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Abstract 

Human-wildlife conflicts in rapidly urbanizing regions necessitate the use of automated monitoring systems for 
effective mitigation strategies. Monkey populations cause significant agricultural damage and urban safety concerns, 
yet manual monitoring remains impractical for continuous surveillance. This study implements the YOLOv8s 
architecture for automated monkey detection, balancing detection accuracy with computational efficiency essential for 
field deployment. The model was trained on 2,244 annotated images spanning diverse environmental conditions—
urban settings, forest canopies, and varied illumination from dawn to dusk. Training utilized 150 epochs with 
augmentation including rotation (±15°), scaling (0.8-1.2×), mosaic (probability=1.0), and mixup (α=0.15). YOLOv8s 
improved mean Average Precision at IoU 0.5 (mAP@0.5) from 0.48 to 0.52 (+8.3%), achieved a precision of 0.89 with a 
recall of 0.78, and reduced inference time from 6.3 ms to 5.5 ms (−12.7%). The precision-recall curve achieved an Area 
Under the Curve (AUC) of 0.867, confirming robust detection performance. These improvements enable deployment on 
edge devices with limited computational resources, facilitating real-time wildlife monitoring in resource-constrained 
environments while maintaining detection reliability for practical conservation applications. 
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1. Introduction

Urban wildlife monitoring requires automated detection systems capable of continuous operation within computational 
constraints. Human-monkey conflicts have intensified in urban environments due to habitat encroachment, causing 
substantial agricultural losses and increasing safety incidents in residential areas [5]. Manual monitoring approaches 
require 24/7 personnel deployment, proving economically unfeasible for municipal budgets. These economic and safety 
pressures necessitate the exploration of automated alternatives. 

Recent advances in object detection architectures offer solutions for real-time wildlife monitoring. The evolution from 
YOLOv5 to YOLOv8 introduced performance improvements that reduce computational overhead while maintaining 
detection accuracy [14]. Previous primate detection systems achieved 0.48 mean Average Precision at IoU 0.5 using 
YOLOv5 [4], while YOLOv8 demonstrates enhanced efficiency in standard benchmarks [8]. These advances indicate 
potential for deployment in real-world wildlife monitoring scenarios. 

Recent YOLOv8 implementations have demonstrated significant improvements in wildlife detection tasks. Chen et al. 
achieved 96.8% mAP@0.5 with YOLO-SAG, an improved YOLOv8n variant optimized for wildlife detection [1]. Similarly, 
edge deployment studies show promising results for real-time monitoring applications [6]. 
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Wildlife monitoring applications face constraints distinct from controlled environments. Systems must maintain 
performance across extreme lighting variations (dim dawn to bright daylight), handle occlusion in natural habitats, and 
operate on resource-limited edge devices. Such requirements demand architectures that optimize both accuracy and 
computational efficiency. 

This study implements the YOLOv8s architecture for monkey detection across 2,244 annotated images from diverse 
environments. We evaluate both detection accuracy and computational efficiency to determine the viability of 
deployment in resource-constrained wildlife monitoring scenarios. 

2. Related work 

2.1. YOLO-based Wildlife Detection 

Wildlife detection systems have adopted YOLO architectures for real-time processing capabilities. Chen et al. [1] 
developed YOLO-SAG based on YOLOv8n for wildlife detection, achieving mAP@0.5 of 0.968 with enhanced training 
stability through Softplus activation functions. Jiang et al. [2] enhanced YOLOv8 with Extended Kalman Filter integration 
for wildlife detection and tracking, achieving 88.54% mAP@0.5 with improved multi-object tracking accuracy. 

Advanced YOLOv8 implementations have introduced cascaded architectures for improved accuracy. Chappidi and 
Sundaram [3] proposed a cascaded YOLOv8 system with adaptive preprocessing, achieving 97% accuracy through 
ResNet50 and DarkNet19 feature extraction integration. 

