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Abstract 

Lung cancer means the birth of malignant cell inside the body which is out of control. A rising number of death rates in 
both genders has prompted researchers in the medical field to figure out ways on how it can be detected at an early 
stage for the purpose of mitigation, which also increases the patient’s survival. Although there have been number of 
researches done using machine learning specially ensemble models, there still remains a gap on the research which is 
to have a comparative analysis done between the ensemble models such as Hybrid Majority Voting and Ensemble 
Stacking on tabular data. The objective of this study is to apply machine learning specially Ensemble models and 
compare their results on different datasets to identify the general pattern of the algorithms in this field and figure out if 
any particular method of ensemble performs better than the other in predicting lung cancer. Two Datasets were 
collected from public online sources and analysed to make sure it follows the distribution properly and there are no 
outliers. A pool of 9 Machine Learning algorithms with 50 hyper-parameter settings were studied to pick the best 3 
Machine Learning models. After that a number of ensemble techniques were applied such as Majority Hard Voting, 
Weighted Hard Voting, Soft Voting, and Ensemble Stacking and their performance were analysed. Different Evaluation 
metrics such as Accuracy, F1-Score, ROC-AUC Score, Average Precision and Confusion Matrices were applied which 
highlighted the superior performance of the Ensemble Models. Particularly, Weighted Ensemble Learning Model for 
Dataset 1 achieved 89.04% Accuracy and F1-Score and Ensemble Stacking for Dataset 2 achieved 87.95% Accuracy and 
F1-Score, which indicates the superior effectiveness and generalizability of the ensemble models. 
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1. Introduction

Among the cancers, Lung Cancer is considered one the deadliest types of cancer in the world surpassing even Colon, 
Uterus and Skin Cancer as well [1], contributing significantly to the annual number of cancer-related deaths. This 
respiratory disease has increased enormously over the last few decades due to the polluted atmosphere. United Nations 
in 2015 has declared 17 Sustainable Development goals (SDGs) and among them Target 3.9 is focuses on reducing the 
number of death due to hazardous chemical pollution in air, water and soil [2]. The prognosis of cancer varies widely 
depending on the type, stage and overall health of the patient [3]. Some initial symptoms of Lung Cancer include 
shortness of breath and back pain. The back pain is caused when pressure is exerted on the tumour itself. The tumour 
can also cause issues by spreading to different parts of the body [4]. Additional symptoms including persistent coughs, 
spit out blood when coughing, chest pain when breathing or laughing, weakness, fatigue, reduced appetite and weight 
and also recurring respiratory infections like pneumonia and bronchitis [5]. 
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Traditional diagnostic methods such as imaging and biopsies, often detect this disease at a pretty later stage which limits 
treatment options and reduces survival rates. Recent studies [6], [7], [8] in deep learning have enabled the early 
detection and automated analysis of clinical data. Particularly using tabular data such as Demographics, Clinical 
Parameters, Lifestyle & Environment, Symptoms & Comorbidities, and Treatment Data [9]. Usage of these kind of data 
has enabled the deployment of variety of machine learning for predictive modelling of lung cancer diagnosis. Although 
machine learning has shown promising performance in cancer prediction, balancing high predictive performance with 
interpretability remains a significant challenge. Many advanced machine learning models offer limited transparency, 
often being criticized as "black boxes," which hampers clinical acceptance where understanding the rationale behind 
predictions is vital for trust and informed decision-making [10], [11].    

To improve predictive accuracy in lung cancer detection, ensemble learning strategies have emerged as effective 
solutions. These methods combine multiple machine learning models to leverage their collective strengths, employing 
approaches such as Majority Hard Voting, Majority Soft Voting, and Ensemble Stacking [12]. By integrating the outputs 
of diverse models, ensemble learning aims to improve overall prediction robustness and accuracy [13], [14]. Among the 
ensemble techniques Majority Hard Voting, Majority Soft Voting and Ensemble Stacking are particularly noteworthy 
[15]. Majority Hard Voting takes predictions from all of the classifiers and selects the class with the majority vote [16]. 
Majority Soft Voting sums all the classifiers prediction probabilities to determine the final prediction. Ensemble Stacking 
involves training a meta-classifier to combine to predictions of the base classifiers leveraging the strength of each to 
improve performance.  

A thorough assessment of these two ensemble approaches for lung cancer prediction from tabular data is absent. This 
study aims to address the following critical research questions: (i) Which individual machine learning model provides 
better performance for the early prediction of lung cancer from tabular data of affected individuals? (ii) Which majority 
voting classifier provides better performance for the early prediction of lung cancer from tabular data of affected 
individuals? (iii) What are the techniques that can be applied to improve the performance of the model? This study 
investigates the implementation and comparative evaluation of Hybrid Majority Voting and Ensemble Stacking. To 
achieve this, two lung cancer datasets were collected from Kaggle, a detailed data preprocessing such as handling 
missing values, data scaling, data encoding, and handling outliers were done. To the best of our knowledge, these two 
datasets are completely new and no prior study has systematically examined the performance of Hybrid Majority 
Voting—which includes Majority Hard Voting, Majority Soft Voting, and Weighted Hard Voting—alongside Ensemble 
Stacking within a unified experimental framework for predicting lung cancer in early stage. The study employed nine 
distinct machine learning algorithms with 50 different hyperparameter configurations spanning nine fundamentally 
different algorithms to identify the most effective base classifiers. This extensive exploration serves two primary 
purposes: Firstly, it systematically identifies strong standalone classifiers by providing a wide range of complexity 
performance trade-offs, secondly by casting a broad across decision trees, gradient based methods, instance-based 
learners and neural architecture, we minimize the risk of overlooking a potentially superior model which is crucial of 
ensemble models’ success as it maximizes the heterogeneity among base classifiers. Existing literature has not explored 
such an extensive hyperparameter tuning process, nor have these optimized models been consistently integrated into 
ensemble architectures for lung cancer prediction. This paper makes the following three key contributions:  

