperMix-UDG (Invitrogen) on an Mx3000P Real-Time PCR System 
(Stratagene, CA, USA) [26].  The forward and reverse primers for RT–PCR analysis were dtWX2-F (50-
CCACAGCAGCGATCCACAACGACCC-30) and dtWX2-R (30-AGCGATGCCGGACGGATGCAATG GG-50) for PcWOX2, and 
dtHAP3-F (50-GCTGTGAGAGA GCAAGATAGGTTCA-30) and dtHAP3-R (30-CACTGGTG ATGAAGCTTATGTACTC-50) for 
PcHAP3A [26, 242]. Negative (distilled water) and no-template (total RNA) controls were included in each run [26, 245]. 
Thermocycler conditions for all PCR reactions were as follows: 95 °C for 10 min, followed by 40 cycles of 95 °C for 30 s, 
60 °C for 1 min and 72 °C for 30 s [26, 245]. Absolute quantification of PcWOX2 and PcHAP3A copy number in each cDNA 
sample was determined using a standard curve and normalized per microgram of total RNA [26, 245]. The standard 
curve was generated with purified PCR product-obtained gene-specific primers for PcWOX2 and PcHAP3A that were 
serially diluted from 101 to 106 copies [26, 245]. The corresponding copy number was calculated as previously 
described by Whelan et al. (2003) [241]. 

According to the observations, Park et al., (2009) [26, 245] postulated that PcHAP3A is expressed mainly in the callus 
and may be involved in cell division [26].  Therefore, PcHAP3A is unable to differentiate between embryogenesis and 
NE tissue (callus), as both are actively dividing tissues [26, 245]. The findings from this study by Park et al., (2009) [26, 
245] based on the molecular assessment, suggested that the cell lines derived from bud cultures were truly 
embryogenic, not just cells that imitate embryogenic cultures (EC) in morphology [26]. Moreover, these experimental 
observations also suggest that PcWOX2 could be used as an early genetic marker to discriminate EC from callus. In 
summary, Park et al., (2009) [26, 242] suggested that the use of cell stress, in combination with other culture conditions, 
has the potential to induce SE in culture of mature gymnosperms, which are notoriously recalcitrant [26]. However, a 
mechanism to further the development to a mature stage is also warranted [26, 245]. Understanding the underlying 
molecular and biochemical mechanisms that underpin these processes will aid in our understanding of the 
reprogramming process(es) that occur during SE [26, 245]. 

Pinus contorta putative wuschel homeobox protein WOX2 (wox2) mRNA, com - Nucleotide - NCBI (nih.gov) (Park et al., 
2009 [26, 245]. GenBank: HM852976.1 564 bp linear mRNA. Accession: HM852976.1: GI: 312861912 [245]. 

• 1 atggccgagg gtcaatccac catgagcacc aggtggaatc caacgaaaga acaaatagac 
• 61 ttcctggagg ccatgtacag tcaagggatc cgcactccca gtgccgatca aatagaggaa 
• 121 atcgccagtc gactgcgaat gtatggaaat attgaaggga agaatgtgtt ttactggttt 
• 181 caaaaccata aagctcgcga gaggcagagg cagagacaag agagagtagc gttcgtcaat 
• 241 cagtttcatc aaccacctgg cttcgcagaa cttctccctc cacagcagcg atccacaacg 
• 301 accctttcaa aggctggttc ttcaatggca cccagggagg attacaactt ccagcattca 
• 361 catgacagtt taaatgaacc tcagacgctg gagctattcc cattgcatcc gtccggcatc 
• 421 gctgaataca gatctgaacc agtaggcaca tttggattgc aaggctcgat gaacgagaat 
• 481 attgatgaac aaaacgaccc aagatcaggc ggggggcatt ttcatcattt tttccatttt 
• 541 atccctcagc atcctggcaa gtag [Reference-245].  

