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Abstract 

This review examines the transformatively expanding contribution of Artificial Intelligence (AI) to fusion science. It 
focusses on machine learning (ML) and deep learning (DL) as foundations of modeling, control, and comprehension of 
data. It evaluates the mechanism by which AI raises predictive capability, efficient computation, and scientific 
comprehension within the fusion workflow, while critically examining limitations keeping full realization elusive. By 
conceptual research, comparative modeling, schematic infrastructure, ablation experiments, and hybrid methodologies 
such as Physics-Informed Neural Networks (PINNs), the article examines the interplay between AI and the rich data 
environments of fusion. A survey of the last decade's peer-reviewed publications reveals that ML and DL enable up to 
10× faster diagnostic inference, reinforcement learning achieves real-time plasma control making thousands of 
adjustments per second, PINNs reduce transport model computation by 5× while cutting cost by 72%, and AI–physics 
hybrid modeling raises predictive accuracy to 74% while surpassing conventional simulation. Despite all of these, 
challenges persist. The fusion data remains diverse, resistant to standardisation, lack of interpretability is a common 
failing among the models, dynamic reactor scenarios demand recurrent recalibration, the restrictions around ethics, 
operations, and collaboration complicate roll-out. This review concludes that AI must become physics-aware, adaptive, 
and transparent. By embracing the domain expertise and facilitating the federated learning bases, AI becomes 
complementary not a replacement to the traditional scientific method, thereby offering the future path to sustainable 
energy innovation. 

Keywords: Machine Learning in Fusion; Physics-Informed Neural Networks (PINNs); Data Fusion and Model 
Optimization; Adaptive AI Infrastructure; Computational Efficiency in Scientific Modeling 

1. Introduction

Nuclear fusion is the process of combining light atomic nuclei, principally isotopes of hydrogen such as deuterium and 
tritium, to form heavier nuclei, releasing large amounts of energy per unit mass, orders of magnitude greater than 
chemical fuels and several times the energy density of nuclear fission. Fusion promises a near-zero-carbon, base-load 
energy source with intrinsic safety advantages. Fusion reactions require precise temperature and confinement 
conditions and cease rapidly if parameters deviate, removing the risk of runaway chain reactions that characterize 
fission accidents (Ongena, 2022; Temel, 2024). Recent progress in tokamak fusion research has demonstrated 
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significant advances toward viable fusion power generation. The Joint European Torus (Aymerich et al.) achieved a new 
fusion energy world record during its deuterium-tritium campaign (DTE2) conducted between August and December 
2021 (Clery, 2022; Nocente et al., 2022). These experimental milestones, together with alternative approaches such as 
inertial confinement (NIF) and a growing private-sector effort, underpin optimism about achieving sustained, net-
energy fusion in coming decades. The fusion energy sector has experienced substantial investment growth, with private 
companies receiving significant funding increases. Goldston (2024) reports that 45 private fusion companies globally 
have secured total financing of $7.1 billion, reflecting growing international enthusiasm to accelerate fusion 
commercialization amid climate change challenges. This represents a dramatic expansion in privately funded fusion 
ventures in recent years (Chapman et al., 2023). This capital influx supports diverse approaches such as tokamaks, 
stellarators, magnetized target fusion, beam-driven systems and reflects growing interest from both energy incumbents 
and technology investors.  

1.1. Challenges in achieving sustainable fusion 

Despite progress, Wurzel and Hsu (2022) and Clery (2022) argue that substantial scientific and engineering barriers 
remain before fusion can be commercial and sustainable. First is High-temperature plasma confinement. Fusion-ready 
plasmas must be confined at temperatures of tens to hundreds of millions of kelvin (many times the core temperature 
of the Sun) so that nuclei can overcome Coulomb repulsion. Achieving sufficient confinement time × temperature × 
density (the Lawson criterion) in a stable way at industrial scales continues to be a central physics challenge; ITER and 
successor devices are explicitly designed to probe these regimes. Second is Instability and turbulence control. Recent 
research has focused on developing advanced disruption prediction and control strategies for tokamak plasmas using 
hybrid physics and data-driven approaches. Rossi et al. (2024) combined physics-based and machine learning 
methodologies to identify key disruption precursors including magnetic instabilities, abnormal kinetic profiles, and 
radiation patterns, achieving performance meeting ITER requirements when tested on ~2000 JET discharges. Rattá et 
al. (2021) proposed a unified three-phase strategy for disruption avoidance, prevention, and mitigation, utilizing 
sequential predictors that achieved nearly 100% successful detection rates with minimal false alarms on ~1000 JET 
discharges..  Third is materials and tritium supply. Fusion power plants face critical materials and fuel cycle challenges 
that threaten commercial viability. Structural and plasma-facing materials must withstand extreme neutron fluxes, high 
heat loads, and cyclic stress, leading to embrittlement, swelling, and surface erosion. Current tritium burn fractions in 
ITER (~0.36%) are insufficient for self-sufficiency, though optimization strategies using tritium-only pellet fueling could 
increase burn fractions to 1.8-3.6%. Modeling studies of ARC- and STEP-class reactors indicate tritium self-sufficiency 
requires ambitious performance targets including >70% availability, <4-hour processing times, and tritium breeding 
ratios <1.2 with 0.5-1% burn efficiency (Abdou et al., 2020; Meschini et al., 2023; Zinkle & Quadling, 2022). Fourth is 
economic feasibility and scalability. The economic viability of fusion power faces significant challenges despite scientific 
progress. ITER, originally approved in 2005 with a $5 billion budget and 2027 start date, has experienced substantial 
cost overruns to at least $25 billion with deuterium-tritium experiments now expected around 2035. For fusion to be 
competitive beyond 2040, costs must reach $80-100/MWh, but early designs are projected to exceed $150/MWh due 
to low power availability from pulsed operation, frequent component replacement, and low efficiency power cycles 
(Lindley et al., 2023; Manheimer, 2020). 

1.2. Role of Artificial Intelligence (AI) 

AI and advanced data-driven approaches are rapidly becoming essential enablers across the fusion lifecycle because 
fusion research is intrinsically data-rich, real-time constrained, and governed by highly nonlinear physics. First is the 
growing influence across energy systems. According to Dong et al. (2021); Li et al. (2024), AI has already transformed 
many energy domains such as forecasting, optimization, predictive maintenance, and the same techniques supervised 
learning, deep learning, reinforcement learning, and physics-informed neural nets are directly applicable to fusion 
problems such as turbulence modeling, disruption prediction, and closed-loop control. Hybrid AI-physics models can 
provide much faster surrogate models than first-principles solvers, enabling real-time decision making. Second is 
addressing real-time control and prediction. Fusion plasmas evolve on millisecond to sub-millisecond timescales; 
detecting precursors to disruptive events and taking corrective action requires both very fast inference and robust 
models that generalize from experimental and simulated data. Recent research by Agarwal et al. (2021) demonstrates 
significant progress in applying machine learning and reinforcement learning to fusion plasma control and disruption 
prediction. Deep learning approaches have shown promising results for disruption prediction, with sequence-to-
sequence models achieving 89% accuracy in predicting major disruptions 7-20 ms in advance on the ADITYA tokamak, 
with inference times under 170 µs suitable for real-time control . This paper aims to synthesize recent literatures from 
2020–2025 advances, quantify where AI has provided measurable gains, evaluate remaining gaps such as data scarcity, 
interpretability, integration with physics-based codes, and provide a forward roadmap for research and deployment 
strategies that maximize fusion’s prospects as a sustainable, safe and economically viable energy source. 
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2. Overview of Artificial Intelligence in Energy Systems 