• A detailed comparative analysis of advanced ensemble techniques tailored to lung cancer prediction from 
structured tabular data. 

• A rigorous evaluation of model selection and optimization procedures prior to ensemble construction. 
• This research aims to highlight the comparative strengths and limitations of individual and ensemble models, 

while assessing their practical effectiveness in enhancing predictive accuracy and reliability in lung cancer 
diagnostics.   

2. Related Works 

Recently biomedical research has improved therapeutic outcomes. Novel approaches in precision wound healing 
leverage regenerative therapies integrated with smart technologies to enhance patient-specific recovery strategies [17]. 
Similarly, hybrid temozolomide nanoconjugates demonstrate how polymer–drug designs can improve drug stability 
and efficacy in glioblastoma therapy [18], offering a promising route for overcoming conventional treatment limitations. 
Complementing these developments, the concept of molecular erasers introduces protein degradation as a means to 
reprogram cancer immunity, opening new avenues for immuno-oncology [19]. In precision farming, AI enhances 
efficiency and productivity through automatic navigation and self-driving technologies in agricultural machinery [20]. 
In computer vision, models with attention mechanisms have improved road segmentation for autonomous driving [21]. 
In healthcare, hybrid CNN-SVM models on enhanced MRI data show promise in accurately classifying Alzheimer’s 
disease [22]. Additionally, multimodal deep learning frameworks such as MultiSenseNet help predict machine failure 
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risks in industrial settings [23]. In plant pathology, deep stacking models combining CNNs with gradient boosting have 
improved detection of leaf diseases [24]. Overall, these advancements illustrate the growing effectiveness of AI in 
addressing complex real-world challenges across key sectors. 

Dama et al. [25] proposed an explainable machine learning framework aimed at predicting lung cancer in relation to 
the impact of pesticide exposure. Using three datasets – the Thai Dataset (680 instances), Lung cancer Prediction 
Dataset (1000 Samples), and a Survey Lung cancer Dataset (309 Patients) – the study focused on numerical attributes 
such as pesticide exposure, duration, age, occupation, symptoms like coughing blood, smoking history. Various machine 
learning models such as XGBoost, Logistic Regression, Decision Tree, Gaussian Naïve Bayes, Multi-Layer Perceptron, 
Random Fores, Support Vector Machine (SVM) was used that delivered superior performance. Two Stage Feature 
Selection methods such as Extra Tree Classifier and PCA for Dimensionality Reduction were applied. XGBoost with 
SMOTE combined with ENN (Edited Nearest Neighbour) with PCA Preprocessing performed the best results, achieving 
99% accuracy in all of the datasets. Despite its high performance the study acknowledged its limitations such as 
overfitting risks due to high-dimensional data. Future directions suggested validating models on larger multi-omics data 
and developing real-time risk monitoring tools, investigating deep learning approaches for further accuracy 
enhancement. 

Asuntha et al. [26] conducted an experiment to study the comparative performance of various machine learning 
algorithms for lung cancer prediction. The study used public datasets from Kaggle Comprising of 310 samples capturing 
data such as patient’s habits (e.g. smoking, alcohol consumption) and symptoms (e.g. yellow fingers, chest pain, anxiety). 
The features also included demographic details alongside clinical symptoms. Multiple machine learning models such as 
Logistic Regression, Gaussian Naïve Bayes, Bernoulli Naïve Bayes, SVM, Random Forest, K-Nearest Neighbours (KNN), 
Extreme Gradient Boosting (XGB), Extra Trees, AdaBoost and ensemble methods combining XGB and AdaBoost, as well 
as a Multi-Layer Perceptron (MLP). The data preprocessing steps involved removing duplicate entries, splitting the data 
into 80:20 ratio for training and testing and performing 10-fold cross validation. KNN Achieved the highest accuracy 
achieving an accuracy of 92.86% followed closely by Bernoulli Naïve Bayes and Gaussian Naïve Bayes. Persons 
Correlation heat maps were also used for feature correlation analysis. Some limitations of the study were the usage of 
a very small dataset, and using only one ensemble technique and not exploring the other techniques such as bagging, 
stacking etc. 