2.2. Primate-Specific Detection Systems 

Reddy et al. [4] implemented YOLO-based monkey detection, achieving 0.85 mAP@0.5 with integrated SMS notification 
services for practical agricultural deployment. Li et al. [7] developed TMS-YOLO for wildlife detection, including 
primates, reporting 0.86 mAP@0.5 for primate class detection with optimized ELAN and SPPCSPC modules. 

Recent acoustic-based primate detection systems provide complementary monitoring approaches. Lawson et al. [11] 
achieved automated detection of Geoffroy's spider monkeys using acoustic methods, establishing critical habitat 
thresholds for conservation applications. 

Wang and Li [8] presented YOLOv8-night for nighttime wildlife detection, incorporating channel attention mechanisms 
for challenging illumination conditions. 

Reddy et al. [4] presented YOLOv5-based monkey detection, achieving 0.85 mAP@0.5 with a precision of 0.85 on 1,400 
images. The system integrated SMS notification services for practical deployment. The study lacked computational 
efficiency metrics and environmental diversity assessment. 

2.3. YOLOv8 Architecture Evolution 

YOLOv8 introduces anchor-free detection mechanisms and CSPDarknet53-based backbone architectures for improved 
accuracy and speed [14]. The architecture provides multi-scale detection through enhanced Feature Pyramid Networks 
with optimized C2f modules replacing C3 architectures [13]. Specialized variants like YOLOv8-night incorporate 
channel attention mechanisms for challenging illumination conditions [8], while IoT implementations demonstrate edge 
deployment feasibility with ESP32-CAM platforms [5,6]. 

2.4. Research Gap 

Existing studies have not systematically evaluated YOLOv8s for primate detection, particularly regarding efficiency-
accuracy trade-offs across diverse environments. This study addresses these gaps through YOLOv8's implementation 
for monkey detection, evaluating both detection performance and computational efficiency across 2,244 images from 
varied environments. 

 

 

 



World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 583-591 

585 

3. Methodology 

3.1. Architecture Selection and Implementation 

 

Figure 1 Performance comparison in various YOLO models 

YOLOv8s was selected based on systematic efficiency-accuracy analysis across YOLOv8 variants. YOLOv8n achieves 
3.2ms inference but only 37.3 mAP@0.5. YOLOv8m, YOLOv8l, and YOLOv8x achieve 50.2–53.9 mAP@0.5 with inference 
times ranging from 25.9 to 68.2ms. YOLOv8s provides 44.9 mAP@0.5 with 11.2ms inference, representing the 
efficiency-accuracy balance required for edge deployment. 

Implementation utilized Ultralytics YOLOv8 framework version 8.3.184 with PyTorch 2.0.1 backend. Training employed 
a Tesla V100 GPU with 32GB memory, CUDA 11.8, and cuDNN 8.6.0 [14]. Model configuration specified 640×640 input 
resolution, batch size 16, and single-class detection for the monkey category. 

3.2. Dataset Construction and Management 

The dataset comprised 2,244 monkey images acquired through the Roboflow platform [13]. The dataset included urban 
environments (35%), forest canopies (40%), and varied lighting conditions (25%). Image resolutions ranged from 
416×416 to 1920×1080 pixels, normalized to 640×640 for training. 

The annotation protocol employed a two-stage verification. Roboflow automated tools generated initial bounding boxes. 
Manual verification corrected 18% of automated annotations for accuracy, following established primate detection 
annotation protocols [4]. 

Data augmentation applied: rotation ±15°, horizontal flip probability 0.5, scale variations 0.8-1.2×, mosaic augmentation 
probability 1.0, mixup α=0.15, copy-paste probability 0.3. Augmentation increased effective training samples to 7,500 
images. 
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Figure 2 Annotated Dataset Images 

3.3. Training Methodology 

Training employed 150 epochs with an early stopping patience of 50 epochs. AdamW optimizer parameters followed 
standard YOLOv8 defaults: learning rate 0.01 with cosine annealing to 0.0001. Loss weights utilized YOLOv8 default 
configuration: classification 0.5, box regression 7.5, objectness 1.0. 