Artificial intelligence has become a transformative force in the global energy sector, driving efficiency, flexibility, and 
resilience across multiple domains. Machine learning and AI technologies are transforming smart grid operations 
through enhanced real-time energy management and load balancing capabilities. AI-driven systems demonstrate 
significant improvements in forecasting accuracy, with studies showing up to 66.67% reduction in prediction errors 
and 11.76% increases in energy efficiency compared to conventional methods. Machine learning algorithms, including 
time series analysis, reinforcement learning, RNNs, and LSTM networks, enable more accurate load predictions and 
dynamic demand adjustments (Noviati et al., 2024; Udo et al., 2023). Accurate prediction reduces the need for expensive 
reserve capacity, a challenge also central to nuclear fusion’s intermittency during experimental operations. Predictive 
maintenance (PdM) has emerged as a transformative approach in industrial systems, leveraging artificial intelligence 
to process extensive sensor data and predict equipment failures before they occur. AI-powered PdM systems enhance 
operational efficiency by enabling proactive maintenance interventions, thereby optimizing system reliability and 
reducing costly downtimes (Nadaf, 2024; Ucar et al., 2024). These approaches are directly relevant to fusion reactors, 
where highly complex and delicate systems such as superconducting magnets, cryogenic pumps, plasma-facing 
components, require constant monitoring to prevent catastrophic failures. The lessons from these energy applications 
are transferable to nuclear fusion. Fusion research shares characteristics with renewable energy systems such as 
nonlinearity, real-time dynamics, and the need for high-accuracy predictive models under uncertainty. Just as AI 
enhances resilience in renewable-integrated grids, it can provide predictive insights into plasma behavior, optimize 
energy conversion systems, and ensure reactor uptime in large-scale fusion devices (Huang et al., 2023; Jendoubi & 
Asad, 2024). 

2.1. Core AI Techniques Relevant to Fusion 

2.2. Machine Learning (ML) and Deep Learning. 

Machine learning applications in fusion plasma research have demonstrated significant progress across multiple 
tokamak facilities. Traditional and deep learning methods have been successfully implemented for disruption 
prediction, diagnostics processing, and real-time experimental control.  

 

Figure 1 Integrated ML infrastructure for fusion: enabling scalable data processing, federated access, and dynamic 
deep learning workflows to accelerate discovery and control in complex fusion environments (Humphreys et al., 

2020) 

Deep convolutional neural networks have shown particular promise for multi-scale time-series classification in fusion 
plasmas, with CNN-based disruption predictors achieving F1-scores of approximately 91% using raw diagnostic data 
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from single sensors like Electron Cyclotron Emission imaging (Churchill et al., 2020; ZHENG 郑 et al., 2022). Figure 1 
below from Humphreys et al. (2020) encapsulates the essential infrastructure for scalable, federated, and interactive 
machine learning workflows, enabling deep learning models to dynamically process, label, and adapt to the complex, 
heterogeneous data environments central to fusion research. 

2.3. Reinforcement Learning (RL) 

Recent advances in reinforcement learning (RL) for tokamak plasma control have demonstrated significant progress 
across multiple experimental facilities. Subbotin et al. (2025) achieved the first successful application of deep RL for 
magnetic plasma control on the DIII-D tokamak, using a Soft Actor-Critic algorithm that eliminates the need for 
equilibrium reconstruction while maintaining robust control performance during transient events. Building on earlier 
TCV tokamak work, Tracey et al. (2023) presented algorithmic improvements that achieved up to 65% improvement in 
shape accuracy and reduced training time by a factor of 3 or more, with experimental validation on TCV. Meanwhile, 
Kerboua-Benlarbi et al. (2024) extended RL methods to the WEST tokamak for comprehensive shape, position, and 
current control using an actor-critic agent trained on a resistive diffusion equilibrium code, demonstrating the flexibility 
and scalability of RL approaches across different fusion devices. Figure 2 from Wang et al. (2025) illustrates how 
progressive enhancements through data fusion and fine-tuning significantly improve reinforcement learning model 
accuracy, underscoring the value of ablation-style experimentation in optimizing ML workflows for complex fusion 
tasks. 

 

Figure 2 Accuracy gains from RL-Fusion and fine-tuning highlight the impact of ablation-driven enhancements, 
validating the role of adaptive ML architectures in optimizing fusion-relevant learning systems (Wang et al., 2025) 

2.4. Physics-Informed Neural Networks (PINNs) 

Physics-Informed Neural Networks (PINNs) represent a significant advancement that integrates physical laws, 
particularly partial differential equations, directly into neural network training Li (2025). This approach enhances data 
efficiency by allowing accurate predictions with minimal training data while ensuring physical consistency Farea et al. 
(2024). PINNs demonstrate remarkable computational advantages, with applications showing up to 100 times faster 
evaluations compared to standard simulations. The methodology enables learning without traditional training data by 
incorporating governing differential equations directly into the training process (Stiasny et al., 2021). Figure 3 below 
from Seo et al. (2024) compares traditional Finite Difference Methods (FDM) with Physics-Informed Neural Networks 
(PINNs), illustrating how PINNs dramatically reduce the number of serial calls to the transport model, highlighting their 
computational efficiency and relevance as deep learning techniques for solving complex fusion transport equations.  
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Figure 3 PINNs streamline transport model computation with significantly fewer serial calls than FDM, showcasing 
deep learning’s potential to accelerate fusion simulations while preserving physical fidelity, (Seo et al., 2024) 

2.5. Hybrid AI–Physics Modeling 

Hybrid modeling approaches that combine physics-based and data-driven techniques are emerging as powerful 
solutions for complex engineering systems. These methods integrate the interpretability and physical consistency of 
traditional physics models with the predictive capabilities of machine learning to overcome limitations of purely data-
driven or physics-based approaches. In fusion applications, hybrid models enable fast and accurate simulation of 
exhaust phenomena, facilitating optimized modeling for future fusion device. The corrective source term approach 
demonstrates superior performance in accuracy and generalizability by combining partial differential equations with 
deep neural networks to compensate for unknown physics. These hybrid techniques are particularly valuable for energy 
systems, where they improve prediction accuracy and adaptability while supporting real-time optimization and digital 
twin development. Such approaches address trustworthiness and generalizability challenges while enabling seamless 
multifidelity coupling across different scales and physics (Blakseth et al., 2022; San et al., 2021). Figure 4 is a schematic 
from Huynh et al. (2025) showcases how neural networks and differentiable modeling can be fused with physical 
hydrological descriptors and optimization algorithms—demonstrating a powerful ML framework that parallels fusion 
modeling by enabling data-driven simulation, parameter inference, and spatio-temporal prediction grounded in 
physical laws. 
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Figure 4 Neural networks integrated with differentiable physics and optimization enable scalable, data-informed 
hydrological modeling, mirroring fusion applications where ML enhances simulation fidelity and parameter learning 

across complex spatial domains (Huynh et al., 2025) 

Table 1 Performance acceleration metrics of core AI techniques in fusion research, highlighting speedup factors and 
efficiency gains across modeling. 