Al-Huseiny et al. [27] developed a machine learning framework using XGBoost for the classification of Benign Malignant 
pulmonary nodules based on low-dose spiral computerized tomography (LDCT) and clinical data from Screening. The 
study utilized two datasets, the primary dataset was collected from physical examination data from the Institute of 
Health management of the General Hospital of the Chinese People’s Liberation Army (PLA) which container 1335,503 
participants and an external validation dataset was collected from the Henan Provincial People’s Medical Health 
Examination Centre and Sichuan Provincial People’s Hospital which contained 5.146 participants. Both demographic 
data and Clinical Data were collected for the experiment. The top 15 clinical features were selected via XGBoost feature 
importance ranking. Processing involved encoding the categorical Data’s, Splitting the data in 80:20 ration for training 
and testing, hyperparameter tuning through grid search and automatic handling of missing data using XGBoost. The 
model achieved an AUC of 0.76 and an accuracy of 0.75 in internal validation, and an improved AUC of 0.87 an accuracy 
of 0.80 in external validation. Although achieving good results, some limitations of the study included using limited 
number of data samples which limited generalizability and also, usage of only one type of Ensemble technique (The 
other ensemble technique could potentially improve performance of the models).   

Reddy et al.  [28] conducted a study based on nomogram-based and machine learning-based methods for survival 
prediction of non-small cell lung cancer (NSCLC) patients. The authors used a dataset that contained 6,586 patients from 
the Cancer Hospital Affiliated to Chongqing University (CUCH), China. The dataset included clinical, pathological, 
demographic, and treatment-related features such as age, sex, weight, smoking history, Tumour Staging, and treatment 
modalities. Several Machine Learning Algorithm was implemented such as Logistic Regression, Random Forest, 
XGBoost, Decision Tree, and Light Gradient Boosting Machine. Feature selection was done using pairwise Spearman’s 
rank correlation and the Boruta Method. Among the models Random Forest performed the best across multiple points 
suggesting it’s reliability for long-term survival prediction. Limitations of the study included lack of external validation 
and potential improvement to model’s using different ensemble techniques. Rule-based knowledge could also be 
integrated to enhance the predictions of the machine learning models. 

Manapov et al. [29] developed machine learning models using publicly available Kaggle dataset containing 309 patients 
for Lung Cancer Prediction. The dataset contained variety of demographic and clinical feature such as coughing, 
shortness of breath, chest pain and other health indicators such as chronic diseases and allergy history. A wide range of 
machine learning models were explored such as Naïve Bayes (NB), Bayesian Network, Stochastic Gradient Descent, 
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Support Vector Machine (SVM), Logistic Regression (LR), Random Forest (RF), Random Tree (RT), Reduced Error 
Pruning Tree (RepTree), Rotation Forest (RotF), and AdaBoostM1. Feature selections were done using Gain Ratio and 
Random Forest rankings. SMOTE was also applied for class balancing in the data. Rotation Forest achieved the best 
accuracy of 97.1% with an AUC of 99.3%. Some limitations of the study noted by the authors were the non-
generalizability of the models, and non-clinical features of the dataset. Future work also included using deep learning 
techniques such as LSTM and CNN. 

Debnath et al. [30] proposed a novel multivariate boosting classification method name Multivariate Ruzicka Regressed 
eXtreme Gradient Boosting Data Classification (MRRXGBDC). The authors used four datasets: The Lung cancer dataset 
(1000 instances), the Thoracic Surgery dataset (470 instances), the Air Quality Lung cancer dataset (2602 countries), 
and the Lung 16 lung cancer dataset (551, 065 instances). All of the datasets were publicly available. The dataset 
contained features such as ID, age, gender, air pollution exposure, alcohol use, dust allergy, and occupational hazards. 
One of the unique features of the proposed model was its ability to handle missing values and handle imbalanced data. 
Limitations identified for this study includes only exploring only one form of Ensemble technique, reducing 
computational complexity and improving generalizability of the disease prediction system. 

Ogundana et al. [31] conducted the machine learning based study on the investigation of gender-specific prognosis in 
lung cancer patients for the Surveillance, Epidemiology and SEER database comprising of 28,458 cases. A range of 
machine learning models such as Naïve Bayes, Decision Trees, Random Forest, Extreme Gradient Boosting, K-Nearest 
Neighbour, Logistic Regression, and Support Vector Machine with Random Forest achieving the best overall 
performance. For one-year survival XGB model achieved 90.75% accuracy, for three-year survival prediction LR 
achieved the best accuracy of 75.65% accuracy, and for Five-year Survival prediction LR again achieved the best 
accuracy getting about 71.79% accuracy. Major limitations of the study was the restricted scope of clinical features in 
the SEER database, major features were absent such as smoking and drinking history. Also, the comparison the other 
ensemble methods such as hard bagging, stacking and soft voting were not explored in this study. 

Authors [32] explored machine learning approaches for predicting early death among lung cancer patients with bone 
metastases. Using the SEER database, the study utilized demographic and clinical characteristics of the patients to be 
used as predictive features. Logistic Regression, Extreme Gradient Boosting, Random Forest, Neural Network, Gradient 
Boosting Machine were applied for comparative studies. Gradient Boosting Machine performed the best among the 
other machine learning models. To interpret the results. Local Interpretable Model-agnostic Explanations (LIME) and 
Shapley Additive exPlanations (SHAP) were employed. Some of the limitations of this study were lack of certain clinical 
predictors such as the quantity and specific location of the bone metastases, and the absence of external validation sets. 