Training checkpoints are saved every 10 epochs. Best model selected based on validation mAP@0.5. Training completed 
in 4.2 hours on the specified hardware and configuration. 

3.4. Evaluation Methodology 

• Dataset split: 1,750 training (70%), 500 validation (20%), 250 test images (10%). Stratified sampling 
maintained the environmental condition distribution across splits. 

• Performance metrics computed: mAP@0.5, mAP@0.5:0.95, precision, recall, F1-score. Confidence thresholds 
between 0.1 and 0.9 were evaluated in increments of 0.1. Optimal threshold 0.25 selected based on F1-score 
maximization. 

• Efficiency metrics measured: model size (MB), parameter count, FLOPs, inference time (ms). Inference testing 
conducted on Tesla V100 (GPU) and Intel i7-9700K (CPU) platforms. Average computed over 1,000 forward 
passes after 100-iteration warmup. 

Baseline comparison implemented YOLOv5s under identical conditions, ensuring fair comparison by controlling for 
dataset splits, hyperparameters, and training duration. Direct comparison isolated architectural improvements from 
training variations. 
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Table 1 Performance Comparison Table 

Metric YOLOv8s YOLOv5 

mAP@0.5 0.52 0.480 

mAP@0.5:0.95 0.41 0.385 

Precision 0.89 0.850 

Recall 0.78 0.800 

F1-Score 0.83 0.824 

Model Size (MB) 21.50 27.00 

Inference Time (ms) 5.50 6.300 

4. Results and Discussion 

4.1. Model Performance Analysis 

The YOLOv8s achieved 0.52 mAP@0.5, representing an 8.3% improvement over the YOLOv5 baseline (0.48). At stricter 
IoU thresholds, localization remained consistent with mAP@0.5:0.95 of 0.41, indicating reliable detection across 
varying overlap requirements. At the selected operating point (confidence threshold 0.25), the model achieved a 
precision of 0.89, a recall of 0.78, and an F1-score of 0.83, balancing false positives and false negatives for practical 
deployment. 

4.2. Dataset Representation and Detection Capabilities 

Figure 2 illustrates representative dataset samples across diverse conditions, including urban settings, forest canopies, 
and challenging illumination. The dataset contained both single- and multi-instance scenarios within heterogeneous 
backgrounds, ensuring coverage of realistic deployment contexts. 

Detection results confirmed robustness across environments, consistent with recent YOLOv8 wildlife detection studies 
demonstrating similar environmental adaptability [1,8]: controlled settings achieved a mean confidence of 0.81, snow-
covered backgrounds maintained 0.75 confidence despite high contrast, and minimal-context detections (black 
backgrounds) achieved 0.80 confidence, demonstrating feature-based recognition independent of environmental cues. 

 

Figure 3 Detected Monkey with Confidence Level 0.81 
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Figure 4 Detected Monkey with Confidence Level 0.75 

 

 

Figure 5 Detected Monkey with Confidence Level 0.80 

4.3. Precision-Recall Analysis and Model Calibration 

The precision–recall curve (Figure 6) achieved an Area Under the Curve (AUC) of 0.867, confirming strong 
discriminative capability. Stable performance was observed across thresholds between 0.2 and 0.4, suggesting that the 
model can tolerate variations in confidence settings without substantial performance loss. The chosen operating point 
(precision=0.89, recall=0.78) reflects an appropriate trade-off for real-time monitoring, where minimizing false alarms 
while retaining high recall is critical. 
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Figure 6 Precision Recall Curve (AUC = 0.867) 

4.4. Training Convergence and Generalization Analysis 

Training and validation loss curves (Figure 7) demonstrated a smooth exponential decline over 150 epochs, stabilizing 
by epoch 100. Final convergence occurred at 0.012 training loss and 0.018 validation loss, with divergence never 
exceeding 0.006. This close alignment indicates strong generalization and the effectiveness of the augmentation strategy 
in preventing overfitting. 