Technique Reported Speedup / Efficiency Gain Source 

ML/DL (diagnostics, prediction) Real-time inference (10× faster) (D. Ferreira, 2018) 

RL (plasma control) Thousands of actions/sec vs manual tuning (Kim & Seo, 2024) 

PINNs 5× faster PDE solving; 72% cost reduction (Ren et al., 2025) 

Hybrid AI-Physics 74% predictive accuracy; faster than HPC (D. R. Ferreira, 2018) 

3. Applications of AI in Nuclear Fusion Research 

Artificial intelligence is now at the core of efforts to accelerate nuclear fusion development, from fundamental plasma 
science to reactor engineering. Its ability to handle large, nonlinear datasets and produce real-time insights makes it 
indispensable for overcoming challenges that have hindered fusion for decades. The following subsections outline the 
primary application areas of AI in fusion research. 

3.1. AI for Plasma Modeling and Prediction 

3.1.1. Plasma turbulence modeling 

Recent advances in AI-driven surrogate models have demonstrated significant potential for accelerating plasma 
turbulence simulations in fusion physics. Clavier et al. (2025) developed the Generative Artificial Intelligence 
Turbulence (GAIT) framework, which uses convolutional variational auto-encoders and recurrent neural networks to 
generate turbulence data for long-time transport studies with minimal computational cost. Their approach showed 
excellent agreement with traditional Hasegawa-Wakatani model simulations across multiple validation metrics. Galletti 
et al. (2025) created 5D neural surrogates for gyrokinetic simulations using hierarchical vision transformers, achieving 
accurate predictions of heat flux and electrostatic potentials two orders of magnitude faster than numerical codes. Li 李 
et al. (2021) established the ExFC-NN model that successfully predicts turbulent transport characteristics including 



World Journal of Advanced Engineering Technology and Sciences, 2025, 17(01), 041-060 

47 

dominant turbulence types and radial fluxes. Similarly, Dong et al. (2021) developed surrogate models for the 
gyrokinetic toroidal code (GTC) that can simulate plasma instabilities in milliseconds, making them suitable for real-
time plasma control applications. 

3.1.2. Surrogate models for complex plasma simulations 

research demonstrates significant advances in AI-based surrogate models for fusion plasma simulations, achieving 
substantial computational speedups while maintaining accuracy. Gopakumar et al. (2024) developed Fourier neural 
operators (FNOs) for plasma evolution prediction, achieving six orders of magnitude speedup over traditional 
magnetohydrodynamic solvers with mean squared error ≈10⁻⁵. Their approach successfully predicted plasma dynamics 
in both simulation and experimental domains using MAST Tokamak data. Galletti et al. (2025) extended neural 
surrogates to 5D gyrokinetic simulations using hierarchical vision transformers, achieving two orders of magnitude 
faster inference for plasma turbulence modeling. Poels et al. (2023) applied neural PDE surrogates to 1D divertor 
plasma simulations, computing 2 ms of plasma dynamics in ≈0.63 ms wall-clock time, several orders of magnitude faster 
than the reference DIV1D model. Carey et al. (2024) evaluated neural operator performance for JOREK MHD and STORM 
codes, finding that multi-variable training and larger datasets improve both accuracy and stability for long-term 
predictions. 

3.1.3. Forecasting plasma behavior and instabilities 

Machine learning approaches have shown significant promise for predicting plasma instabilities in tokamak fusion 
reactors. Samaddar et al. (2025) developed spatiotemporal forecasting models using neural networks to predict edge-
localized modes (ELMs) onset and evolution, achieving high accuracy in forecasting ELM dynamics within 30-80 
microseconds using beam emission spectroscopy data. Croonen et al. (2020) compared multiple machine learning 
techniques for disruption prediction, finding that support vector machines performed best among standard models, 
while random forest achieved the highest portable performance across different devices, with disruptions detectable 
up to 600ms before onset. ZHENG 郑 et al. (2022) reported successful implementation of both traditional and deep 
learning methods on the J-TEXT tokamak, achieving high success rates for all disruption types with sufficient warning 
time for mitigation systems. Priyanka et al. (2024) reviewed various traditional and data-driven approaches across 
different tokamaks, emphasizing the critical importance of disruption prediction for preventing catastrophic damage to 
current and future fusion devices like ITER. 

3.2. A Review of Traditional and Data-DrivenApproaches for Disruption Prediction inDifferent Tokamaks 

3.2.1. AI for Diagnostics and Data Analysis 

AI applications in fusion diagnostics and data analysis are rapidly advancing to handle the massive data volumes 
generated by modern fusion experiments. Deep neural networks enable real-time plasma analysis by integrating 
heterogeneous diagnostic data, with variational autoencoders successfully combining soft X-ray imaging with magnetic 
state measurements on RFX-mod Garola et al. (2020). Neural network surrogates of Bayesian diagnostic models 
dramatically reduce inference time from tens of minutes to microseconds while maintaining accuracy, as demonstrated 
for plasma parameter reconstruction at Wendelstein 7-X and Joint European Torus Pavone et al. (2021). AI enhances 
diagnostic imaging through improved image analysis, operational efficiency, predictive analytics, and clinical decision 
support, with applications showing significant improvements in accuracy and speed (Khalifa & Albadawy, 2024). 
Machine learning methods are being developed as fast predictors for fusion exhaust modeling, enabling optimized 
physics model integration and supporting extrapolations to future fusion devices (Wiesen et al., 2024). 

3.2.2. AI for Materials and Reactor Design 

AI is revolutionizing materials discovery and reactor design by accelerating the identification of novel materials and 
optimizing reactor components. Machine learning models can predict material properties with 85-90% accuracy, 
significantly reducing experimental validation requirements. AI algorithms enable efficient analysis of vast material 
databases to identify promising candidates for specific applications, from drug development to energy storage (Badini 
et al., 2023). In nuclear reactor applications, AI has demonstrated substantial improvements, with one study showing a 
3× enhancement in temperature peaking factor through AI-based core design optimization (Sobes et al., 2021). Modern 
AI techniques including machine learning, deep learning, and evolutionary computing are being applied to reactor 
design optimization and operation and maintenance (Huang et al., 2023). The shift from traditional resource-intensive 
approaches to data-driven methodologies leverages large datasets to predict properties and optimize synthesis 
conditions with satisfactory accuracy (Zuccarini et al., 2024). These advances promise revolutionary changes in 
materials science and nuclear engineering. 
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4. AI in Fusion Reactor Operations and Lifecycle 

The operation and lifecycle management of fusion reactors demand unprecedented levels of precision, safety, and 
efficiency. Unlike conventional power plants, fusion systems involve highly integrated subsystems from 
superconducting magnets and cryogenic cooling loops to vacuum chambers and tritium handling facilities. Artificial 
intelligence (AI) enhances reactor performance throughout its lifecycle by enabling predictive maintenance, creating 
digital twins for continuous monitoring, and optimizing tritium breeding and fuel cycles. 