Shah et al. [33] investigated deep learning-based approaches for predicting lung cancer survival periods using the SEER 
database. The dataset included both categorical and quantitative variables such age, number of tumours, chemotherapy 
status, and AJCC TNM Staging factors. Several machine learning and deep learning models were applied, such as Artificial 
Neural, Convolutional Neural Network, Recurrent Neural Network, Random Forest, Support Vector Machine, Naïve 
Byes, Gradient Boosting Machines and Linear Regression for comparative analysis. A custom ensemble was also 
developed, which was based on stacking. Feature selection was done using LASSO regression. ANN performed the best 
for classification task with an accuracy of 71.18% and CNN was the most effective for regressions tasks achieving 
13.50% RMSE and 50.66% R2. Some limitations of the study were the data included imbalanced dataset and higher error 
rates for predicting longer survival periods. 

3. Methodology 

3.1. Experimental Setup 

The Experimental setup for this study was conducted in a Local Machine which used Python 3.11.4 as a runtime 
environment. The Local Machine used Ryzen 1600 with 6 Core and 12 Threads CPU, 16GB of Ram and an RTX 3060 
12GB of GPU which was used for efficient training of the models. Pandas, Seaborn and Scikit Learn were used for Data 
Preprocessing and Splitting, scaling and model creation. Imbalanced Learn was used for Over Sampling of the data. 
Matplotlib was used to visualize the training curves, evaluate the models and create confusion matrices. This setup 
allowed for efficient and effective experimentation with no compute unit constraints. 
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Figure 1 Workflow Diagram 

The proposed study methodology for lung cancer prediction pipeline is illustrated in  

Figure 1.The following section outlines the methodology of the study which includes the steps taken for data collection, 
processing and evaluation, creation of machine learning pool for selecting the best machine learning models, 
constructing ensemble models from the best machine learning model and evaluation. Detailed explanation of the steps 
of the approaches are as follows: 

3.2. Dataset Preparation and Analysis 

The datasets were collected from Kaggle [17], [18]. A description of the dataset is given in Figure 1. Dataset 1 consisted 
of 5000 Patient records with 18 features whereas Dataset 2 consists of 20000 records with 16 attributes. Both the 
dataset includes demographic information such as medical history, lifestyles and symptoms associated with pulmonary 
disease. The dataset before processing was analysed statistically for null values and if it contained any outliers. Pearson 
Correlation heatmap was also plotted which is provided in Figure 2 to assess the importance of different attributes 
among each other. The left side of the figure refers to the dataset 1 and right side to the dataset 2. For dataset 1 strong 
correlations are observed between stress immune and immune weakness, as well as, mental stress and stress immune. 
For dataset 2, the dataset focuses more on diagnosis-specific features such as yellow fingers, chronic disease etc. The 
correlations can be seen as weak which allows the machine learning model to learn from the data independently and 
evaluate feature contributions automatically. 

Table 1 Dataset Description 

Dataset Name Attributes Values Statistics 

  Count Mean Std Min 50% 75% Max 



World Journal of Advanced Engineering Technology and Sciences, 2025, 17(01), 200-217 

205 

Dataset 1 
(lung_cancer_dataset) 

AGE Numeric 
Value 

5000 57.22 0.50 30 57 71 84 

GENDER 1 
[Female], 
0 [Male] 

0.50 0.50 0 1 1 1 

SMOKING 1 [Yes], 0 
[No] 

0.66 0.47 0 1 1 1 

FINGER_DISCOLORATION 1 [Yes], 0 
[No] 

0.60 0.48 0 1 1 1 

MENTAL_STRESS 1 [Yes], 0 
[No] 

0.53 0.49 0 1 1 1 

EXPOSURE_TO_POLLUTION 1 [Yes], 0 
[No] 

0.51 0.499 0 1 1 1 

LONG_TERM_ILLNESS 1 [Yes], 0 
[No] 

0.43 0.49 0 0 1 1 

ENERGY_LEVEL Numeric 
Value 

55.03 7.91 23.25 55.05 60.32 83.04 

IMMUNE_WEAKNESS 1 [Yes], 0 
[No] 

0.39 0.48 0 0 1 1 

BREATHING_ISSUE 1 [Yes], 0 
[No] 

0.80 0.39 0 1 1 1 

ALCOHOL_CONSUMPTION 1 [Yes], 0 
[No] 

0.35 0.47 0 0 1 1 

THROAT_DISCOMFORT 1 [Yes], 0 
[No] 

0.69 0.45 0 1 1 1 

OXYGEN_SATURATION Numeric 
Value 

94.99 1.48 89.92 94.97 95.98 99.79 

CHEST_TIGHTNESS 1 [Yes], 0 
[No] 

0.60 0.48 0 1 1 1 

FAMILY_HISTORY 1 [Yes], 0 
[No] 