9. Conclusion 

Transcription factors (TFs) are crucial for the transcriptional and post-transcriptional control of genes involved in 
response to environment stress response. WOX gene family was first discovered in Arabidopsis thaliana in 1996, with 
its essential role in shoot and floral development. WOX gene family play an important role in the whole plant’s growth 
and development, such as in the stem, embryo, root, flower, and leaf. Many studies using Arabidopsis as a model plant 
have increased our knowledge of the function of embryogenesis-related genes in angiosperm. WOX2 increases the 
expression of the auxin transporter PIN1 gene to regulate stem cell organogenesis in Arabidopsis. PRWOX2 has been 
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expressed in embryogenic cultures initiated from apical buds of mature trees of Pinus roxburghi. PpWOX2 (Pinus 
pinaster) overexpression enhanced somatic embryogenesis and plant organ formation in Arabidopsis transgenic 
seedlings. Somatic embryogenesis (SE) is a critical process in plant tissue culture, enabling the regeneration of entire 
plants from somatic cells rather than through traditional sexual reproduction pathways. Additionally, transcription 
factors like WUSCHEL-RELATED HOMEOBOX (WOX2) are crucial for maintaining cellular totipotency and regulating the 
developmental pathways of somatic embryo. The totipotency of somatic plant cells is a specific and scientifically exciting 
phenomenon, which is based on the developmental program of plants. On the basis of study reported by Malabadi  et 
al., (2012) [126] it is found that actively dividing and totipotent cells (stem cells) are positioned only at the cambial 
layer of the apical meristematic tissue in conifers, so that their growth and division under in vitro conditions leading to 
a continuous flow of progeny cells [126].  These progeny cells (stem cells) under stress conditions (cold/heat) undergo 
differentiation due to signal activation in cambial region and leading to the embryogenic pathway in conifers [126]. On 
the other hand, the rest of the layers (epidermis, cortex region and central pith or medulla) of the transverse thin section 
of shoot apical meristems of mature trees have induced non-embryogenic tissue under in vitro conditions in conifers. 
The buds collected immediately after the bud burst were found very responsive for the in vitro cloning of P. kesiya, P. 
roxburghii and P. wallichiana, P. patula, and P. sylvestris [124]. This might be due the activation of the apical meristematic 
cells showing active growth of shoots in most of the conifers. The active dividing and totipotent cells might be positioned 
only at the cambial layer of the apical meristematic tissue in conifers, so that their growth and division lead to a 
continuous flow of progeny cells [124].  

According to the study conducted by Malabadi  et al., (2012) [124] these cambial layer cells under stress conditions 
undergo differentiation and leading to the embryogenic pathway in conifers Under in vitro conditions, one or a few 
somatic cells of the plant or explant have to be competent to receive a signal (endogenous or exogenous). This then 
triggers the pathway of embryogenic development (commitment) leading to somatic embryo formation. PrWOX2 (Pinus 
roxburghii) could be used as a potential genetic marker for the identification of the embryogenic cultures, which is just 
an added advantage for developing SE protocols for recalcitrant pines. Signal molecules regulating embryo development 
have been described in angiosperms, but very little is known about somatic rejuvenation in conifers. Recent studies on 
cloning of mature conifers provide new perspectives on signal molecules on cellular dedifferentiation into the 
embryogenic pathway. The identification of signal molecules such as butanolide, calcium ions, salicylic acid, 
antioxidants, amino acids, triacontanol and 24-epibrassinolide all play an important role in the conversion of somatic 
cells into an embryogenic pathway in many recalcitrant pines. This constitutes a major breakthrough in forest 
biotechnology with many practical applications in clonal forestry. 

In addition to this Government of India has recognized this outstanding contribution of Professor Pramod Tandon for 
the initiation, establishment and successful regeneration of pine tissue culture in India [180-184, 172, 186, 188, 189-
192, 193, 185]. Professor Pramod Tandon is an Indian Plant Biotechnologist and academic. He is a former Professor of 
Botany and Vice-Chancellor of North-Eastern Hill University (NEHU), Shillong, Meghalaya, India and Chief Executive 
Officer of Biotech Park, Lucknow. UP, India. The Government of India has awarded Professor Pramod Tandon the 
fourth highest civilian honor Padma Sri in 2009, for his outstanding contribution to science. 

However, commercialization of pine tissue culture work in India is still facing problems and major bottleneck due to the 
many reasons. At this point of time, pine tissue culture work in India is dead and remained as the academic research of 
the experimental model and failed commercialization. Furthermore, the protocol also suffered due to low plantlet 
regeneration, pine tissue culture research is time consuming, very slow and high risk. There are many cell separation 
and quantification techniques are available. Therefore, for the future studies, separation and identification of 
reprogrammed plant cells leading to the embryogenic pathway under in vitro conditions should be done and the 
applications of Artificial intelligence (AI) approach could solve many of the current issues.  
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