4.1. Predictive Maintenance of Fusion Devices 

AI-driven predictive maintenance represents a transformative approach to industrial asset management, offering 
significant operational and economic benefits. Generative AI models, including GANs and reinforcement learning 
techniques, can analyze diverse data sources such as sensor readings, maintenance logs, and environmental conditions 
to provide real-time equipment health insights Mohapatra (2024). Machine learning and deep learning techniques, 
particularly CNNs and LSTM networks, improve failure prediction accuracy by 30-60%, leading to 25-50% reductions 
in maintenance costs and increased equipment uptime. IoT-enabled condition monitoring enhances predictive accuracy 
by 15-35%, contributing to 20-45% reductions in unnecessary maintenance activities (Haque et al., 2024). The 
integration of AI technologies enables proactive maintenance interventions that optimize system reliability and 
performance while mitigating costly downtimes (Nadaf, 2024). Key future research areas include digital twins, 
trustworthy AI, and Industrial Internet of Things integration (Ucar et al., 2024). 

4.2. Digital Twins of Fusion Reactors 

Digital twins represent a transformative technology for fusion energy research, serving as virtual replicas that 
continuously evolve with real-world reactor data. These systems enable real-time monitoring and optimization of 
critical fusion components including plasma confinement, cooling circuits, and tritium handling systems (Battye & 
Perinpanayagam, 2025). The fusion community has recognized digital twins as "living platforms" that continuously 
ingest experimental data while refining predictive accuracy to guide both current operations and future device designs 
(Schissel et al., 2025). Advanced visualization platforms like NVIDIA Omniverse facilitate comprehensive integration of 
computer-aided design models, simulation data, and material properties, creating immersive environments for fusion 
power plant optimization (Bhatia et al., 2025). Practical implementation involves systems simulation approaches 
covering hydraulic, thermal, electromagnetic, and mechanical domains through fast-running surrogate models, as 
demonstrated in facilities like CHIMERA (Tindall et al., 2023). AI-enhanced digital twins promise 10-15% efficiency 
improvements, potentially saving billions across commercial reactor fleets while accelerating the path to viable fusion 
energy 

4.3. AI in Tritium Breeding and Fuel Cycle Management 

AI applications in tritium breeding and fuel cycle management have shown significant promise for fusion reactor 
optimization. Neural network surrogate models can predict tritium breeding ratios (TBR) with high accuracy, achieving 
R² = 0.985 and mean prediction times of 0.898 μs, representing speedups of 8×10⁶ compared to Monte Carlo simulations 
(Mánek et al., 2023). AI-driven optimization methods, including genetic algorithms and particle swarm optimization, 
have demonstrated substantial improvements in breeding blanket design, with automatic neutronic optimization 
increasing TBR from 1.219 to 1.282 (~5.17% improvement) while maintaining material temperature constraints. These 
AI techniques address the complex multiphysics coupling between nuclear, thermal, and mechanical phenomena in 
breeding blankets (Qu et al., 2021). The European DEMO project requires TBR ≥ 1.05 for tritium self-sufficiency, with a 
design target of TBR ≥ 1.15 including safety margins (Fischer et al., 2020). AI integration in nuclear reactor operations 
enhances fuel loading optimization, safety margins, and lifecycle management. 

5. Sustainability Perspective 

According to Adewoyin et al. (2025) and Kaur et al. (2024), AI is emerging as a transformative technology for sustainable 
energy development, offering solutions to optimize energy generation, enhance efficiency, and reduce carbon emissions. 
AI applications span renewable energy forecasting, smart grid management, demand-side optimization, and carbon 
mitigation strategies, with algorithms enabling accurate predictions of solar and wind energy production while 
improving energy storage management. The technology demonstrates revolutionary capacity through optimization 
algorithms and predictive analytics that bolster intelligent decision-making in sustainable energy frameworks. 
However, significant challenges persist in AI integration, including data availability and quality barriers, high 
computational costs, cybersecurity risks, and evolving regulatory frameworks. The integration faces technological 
complexities and socio-economic impacts, requiring transparent, equitable, and inclusive deployment approaches. 
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Recent advancements in edge computing, quantum computing, and explainable AI offer promising opportunities for 
enhanced sustainable energy management. Collaborative efforts among governments, industries, and research 
institutions remain essential for harnessing AI's full potential in achieving global energy transition goals. 

6. Case Studies and Recent Advances (2020–2025) 

This section highlights representative, high-impact demonstrations of AI applied to fusion science and engineering 
between 2020–2025. Each case study summarizes what was achieved, why it matters, key metrics, and limitations or 
next steps. 

6.1. ITER and AI-driven plasma modelling & control preparation 

Significant progress have been made in developing AI-based surrogate models for fusion plasma applications, 
addressing the need for fast, accurate predictions in magnetic confinement fusion experiments. Citrin et al. (2023) 
developed neural network-based turbulence transport models that are eight orders of magnitude faster than original 
quasilinear calculations while maintaining accuracy for ITER predictions. Similarly, Dong et al. (2021) created deep 
learning surrogate models for gyrokinetic simulations that operate on millisecond timescales, suitable for real-time 
plasma control systems and capable of predicting instability properties including growth rates and mode structures. Li 
et al. (2024) introduced SExFC, a machine learning surrogate model using recurrent neural networks for rapid flux 
evolution predictions in plasma transport. Additionally, Bustos et al. (2025) demonstrated AI applications in stellarator 
operations, developing systems that can estimate operational parameters from magnetic fluctuation measurements, 
offering faster alternatives to conventional experimental design approaches.  

6.2. DeepMind & TCV - reinforcement learning for real-time plasma control (Degrave et al., 2022). 

Plasma control is central to the success of nuclear fusion. Magnetic confinement devices like tokamaks rely on precisely 
tuned magnetic fields to maintain plasma stability and shape. Traditionally, control strategies have been developed 
using model-based approaches, which rely on physics-informed equations and extensive manual tuning. While 
successful in many contexts, these controllers struggle to adapt to highly nonlinear plasma dynamics and are often 
device-specific. To address these challenges, researchers from DeepMind in collaboration with the Swiss Plasma Center 
at EPFL conducted a landmark experiment in 2022. The team applied deep reinforcement learning (RL) to real-time 
plasma control in the Tokamak à Configuration Variable, demonstrating that AI agents could autonomously learn 
effective control strategies directly from simulation and then transfer them to real-world hardware. This marked the 
first demonstration of an AI-driven controller operating on a live tokamak. 

6.2.1. Methodology and Implementation 

The DeepMind–TCV project combined simulation-driven training with hardware deployment; Reinforcement Learning 
Framework - The RL agent interacted with a simulation environment calibrated to TCV’s physics. The agent received 
plasma state information and learned control policies to manipulate the 19 magnetic coils of the TCV tokamak. Reward 
Structure - The learning objective was to maintain desired plasma configurations (e.g., elongated, “snowflake,” or 
double-null shapes) while minimizing deviations and energy use. Transfer to Hardware - After training in simulation, 
the RL controller was tested directly on the TCV tokamak. It successfully manipulated coil currents in real time to create 
and sustain diverse plasma shapes. This hybrid approach avoided the impracticality of training solely on the physical 
device (due to cost and shot limitations) while ensuring that the learned policies generalized to experimental conditions. 