0.30 0.45 0 0 1 1 

SMOKING_FAMILY_HISTORY 1 [Yes], 0 
[No] 

0.20 0.40 0 0 0 1 

STRESS_IMMUNE 1 [Yes], 0 
[No] 

0.20 0.40 0 0 0 1 

PULMONARY_DISEASE 1 [Yes], 0 
[No] 

Null Null Null Null Null Null 

Dataset 2 
(lcs_synthetic_20000) 

GENDER M [Male], 
F 
[Female] 

20000 Null Null Null Null Null Null 

AGE Numeric 
Value 

62.20 8.2 30.00 62.00 68.00 87.00 

SMOKING 2 [Yes], 1 
[No] 

1.56 0.49 1.00 2 2 2 

YELLOW_FINGERS 2 [Yes], 1 
[No] 

1.57 0.49 1 2 2 2 
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ANXIETY 2 [Yes], 1 
[No] 

1.53 0.49 1 2 2 2 

PEER_PRESSURE 2 [Yes], 1 
[No] 

1.50 0.5 1 2 2 2 

CHRONIC DISEASE 2 [Yes], 1 
[No] 

1.50 0.49 1 2 2 2 

FATIGUE 2 [Yes], 1 
[No] 

1.67 0.47 1 2 2 2 

ALLERGY 2 [Yes], 1 
[No] 

1.56 0.50 1 2 2 2 

WHEEZING 2 [Yes], 1 
[No] 

1.55 0.49 1 2 2 2 

ALCOHOL CONSUMING 2 [Yes], 1 
[No] 

1.55 0.49 1 2 2 2 

COUGHING 2 [Yes], 1 
[No] 

1.57 0.49 1 2 2 2 

SHORTNESS OF BREATH 2 [Yes], 1 
[No] 

1.64 0.47 1 2 2 2 

SWALLOWING DIFFICULTY 2 [Yes], 1 
[No] 

1.47 0.49 1 1 2 2 

CHEST PAIN 2 [Yes], 1 
[No] 

1.55 0.49 1 2 2 2 

LUNG_CANCER YES, NO Null Null Null Null Null Null 

 

 

Figure 2 Pearson Correlation Heatmap 

Preprocessing is crucial step in any machine learning experiment. It prepares the data to be fed inside the machine 
learning model [34]. A class-based count was measured to check class imbalance which is shown in Figure 3. As there 
was imbalance between the classes which could potentially make the machine learning model biased. Synthetic Minority 
Oversampling (SMOTE) was applied to balance the classes. The data was split into two sets for training (80%) and 
testing (20%). A standard scaling was applied to normalize the data [35], [36]. It transforms the data in such a way that 
the data has a mean of zero and a standard deviation of 1. 
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Figure 3 Class Distribution of Datasets 

3.3. Machine Learning Pool 

After preprocessing a comprehensive set of machine learning classifiers were selected for the detection of Lung Cancer 
from the tabular dataset. A pool of 9 machine learning models were created with 50 different hyperparameters settings 
by fine tuning. The hyperparameters of the models are given in Table . The hyperparameters were selected based on a 
discrete search space of the nine candidate algorithms covering regularization strengths and for logistic regression, 
estimator counts and feature sampling strategies for Random Forest and boosting methods. These choices were 
informed by standard practice in the literature and preliminary experiments. A grid-styled sweep was performed over 
the combination of these parameters on the training data to guard against overfitting and ensure balanced performance. 
This exhaustive tuning of the models helped identify the strongest base learners and created the performance diversity 
necessary for a robust ensemble creation [37]. 

Logistic Regression: Logistic Regression supervised machine learning model which is used widely binary classification 
problems. It uses the logistic (Sigmoid) function to map the linear combination of input features into probability values 
ranging from 0 to 1 [38]. The probability indicates the likelihood of that given input corresponds to one of the predefined 
classes. In this study Logistic Regression is used due to its simplicity, interpretability and effectiveness. 

Table 2 Machine Learning Pool Description 

Model ID Model Type Parameters 

LR1 Logistic Regression penalty=l2, C=0.75, solver=liblinear, multi_class=ovr 

LR2 Logistic Regression penalty=None 

LR3 Logistic Regression penalty=l2, C=0.75, solver=lbfgs 

LR4 Logistic Regression penalty=l2, C=0.5 

LR5 Logistic Regression penalty=l2, C=1.0 

LR6 Logistic Regression penalty=l2, C=0.8 

KNN KNN n_neighbors=2, algorithm=kd_tree, metric=manhattan 

3NN KNN n_neighbors=3 

5NN KNN n_neighbors=5 

6NN KNN n_neighbors=6, algorithm=brute, p=1, metric=cosine 

9NN KNN n_neighbors=9, algorithm=ball_tree, metric=euclidean 

10NN KNN n_neighbors=10, algorithm=brute, p=2, metric=minkowski 

NB1 Naive Bayes GaussianNB 
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NB2 Naive Bayes BernoulliNB 

DT1 Decision Tree criterion=gini, min_samples_leaf=4 

DT2 Decision Tree criterion=gini, max_features=sqrt, min_samples_leaf=2, 
min_impurity_decrease=0.01 