 

Figure 7 Representing Training vs Validation Loss 

4.5. Computational Efficiency Analysis 

YOLOv8s reduced model size to 21.5MB (20% smaller than YOLOv5’s 27MB) and decreased parameter count from 
13.5M to 11.2M. These reductions directly translate into lower memory demands for edge deployment. 

Inference performance improved across hardware: on GPU, YOLOv8s achieved 5.5ms per image versus YOLOv5’s 6.3ms 
(12.7% faster), enabling real-time processing at over 30fps for batch sizes of 32. On CPU, inference improved from 51ms 
(YOLOv5) to 42ms (YOLOv8s), a 17.6% gain, demonstrating feasibility for moderately resource-constrained devices 
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4.6. Comparative Performance and Deployment Implications 

Compared to YOLOv5, YOLOv8s delivered improvements in both accuracy and efficiency: +8.3% mAP@0.5, +6.5% 
mAP@0.5:0.95, and 20% model size reduction. Precision increased from 0.85 [4] to 0.89, while recall remained 
competitive (0.78 vs. 0.80), ensuring reliable detection without significant loss in sensitivity. Unlike prior primate 
detection studies, such as Reddy et al. [4], which reported a precision of 0.85 without efficiency metrics, this study 
demonstrates a comprehensive evaluation of both detection and computational performance. 

These findings suggest that YOLOv8s provides a balanced performance profile suitable for field deployment. The 
combination of strong accuracy, reduced memory footprint, and accelerated inference positions the model for 
integration into edge devices used in wildlife monitoring. Importantly, the demonstrated robustness across diverse 
environments enhances confidence in its applicability to real-world conservation scenarios where conditions cannot be 
controlled. 

The demonstrated performance aligns with recent IoT-based wildlife monitoring implementations. Singh and 
Krishnamurthi [6] achieved similar real-time detection capabilities using YOLOv8 with ESP32-CAM platforms, while 
Khan Raiaan et al. [5] demonstrated 97% accuracy in endangered animal protection scenarios with comparable edge 
device constraints.  

5. Conclusion and Future Work 

This study implemented the YOLOv8s architecture for monkey detection in wildlife monitoring applications, 
demonstrating the critical balance between detection accuracy and computational efficiency required for field 
deployment. The comprehensive evaluation on 2,244 annotated images confirmed YOLOv8s as a practical advancement 
over existing approaches. 

The architectural improvements of YOLOv8s—including C2f modules and anchor-free detection heads—translated to 
measurable gains in both performance dimensions. Detection accuracy improved alongside reduced computational 
requirements, addressing the dual constraints of wildlife monitoring: reliable detection and resource-limited 
deployment. The model maintained robust performance across diverse environmental conditions, from controlled 
settings to challenging scenarios with occlusion and variable lighting. This study demonstrates how modern detection 
architectures can be adapted to the unique constraints of wildlife monitoring systems. 

These results establish YOLOv8s as suitable for automated wildlife monitoring systems where edge deployment is 
essential. The balanced efficiency-accuracy profile enables real-time processing on resource-constrained devices 
without compromising detection reliability. This advancement facilitates broader deployment of automated monitoring 
systems for human-wildlife conflict mitigation. 

Future research should explore integration into comprehensive monitoring frameworks incorporating SMS notification 
and IoT connectivity. Multi-species extension presents opportunities for broader wildlife monitoring while maintaining 
efficiency requirements [9,10,12]. Optimization for mobile platforms through quantization could further reduce 
memory and latency, enhancing accessibility for field deployment. Dataset expansion with few-shot learning would 
enable rapid adaptation to new species without extensive retraining. Federated learning implementation could facilitate 
collaborative model improvement across deployment sites while preserving data locality requirements. 
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