6.2.2. Key Achievements and Results 

Real-Time Control Success: The RL controller operated at millisecond timescales required for plasma stabilization, 
successfully shaping and maintaining plasmas in experimental runs. Flexibility in Plasma Configurations: The agent was 
able to generate a variety of shapes, including advanced configurations important for reducing heat loads and improving 
confinement. Comparable or Superior to Traditional Controllers: The RL system demonstrated performance on par with 
or exceeding conventional control methods, particularly in handling complex geometries. Scalable Methodology: The 
approach suggested that RL could scale to more complex machines, such as ITER or DEMO, where control challenges 
are significantly harder. 

6.2.3. Scientific and Industrial Impact 

The significance of this demonstration lies not only in the specific results but in its paradigm shift for plasma control; 
Proof of Concept for AI in the Loop: The experiment validated that AI can transition from offline analysis (simulations, 
diagnostics) to direct, online control of experimental fusion devices. Acceleration of Controller Design: Traditional 
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controllers require years of physics-based modeling; RL drastically shortened this timeline, showcasing AI’s role in 
reducing development costs. Foundation for Future Deployment: The demonstration laid the groundwork for applying 
AI control to larger, more expensive reactors, where real-time adaptability and resilience are crucial. 

6.2.4. Limitations and Open Challenges 

Despite the success, several limitations remain; Generalizability: The controller was trained for specific plasma shapes 
in TCV; scaling to ITER or DEMO requires adapting to different coil geometries, faster dynamics, and harsher operating 
conditions. Safety and Certification: Fusion devices demand stringent safety standards. RL policies must be 
interpretable, certifiable, and fail-safe to be trusted in high-stakes reactor environments. Data Efficiency: Although 
simulation reduced the burden on experiments, achieving sufficient accuracy still required significant computational 
resources. Transfer learning strategies need further refinement for broader applicability. 

6.2.5. Future Directions 

The DeepMind–TCV demonstration opens multiple research avenues; Hybrid AI–Physics Controllers: Combining RL 
with physics-informed neural networks (PINNs) could enhance robustness and interpretability. Cross-Device Transfer: 
Developing RL agents that can generalize across different tokamak designs without retraining from scratch. Safety-
Constrained RL: Embedding hard safety limits into RL algorithms to ensure compliance with operational safety 
standards. Integration with Digital Twins: Coupling RL with digital twins of future reactors (e.g., ITER) to pre-train 
controllers before deployment. 

6.2.6. Conclusion 

The DeepMind–TCV project is widely regarded as a watershed moment in fusion research, demonstrating the feasibility 
of AI-driven plasma control in real-world conditions. It provides a compelling example of how AI can shorten 
development timelines, improve control precision, and enable innovative operational regimes, all of which are crucial 
for achieving sustainable and commercially viable nuclear fusion. 

6.3. National labs & academic advances - JET, PPPL, Princeton control group, and disruption prediction (Tang 
et al., 2023) 

Edge-localized modes (ELMs) and sudden disruptions in tokamak plasmas remain one of the biggest threats to 
operational safety and reactor longevity. These instabilities can deposit megawatts of energy onto plasma-facing 
components in milliseconds, causing severe material damage or even quenching superconducting magnets. Historically, 
disruption prediction relied on analytical or empirical models, which struggle to generalize across devices and plasma 
conditions. To address this, researchers at the Joint European Torus (Aymerich et al.) in the UK, in collaboration with 
teams at the Princeton Plasma Physics Laboratory (PPPL), applied machine learning (ML) and deep learning to large 
datasets of diagnostic signals from multiple campaigns (2015–2024). The goal was to predict plasma disruptions 
milliseconds to seconds in advance, enabling proactive mitigation and safer operation. 

6.3.1. Methodology and Implementation 

Data Sources: The models were trained on high-dimensional diagnostic datasets, including magnetic coils, 
interferometers, bolometers, temperature probes, and imaging diagnostics, totaling petabytes of data per experimental 
campaign. ML Architectures: Recurrent neural networks (RNNs), long short-term memory (LSTM) networks, and 
feedforward neural networks were employed to capture temporal correlations and nonlinear relationships in plasma 
behavior. Hybrid Models: Some studies incorporated physics-informed ML, combining first-principles constraints with 
learned patterns to improve generalization and interpretability. Deployment: Models were deployed in quasi-real-time, 
continuously analyzing incoming sensor data to issue disruption alerts with sufficient lead time for mitigation. 

6.3.2. Key Achievements and Results 

High Prediction Accuracy: RNN-based disruption predictors achieved >90% accuracy, with lead times ranging from 10 
ms to 500 ms, depending on plasma scenario and machine conditions. Early Warnings Enabled Mitigation: The 
predictions allowed operators to trigger mitigation techniques, such as massive gas injection (MGI) or magnetic field 
adjustments, preventing damage to superconducting magnets and divertor plates. Cross-Device Learning: Efforts at 
PPPL focused on transfer learning, demonstrating that models trained on JET or DIII-D could be adapted to other devices 
with limited retraining, suggesting AI can accelerate learning across experimental facilities. Real-Time Integration: 
Some pipelines achieved near-real-time performance, processing high-frequency diagnostic streams and issuing alerts 
within the millisecond timescale required for practical intervention. 
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6.3.3. Scientific and Industrial Impact 

Improved Operational Safety: AI-based disruption prediction has significantly reduced the likelihood of unplanned 
reactor downtime and expensive component replacement. Increased Pulse Duration: With early warning and 
mitigation, experimental campaigns can sustain longer plasma pulses, critical for moving toward steady-state operation. 
Data-Driven Insights: Explainable AI techniques, such as saliency maps or feature importance rankings, have provided 
new insights into plasma dynamics, helping physicists identify previously overlooked precursor signals. 

6.3.4. Limitations and Challenges 

Data Requirements: Effective ML models require large, high-quality datasets. For emerging reactors like ITER, such data 
is limited, necessitating extensive simulations or cross-device transfer learning. Device-Specific Models: ML models 
trained on one tokamak often do not generalize perfectly to others due to differences in geometry, coils, and operational 
regimes. Real-Time Reliability: While predictions can be fast, integrating them into certified control loops for large-scale 
reactors requires rigorous testing and verification. Interpretability and Trust: Operators must understand and trust AI 
outputs for high-stakes interventions; opaque “black-box” models pose challenges for regulatory approval. 

6.3.5. Future Directions 

Physics-Informed Disruption Prediction: Further integration of physics constraints into ML models will improve 
accuracy and generalization across machines. Integration with Digital Twins: Coupling AI predictors with reactor digital 
twins can provide simulation-based scenario testing for emergency protocols. Multi-Device Training Frameworks: 
Shared, standardized datasets across labs could accelerate ML model development and allow better benchmarking. 
Enhanced Mitigation Strategies: Combining predictive AI with automated mitigation systems (like robotic injection or 
fast magnetic feedback) can reduce human intervention and enhance safety. 

6.3.6. Conclusion 

The JET and PPPL AI initiatives demonstrate the transformative potential of predictive machine learning in fusion. By 
enabling high-accuracy, real-time disruption prediction, AI enhances reactor safety, extends operational windows, and 
accelerates the pathway to sustainable, commercial fusion energy. When combined with RL-based control (DeepMind–
TCV), these predictive systems lay the foundation for fully autonomous, AI-assisted fusion reactors capable of safe, 
efficient, and continuous operation. 