DT3 Decision Tree criterion=gini, max_features=log2, min_samples_leaf=2, 
min_impurity_decrease=0.01 

DT4 Decision Tree criterion=entropy, splitter=random, max_depth=6, min_samples_leaf=2 

DT5 Decision Tree criterion=log_loss, max_depth=8, min_samples_leaf=3, 
min_impurity_decrease=0.001 

RF1 Random Forest criterion=entropy, n_estimators=100 

RF2 Random Forest n_estimators=500 

RF3 Random Forest n_estimators=1000 

RF4 Random Forest criterion=log_loss, n_estimators=500 

RF5 Random Forest criterion=gini,max_features=log2, n_estimators=500 

RF6 Random Forest criterion=gini, max_features=sqrt, n_estimators=1000, bootstrap=False 

RF7 Random Forest criterion=gini, max_features=log2, n_estimators=500, bootstrap=False 

RF8 Random Forest criterion=entropy, n_estimators=500, bootstrap=False 

GB1 Gradient Boosting n_estimators=500 

GB2 Gradient Boosting loss=log_loss, n_estimators=1000, criterion=squared_error 

GB3 Gradient Boosting loss=log_loss, n_estimators=400, criterion=friedman_mse 

GB4 Gradient Boosting n_estimators=1100, criterion=squared_error, min_impurity_decrease=0.01 

GB5 Gradient Boosting loss=log_loss, n_estimators=500, criterion=friedman_mse, 
min_impurity_decrease=0.001 

GB6 Gradient Boosting loss=log_loss, n_estimators=800, min_samples_leaf=3, 
criterion=squared_error 

GB7 Gradient Boosting loss=log_loss, n_estimators=1200, min_impurity_decrease=0.01 

GB8 Gradient Boosting n_estimators=500, min_samples_split=5, min_impurity_decrease=0.0001 

AdaBoost1 AdaBoost default 

AdaBoost2 AdaBoost n_estimators=200, algorithm=SAMME 

AdaBoost3 AdaBoost n_estimators=500, algorithm=SAMME, learning_rate=2 

AdaBoost4 AdaBoost n_estimators=1000, algorithm=SAMME 

AdaBoost5 AdaBoost n_estimators=1200 

SVC1 SVC probability=True 

SVC2 SVC probability=True, C=0.5, kernel=linear 

SVC3 SVC probability=True, C=0.75, kernel=linear 

SVC4 SVC probability=True, C=1.0, kernel=linear 

SVC5 SVC probability=True, C=1.25, kernel=linear 

MLP1 MLP max_iter=500 

MLP2 MLP max_iter=200 

MLP3 MLP learning_rate=adaptive, max_iter=500 
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MLP4 MLP learning_rate=invscaling, max_iter=1000 

MLP5 MLP hidden_layer_sizes=(100,100), max_iter=1000 

K-Nearest Neighbour: It is a non-parametric supervised machine learning model. The main methodology behind this 
classifier is that it classifies an object based on the plurality vote by its neighbour. The neighbours to be considered or 
k, and the distant metric to be used in the voting is considered as a hyperparameter [39]. KNN was introduced in this 
study for its robustness and its classification performance which it does without making any assumptions about the 
data distribution. 

Naïve Bayes: This is a simple classifier that assigns probabilities to different labels from the vector of feature values. It 
is based on the Bayes Theorem. It calculates the posterior probability of each class based on the input features and 
selects the class with the highest probability [40]. Despite, its complexity it often performs well in high dimensional 
dataset. This model was added to the study to analyse the benchmark of probabilistic modelling. 

Support Vector Machine: Otherwise known as SVM is a supervised max-margin model that can be used for both 
classification and regression analysis. It tries the find the optimal hyperplane that separates the different classes by 
maximizing the margin of difference between them. It can handle both linear and non-linear input features. For non-
linear input features it uses different kernel functions to convert the high dimensional data to lower dimensional data 
[41]. In this study SVM was used to capture complex decision boundaries and enhance classification accuracy. 

Decision Tree: It is a recursive model that splits the data intro a structured tree based on the input features. In DT each 
branch represents the outcome of the test and the leaf nodes represent the class labels. The whole decision tree 
represents the classification rules. The models were used in this study to explore feature importance. 

Random Forest: This is an ensemble of weak learners grouped together. Usually, decision trees are used as the weak 
learners. By introducing randomness in its feature selection, it creates variations in the individual trees. The model was 
chosen for its robustness in classification tasks. 

Gradient Boosting Machine (GBM): It builds an ensemble of weak learners in a sequential manner where each model’s 
output is fed to another model. The task of each model is to minimize the error of the previous model. It optimizes its 
loss using gradient descent to lead to a highly accurate model [42]. GBM was utilized in this study for its high capability 
of capturing complex patterns in the data. 

AdaBoost: Another form of Ensemble Learning that combines multiple machine weak classifiers to form a strong 
classifier. It assigns higher weights to misclassified instances in successive iterations, which allows the model to focus 
on harder case. In this study AdaBoost was employed to examine the performance in boosting weak learners for 
classification. 