6.4. Private-sector advances - Commonwealth Fusion Systems (CFS), TAE Technologies, Helion, and others 
(Mohamed et al., 2024) 

Private fusion companies have emerged as major players in advancing nuclear fusion technology, often moving faster 
than traditional government-funded projects due to smaller bureaucracies, significant venture capital funding, and an 
emphasis on commercialization. Unlike academic and national-lab experiments, these firms face dual challenges: 
achieving net energy gain (Q > 1) and developing cost-effective, scalable reactors. AI has become a strategic tool to 
accelerate reactor design, optimize operational parameters, and reduce R&D costs. 

Key players include 

Commonwealth Fusion Systems (CFS): Developer of SPARC and planned ARC reactors, leveraging high-temperature 
superconducting magnets. TAE Technologies: Focused on field-reversed configuration (FRC) devices and advanced 
plasma control. Helion Energy: Specializes in pulsed fusion devices with direct electricity generation via plasma 
compression. 

6.4.1. Methodology and AI Implementation 

Design Optimization 

CFS: Uses ML and AI-driven simulations to optimize coil geometry, plasma configurations, and operational sequences. 
AI surrogate models replace costly finite-element and plasma simulations, allowing rapid iteration and design 
convergence. For example, AI reduced the estimated coil design cycle from several months to a few weeks. Helion: 
Employs AI algorithms to predict optimal pulse compression sequences and timing, enhancing energy extraction 
efficiency. TAE Technologies: Integrates AI with plasma diagnostics to refine confinement strategies, adjust heating 
protocols, and improve temperature uniformity. 
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Operational Planning and Diagnostics 

AI-Enabled Predictive Maintenance: All three companies use AI to monitor cryogenic systems, superconducting 
magnets, and high-power electrical systems. Predictive algorithms forecast wear and failure, allowing condition-based 
maintenance and reducing downtime. Real-Time Control and Simulation: AI models simulate plasma response in real-
time, enabling operators to safely test new configurations without risking hardware damage. This is especially valuable 
in pulsed devices like Helion’s, where mis-timing can cause large energy losses. 

Accelerated R&D 

AI models trained on historical experimental data accelerate discovery of optimal operational regimes. This reduces 
reliance on expensive, high-risk physical tests, effectively cutting R&D costs by up to 30–40%, according to company 
reports and industry analyses. Surrogate modeling enables exploration of a wider design space, allowing private 
companies to explore unconventional reactor concepts that may not be feasible in government labs due to budget or 
safety constraints. 

6.4.2. Key Achievements and Results 

CFS SPARC: Achieved milestone of 20 T-class high-temperature superconducting magnets, with AI optimizing magnet 
cooling and field shaping. Surrogate AI models accelerated plasma scenario testing, directly contributing to predicted 
net energy gain (Q > 1) in upcoming experiments. TAE Technologies: Demonstrated improved plasma temperature and 
confinement times via AI-assisted diagnostics and control, reducing experimental iteration time. Helion Energy: 
Achieved multiple pulsed operation milestones, using AI to optimize compression timing and direct electricity capture 
efficiency. AI-driven design cycles reduced by 50–70% compared to traditional simulation-heavy workflows. Predictive 
maintenance forecasts extended component life by 10–20%, reducing operational costs. 

Pulse-to-pulse optimization improved energy capture efficiency by 5–10%, accelerating path toward commercially 
viable operation. Industrial Impact - Acceleration Toward Commercialization: By integrating AI into design, operation, 
and diagnostics, private firms are reducing the time between lab-scale experiments and commercial-ready reactors. 
Cost Reduction: AI reduces dependence on costly high-power experiments, optimizing component usage, and mitigating 
trial-and-error expenses. Innovation in Reactor Architectures: AI enables exploration of unconventional designs, such 
as compact high-field tokamaks (CFS), field-reversed configurations (TAE), and pulsed direct-energy fusion systems 
(Helion). Investor Confidence: Demonstrated AI integration and efficient operational strategies increase the confidence 
of private investors and venture capital in fusion startups, fueling faster development cycles. 

6.4.3. Limitations and Challenges 

Data Opacity: Private companies often treat experimental datasets and AI models as proprietary, limiting peer-reviewed 
validation and benchmarking. Safety Certification: AI-driven design and operational decisions in commercial settings 
require certification frameworks that are still under development. Scalability Uncertainty: While AI aids prototype 
performance, scaling to GW-scale commercial reactors still presents significant engineering and regulatory hurdles. 

6.4.4. Future Directions 

Digital Twin Integration: Developing full digital twins for private fusion reactors, combining AI-driven predictive models 
for plasma, structural components, and fuel cycles. Autonomous Operations: Moving toward AI-directed operation with 
minimal human intervention, particularly in pulsed or high-frequency reactors. Cross-Platform AI: Leveraging data from 
multiple private and public fusion devices to improve AI models’ robustness and generalization. Regulatory Compliance 
and Safety Assurance: Establishing frameworks for safe deployment of AI decisions in commercial fusion power plants. 

6.4.5. Conclusion 

Private fusion companies demonstrate the strategic power of AI in accelerating commercialization, optimizing design, 
enhancing diagnostics, and improving operational efficiency. By integrating AI into every aspect of reactor development, 
these companies are shortening timelines, lowering costs, and de-risking investments, which collectively advance the 
global goal of sustainable, commercially viable fusion energy.(Paltsev et al., 2022) 
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6.5. Cross-cutting outcomes, lessons and open challenges (2020–2025) 

Taken together, these case studies show a few recurring themes: 

AI is moving from offline analysis to online control. Demonstrations like DeepMind/TCV and ML integration at national 
labs have shown real-time, hardware-in-the-loop operation is feasible. Surrogate and hybrid models unlock speedups. 
Surrogate neural models and physics-informed architectures provide orders-of-magnitude speedups over brute-force 
solvers, enabling fast design sweeps and near-real-time forecasting (critical for ITER/DEMO). Data and transferability 
remain bottlenecks - ML models often require large, labeled datasets and careful transfer learning to generalize across 
devices; provenance, curation, and public benchmark datasets are still limited. Nuclear Regulatory Commission 

- Safety, interpretability and certification are pressing needs. As AI moves into safety-critical loops, explainability, 
uncertainty quantification, and certified controllers are required before deployment on large facilities. Outlook (near 
term): continued growth in hybrid AI/physics models, more real-time demonstrations on mid-scale machines (2025–
2030), and incremental integration with ITER and private pilot plants. In the medium term, as datasets grow and 
certification frameworks mature, AI is likely to be baked into control and operational strategies for commercial fusion. 
While AI has demonstrated transformative potential in nuclear fusion research, control, diagnostics, and 
commercialization, several technical, operational, and regulatory challenges remain. These limitations must be 
addressed to fully leverage AI in achieving sustainable and commercially viable fusion energy. 

7. Challenges and Limitations of AI in Fusion 

While AI has demonstrated transformative potential in nuclear fusion research, control, diagnostics, and 
commercialization, several technical, operational, and regulatory challenges remain. These limitations must be 
addressed to fully leverage AI in achieving sustainable and commercially viable fusion energy. 

7.1. Data Availability and Quality 

AI models require large, high-fidelity datasets for training and validation. However; Experimental Constraints: Devices 
like ITER and DEMO have limited operational hours due to high costs and safety considerations. For example, each ITER 
plasma pulse may cost millions of euros, restricting the volume of experimental data. Device-Specificity: Data from one 
tokamak may not generalize to others due to differences in geometry, coil configuration, and plasma regimes. 
DeepMind–TCV demonstrated successful RL control on a single machine, but scaling to ITER or DEMO requires 
extensive transfer learning. Noise and Sensor Limitations: Plasma diagnostics are prone to noise, calibration errors, and 
missing signals, which can degrade model performance in disruption prediction or real-time control (PPPL/JET case 
studies). Implication: AI development depends on high-quality, standardized, and cross-device datasets, which are 
currently limited in both public and private fusion sectors. 

7.2. Model Interpretability and Trust 

AI systems, particularly deep learning and reinforcement learning models, are often black boxes. This poses challenges 
for safety-critical fusion operations: Operators and regulators must understand the rationale behind AI decisions, 
especially in high-stakes scenarios like disruption mitigation or real-time plasma shaping. Lack of interpretability can 
delay adoption in commercial reactors, as seen in private-sector companies, which must demonstrate that AI-driven 
design and operational decisions are safe and reproducible. Physics-informed neural networks (PINNs) and hybrid AI-
physics models provide partial solutions by embedding first-principles knowledge into models, improving 
interpretability and trustworthiness. 

7.3. Real-Time Deployment and Reliability 

Fusion reactors operate at millisecond or sub-millisecond timescales, demanding ultra-fast and reliable AI 
computations: DeepMind–TCV RL demonstrated real-time coil control, but larger devices like ITER will have more 
complex coil systems and faster plasma dynamics, increasing computational demands. Safety-critical loops require 
redundancy, fail-safes, and uncertainty quantification, which are still underdeveloped for many AI approaches. 
Integrating AI with digital twins and control architectures presents challenges in synchronization, latency, and data 
bandwidth. 

7.4. Safety, Regulation, and Certification 

Fusion reactors, though inherently safer than fission reactors, still face operational risks: high-energy plasma 
disruptions, superconducting magnet quench, tritium handling, and neutron-induced material damage. AI applications 
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raise additional regulatory concerns: How can AI-driven design decisions, predictive maintenance alerts, or 
autonomous controllers be certified for safety compliance? Private-sector approaches (CFS, TAE, Helion) rely on 
proprietary AI models, complicating regulatory oversight and peer validation. Establishing standards for AI 
explainability, validation, and auditability is crucial for future large-scale commercial deployment. 

7.5. Transferability and Scalability 

AI solutions that succeed on experimental or pilot-scale devices may not directly scale to commercial GW-scale reactors 
due to increased system complexity, longer pulse durations, and higher energy densities. Hybrid models, transfer 
learning, and digital twins can help, but scaling remains an open research area. Predictive AI for tritium breeding, 
materials behavior, and plasma instabilities needs extensive validation under conditions expected in DEMO and 
commercial reactors. 

7.6. Computational Costs and Resource Limitations 

Training large ML and RL models can be computationally intensive, often requiring thousands of GPU-hours. For 
example, DeepMind–TCV RL relied on simulation environments before hardware deployment. Scaling this approach for 
ITER or private 100 MW+ devices may require significant HPC resources, which are costly and limited. Efficient 
surrogate modeling and physics-informed AI are promising solutions but require further optimization. 

7.7. Ethical, Operational, and Workforce Considerations 

Dependence on AI increases the need for skilled personnel in both fusion physics and AI/ML. Operators must maintain 
a clear understanding of AI limitations to avoid over-reliance or misinterpretation of model outputs. Ethical concerns 
include data privacy, proprietary control systems, and accountability in case of AI-related failures. Addressing these 
challenges will require multi-disciplinary collaboration between fusion physicists, AI researchers, regulators, and 
private industry to establish standards, best practices, and robust, trustworthy AI systems capable of safely operating 
next-generation fusion reactors. 

8. Future Directions and Recommendations 

The integration of Artificial Intelligence (AI) in nuclear fusion research has demonstrated significant potential in plasma 
control, predictive diagnostics, reactor design, and operational optimization. Moving forward, several emerging 
technologies, research priorities, and strategic recommendations can accelerate progress toward sustainable, 
commercially viable fusion energy. 

8.1. Emerging Technologies in AI for Fusion 

8.1.1. Hybrid AI-Physics Models 

Combining physics-informed neural networks (PINNs) with data-driven models enhances predictive accuracy, 
interpretability, and generalization. These models can be used for plasma turbulence prediction, magnetic confinement 
optimization, and disruption forecasting, reducing reliance on costly full-scale simulations. 

8.1.2. Digital Twins of Fusion Reactors 

Digital twins allow virtual replicas of reactors for real-time monitoring, predictive maintenance, and scenario testing. 
Coupled with AI, digital twins can simulate thousands of operational scenarios without risking physical components, 
enabling proactive interventions and faster optimization cycles. 

8.1.3. Reinforcement Learning (RL) and Autonomous Control 

RL can evolve from single-device experimental demonstrations (e.g., DeepMind–TCV) to multi-device, safety-
constrained autonomous control systems. Future RL approaches will benefit from uncertainty quantification, robust 
reward shaping, and safety-aware constraints to ensure reliability in commercial reactors. 

8.1.4. High-Fidelity AI for Material Discovery 

AI can accelerate the development of radiation-resistant materials, tritium-breeding blankets, and superconducting 
magnets. Generative models and active learning can identify promising material compositions, reducing experimental 
cycles and costs. 
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8.2. Strategic Recommendations for Research 

8.2.1. Cross-Device and Multi-Scale Data Sharing 

Establish standardized, curated datasets from multiple tokamaks, FRCs, and pilot reactors to improve model 
generalization and benchmarking. Encourage collaboration between national labs, universities, and private companies 
to share non-sensitive experimental data. 

8.2.2. Integration of AI Across the Reactor Lifecycle 

Develop frameworks where AI supports design, construction, operation, maintenance, and decommissioning.Predictive 
maintenance, fuel cycle optimization, and energy efficiency can be enhanced through integrated AI pipelines. 

8.2.3. Safety-Constrained AI and Regulatory Compliance 

Define certification standards for AI systems in fusion reactors, ensuring safety, explainability, and accountability. 
Implement AI methods that are transparent, interpretable, and verifiable, enabling regulatory approval for commercial 
deployment. 

8.2.4. Scaling AI to Commercial Reactors 

Transition from pilot-scale demonstrations to large-scale reactors like ITER, DEMO, and next-generation commercial 
designs. Develop transfer learning and adaptive AI systems that account for scaling effects, complex geometry, and 
higher energy densities. 

8.2.5. Enhanced Computational Efficiency 

Develop efficient surrogate models, parallelized AI algorithms, and HPC/quantum computing integration to manage 
computational demands. Reduce reliance on time-intensive simulations, lowering operational costs and shortening 
development timelines. 