Multi-Layer Perceptron: This is a feedforward neural network which consists of fully connected layers using nonlinear 
activation functions and backpropagation for learning. MLP has the ability to model complex relationships and it is 
widely used in deep learning approaches. 

3.4. Ensemble Model Construction 

After evaluating the models from the machine learning pool, three best machine learning models were selected. Using 
these top models, several ensemble techniques were constructed. 

• Majority Hard Voting: In majority hard voting, the final prediction is based on the most frequent prediction 
among the models. 

• Majority Soft Voting: It uses probability estimates from all the models and averages them to get the final 
probability. 

• Weighted Hard Voting: Models are assigned weights proportional to their individual performance. 
• Stacking Ensemble: Prediction of the models are used as input for another machine learning model. 

4. Result Analysis 

The Accuracy and F1 score of the 50 Machine Learning models are given in Table  for both Dataset 1 and Dataset 2. For 
Dataset 1 RF7, MLP2 and GB8 were the best 3 models having accuracy of 0.89, 0.86, and 0.86 respectively and for Dataset 
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2 RF6, MLP5, and KNN produced the best results having an accuracy of 0.84, 0.78 and 0.77. These models demonstrate 
that Random Forest and Multi-Layer Perceptron consistently performs well in both the datasets, highlighting the 
model’s robustness in lung cancer classification tasks. 

Table 3 Evaluation of Machine Learning Pool 

Model ID Dataset 1 Dataset 2 

Accuracy F1 Accuracy F1 

LR1 0.845148 0.849126 0.61285 0.616319 

LR2 0.84557 0.849425 0.612814 0.61627 

LR3 0.845148 0.849126 0.612814 0.61627 

LR4 0.845148 0.849126 0.612814 0.61627 

LR5 0.845148 0.849054 0.612814 0.61627 

LR6 0.844937 0.848887 0.612814 0.61627 

KNN 0.784177 0.764544 0.77093 0.765034 

3NN 0.816667 0.822323 0.751425 0.775123 

5NN 0.821941 0.828337 0.74239 0.769882 

6NN 0.83903 0.835358 0.739271 0.748684 

9NN 0.829114 0.835404 0.726399 0.755462 

10NN 0.845992 0.844402 0.725145 0.740095 

NB1 0.822785 0.825935 0.613818 0.618514 

NB2 0.822152 0.828467 0.612276 0.616453 

DT1 0.81962 0.816134 0.736259 0.74012 

DT2 0.718565 0.765519 0.499839 0.33327 

DT3 0.718565 0.765519 0.499839 0.33327 

DT4 0.823207 0.81399 0.499839 0.33327 

DT5 0.855907 0.851557 0.581765 0.589635 

RF1 0.8827 0.880105 0.832813 0.837466 

RF2 0.879536 0.876935 0.834283 0.838806 

RF3 0.879958 0.877382 0.833566 0.838062 

RF4 0.882068 0.879572 0.833244 0.838032 

RF5 0.879536 0.876935 0.834283 0.838806 

RF6 0.88481 0.88294 0.836506 0.838439 

RF7 0.886076 0.884351 0.836435 0.838386 

RF8 0.822785 0.823382 0.806747 0.819663 

GB1 0.858017 0.857035 0.649564 0.658597 

GB2 0.852321 0.851531 0.659711 0.669583 

GB3 0.859705 0.858773 0.647987 0.656373 

GB4 0.778059 0.793244 0.500018 0.666683 

GB5 0.855696 0.854825 0.650389 0.659524 
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GB6 0.844093 0.842322 0.597218 0.609395 

GB7 0.778059 0.793244 0.500018 0.666683 

GB8 0.863502 0.861716 0.630168 0.637603 

AdaBoost1 0.827426 0.836456 0.61493 0.616302 

AdaBoost2 0.827426 0.836237 0.616077 0.619523 

AdaBoost3 0.697046 0.689755 0.542397 0.537384 

AdaBoost4 0.834388 0.84217 0.615969 0.618537 

AdaBoost5 0.832278 0.840148 0.613854 0.616122 

SVC1 0.861814 0.860198 0.68108 0.694091 

SVC2 0.844304 0.845031 0.613424 0.622187 

SVC3 0.844304 0.84497 0.613352 0.622116 

SVC4 0.844726 0.845385 0.613316 0.622015 

SVC5 0.844937 0.845565 0.613245 0.621969 

MLP1 0.85 0.84861 0.676849 0.679861 

MLP2 0.864557 0.862641 0.676455 0.683033 

MLP3 0.85 0.84861 0.676849 0.679861 

MLP4 0.839241 0.837976 0.676849 0.679861 

MLP5 0.83038 0.832261 0.780252 0.791777 

Table 4 Model Comparison on Dataset 1 

Model Accuracy F1 Score ROC AUC Average Precision 

Gradient Boosting 0.860 0.860 0.860 0.815 

MLP 0.861 0.861 0.861 0.813 

Random Forest 0.890 0.890 0.890 0.847 

Ensemble Hard 0.869 0.869 0.869 0.826 

Ensemble Weighted 0.890 0.890 0.890 0.847 

Ensemble Soft 0.866 0.866 0.866 0.819 

Stacking (MLP) 0.889 0.889 0.889 0.846 

Table  presents the Accuracy, F1 scores, ROC-AUC Score and Average Precision of the top performing machine learning 
models compared with their ensemble counterparts that is built using the top models from the machine learning pool 
on Dataset 1. The Weighted Ensemble Model gives better performance than the two individual models like MLP and 
Gradient Boosting in all of the given metrics.  It shows the performance having the ROC_AUC, Accuracy and F1 Score of 
89.04%, which is followed closely by Random Forest which itself is an Ensemble method, and it also achieved the same 
ROC_AUC, Accuracy and F1 Score. The ensemble stacking also exhibits the potential of achieving similar performance 
like the weighted ensemble models for lung cancer prediction on this dataset 1. 