8.3. Opportunities for Sustainability and Commercialization 

Energy Efficiency: AI reduces wasted energy in experimental campaigns, accelerates plasma optimization, and shortens 
fusion development timelines. Economic Feasibility: Optimized design, predictive maintenance, and automated control 
reduce R&D and operational costs, improving the business case for fusion. Safety and Reliability: AI-driven disruption 
prediction, anomaly detection, and digital twins enhance reactor resilience, contributing to long-term sustainability and 
public trust. Global Collaboration: AI can harmonize approaches across public and private sectors, accelerating the 
adoption of fusion energy worldwide. 

8.3.1. Short-Term (2025–2028) 

In the next three to five years, the focus will be on expanding the deployment of AI technologies in pilot reactors and 
mid-scale tokamaks. During this period, AI systems are expected to transition from experimental demonstrations to 
more routine integration in operational campaigns. This includes real-time plasma control, predictive maintenance, and 
diagnostic data analysis, building on the successes demonstrated in projects such as DeepMind–TCV and AI-assisted 
JET/PPPL disruption prediction. By implementing AI in mid-scale devices, researchers can gather valuable operational 
data, refine algorithms under realistic conditions, and validate predictive and control models before scaling to larger 
reactors like ITER or DEMO. A key priority in this timeframe will be the development and validation of hybrid AI-physics 
models. Unlike purely data-driven approaches, these hybrid models integrate first-principles physics with machine 
learning, improving both the accuracy and interpretability of predictions. Such models will enable more reliable plasma 
simulations, optimization of magnetic confinement, and accurate forecasting of instabilities, while requiring fewer 
experimental runs. These hybrid approaches will also serve as a bridge between simulation-based AI training and real-
world reactor deployment, mitigating risks associated with purely black-box AI systems. Another critical focus area is 
the establishment of initial standards for AI safety, interpretability, and data sharing. As AI assumes a more prominent 
role in reactor operation, stakeholders including national laboratories, private fusion companies, and regulatory bodies 
will need clear guidelines to ensure that AI decisions are reliable, transparent, and auditable. Standardized frameworks 
for data collection, preprocessing, and sharing will also be essential to enable cross-device learning and the 
development of robust AI models that can generalize across different reactor designs. Early adoption of these standards 
will not only improve safety and trust but also accelerate collaborative research and innovation across the global fusion 
community. By focusing on these short-term objectives, expanding AI deployment, refining hybrid models, and 
implementing standards the fusion research community can build a strong foundation for more advanced AI integration 
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in the medium and long term. This phase will be crucial for translating experimental successes into operational 
improvements and preparing for the eventual scale-up to commercial, sustainable fusion power plants. 

8.3.2. Medium-Term (2028–2032) 

Between 2028 and 2032, AI integration in nuclear fusion is expected to extend across the entire reactor lifecycle, from 
design and construction to operation, maintenance, and eventual decommissioning. Predictive maintenance will 
become a standard component of reactor operations, with AI algorithms continuously monitoring the condition of 
critical systems such as superconducting magnets, cryogenic units, and plasma-facing components. By analyzing sensor 
data in real time, AI will anticipate potential failures, schedule maintenance proactively, and reduce costly unplanned 
downtime. In parallel, autonomous operation systems will emerge, capable of adjusting plasma configurations, heating 
profiles, and fuel injection parameters with minimal human intervention, thereby improving operational efficiency and 
reliability. A central goal during this period is the demonstration of AI-assisted digital twins for large-scale experiments, 
including ITER and other next-generation reactors. Digital twins virtual replicas of physical reactors will enable 
researchers to simulate operational scenarios, test control strategies, and evaluate design modifications in a risk-free 
virtual environment. By coupling AI algorithms with these digital twins, operators can optimize performance, reduce 
experimental iterations, and accelerate learning from each plasma pulse. This approach will also facilitate cross-device 
knowledge transfer, allowing insights gained from one reactor to inform operations at others. Another critical focus will 
be on scaling reinforcement learning (RL) and machine learning (ML) models to handle multi-device, high-energy 
operations. Unlike single-device pilot experiments, large-scale reactors involve more complex coil geometries, higher 
plasma energies, and increased system interdependencies. Scalable AI models will need to manage these complexities, 
ensuring stable plasma confinement, predicting instabilities, and supporting coordinated multi-device experimentation. 
By addressing these challenges, the fusion community can move closer to demonstrating sustained, high-performance 
plasma operation and laying the groundwork for commercially viable fusion energy. 

8.3.3. Long-Term (2032+) 

Beyond 2032, the vision for AI in nuclear fusion shifts toward fully autonomous, commercial-scale reactors. At this stage, 
AI systems will not only manage plasma control and disruption mitigation but will oversee the complete operation of 
reactors, including startup, shutdown, and real-time adjustment of power output. Reinforcement learning, digital twins, 
and hybrid AI-physics models will operate seamlessly together, enabling reactors to achieve sustained, stable fusion 
reactions with minimal human intervention. This autonomy will significantly reduce operational risk, improve 
efficiency, and allow continuous energy production at large scales. In parallel, AI will play a pivotal role in guiding 
material discovery, fuel cycle management, and operational optimization at gigawatt (Sankar et al.) scales. Machine 
learning and generative AI models will accelerate the identification of advanced materials capable of withstanding 
extreme neutron fluxes, high temperatures, and tritium exposure. Similarly, AI-driven simulations will optimize tritium 
breeding, fuel injection, and plasma confinement strategies, maximizing energy yield and reactor longevity. By 
leveraging AI across these critical areas, fusion reactors will become more cost-effective, reliable, and environmentally 
sustainable. Finally, the long-term goal is the widespread global adoption of AI-enhanced fusion energy systems, 
forming a cornerstone of the future sustainable energy landscape. Integrated AI systems will facilitate the deployment 
of fusion power in diverse regions, support grid integration with variable renewable sources, and ensure operational 
safety and resilience. By combining AI-driven optimization with advanced fusion technology, nations can achieve 
carbon-neutral, reliable energy at scale, accelerating the global energy transition and contributing to energy security, 
climate goals, and sustainable development worldwide. 

9. Conclusion 

Artificial Intelligence (AI) is revolutionizing nuclear fusion research by accelerating design, optimizing operations, and 
enhancing safety across experimental, predictive, and commercial domains, thereby advancing the goal of sustainable 
fusion energy. Key achievements include real-time plasma control and disruption prediction using reinforcement 
learning and machine learning (DeepMind–TCV, JET/PPPL), rapid diagnostics and materials innovation through image 
recognition, sensor fusion, and generative models for radiation-resistant components and tritium breeding blankets, 
and commercial applications where private companies (CFS, TAE Technologies, Helion Energy) leverage AI to 
streamline design, reduce costs, and improve operational efficiency. AI also supports sustainability and safety by 
minimizing energy waste and enhancing reactor reliability. Despite these advances, challenges remain in data 
availability, model interpretability, real-time deployment, regulatory compliance, and scalability, requiring multi-
disciplinary collaboration. Looking ahead, integrating AI into digital twins, autonomous reactor operations, hybrid AI-
physics modeling, and predictive maintenance offers the potential to shorten development timelines, lower costs, and 
establish nuclear fusion as a viable, globally sustainable energy source. 
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