The above plot at Figure 4 illustrates the precision-recall curves for different machine learning models evaluated on 
Dataset 1. The curve highlights how each model performs on different thresholds. Random Forest and Ensemble 
Weighted Voting exhibit nearly identical curves, which is characterized by a high precision that is well maintained 
across a broad range of recall values with only a slight declined toward the end-indicating these models maintain strong 
predictive confidence even as they capture more true positives. Among all the classifiers, Random Forest and Ensemble 
Weighted Voting achieved the highest average precision score of 0.8471, which indicates strong performance in 
identifying positive instances. Ensemble Stacking and Ensemble Hard Voting followed closely with an average precision 
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of 0.825 and 0.818 respectively which highlights the strong generalization and the robustness in improving 
classification accuracies across various data distributions.  

 

Figure 4 Precision Recall Curve for Dataset 1 

 

Figure 5 Confusion Matrix for models trained on Dataset 1 

Figure 5 illustrates the confusion matrices for the best performing models compared with the Ensemble Techniques on 
Dataset 1. Random Forest and Weighted Ensemble Model shows strong diagonal dominance, indicating a high rate of 
correct classifications, with very few false positives and false negatives.  

Table 5 Model Comparison on Dataset 2 

Model Accuracy F1 Score ROC AUC Average Precision 

Random Forest 0.855 0.854 0.855 0.801 

MLP 0.786 0.784 0.786 0.712 

KNN 0.783 0.783 0.783 0.725 

Ensemble Hard 0.841 0.841 0.841 0.784 

Ensemble Weighted 0.855 0.854 0.855 0.801 

Ensemble Soft 0.827 0.827 0.827 0.758 

Ensemble Stacking (MLP) 0.879 0.878 0.879 0.865 
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Table  shows the Accuracy, F1-Score, ROC-AUC Score and Average Precision for the different machine learning models 
evaluated on Dataset 2. Similar to Dataset 1, the ensemble models, particularly Weighted Ensemble and Stacking 
demonstrated improved performance that the other machine learning models achieving 85.5% and 87.9% accuracy, 
F1-Score and 80.1% and 86.5% average precision respectively. This consistent pattern across different datasets 
suggests strong robustness capabilities of ensemble learning when combining strong, diverse models. 

 

Figure 6 Precision Recall Curve for Dataset 2 

The precision-recall curve at Figure 6 reveals the comparative analysis between several classifiers in terms of average 
precision (AP) and ROC-AUC. Among the models, Ensemble Stacking (MLP) model stands out with the most dominant 
curve, maintaining very high precision across the entire recall range before dropping sharply near full recall. This shape 
suggest that the models is highly confident in its predictions until it begins to retrieve nearly all positive cases, at which 
point precision starts to decline. 

 Ensemble Stacking (MLP) achieved the highest average precision of 0.865, showing the models superior capability in 
capturing complex patterns in the data. Both random forest and weighted ensemble method followed closely with an 
average precision of 0.801 and 0.801 respectively showing strong consistent results. Among the machine learning 
models K-Nearest Neighbour (KNN) and MLP achieved an average precision of 0.713 and 0.725, which reflects moderate 
effectiveness. These findings demonstrate that ensemble-based strategies particularly Ensemble Stacking offered 
notable improvements in average precision for Dataset 2. 

 

Figure 7 Confusion Matrix for models trained on Dataset 2 
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Figure 7 displays the confusion matrices for the top models on Dataset 2. Random Forest and Ensemble methods 
maintained high true positive and true negative rates which is evident in their strong diagonal entries. Compared to 
Dataset 1, Dataset 2’s confusion matrices showed slightly better specificity and recall, suggesting the models trained on 
Dataset 2 are more reliable at correctly identifying both the positive and negative cases. Across both datasets, ensemble 
methods built using the top performing models consistently performed better results compared to the individual 
models. On Dataset 1, RF7, MLP2, and GB8 were used to create the ensemble model. Meanwhile, on Dataset 2 RF6, MLP5 
and KNN were used to construct the Ensemble model. Ensemble Techniques such as Weighted Hard Voting and Stacking 
Ensemble approaches showed meaningful improvements in both accuracy and F1-Scores. The confusion matrices also 
showed the models True Positives and True Negatives improving. These findings confirm that carefully selecting the 
best performing models to be combined into an ensemble model substantially improves the predictive performance of 
Ensemble models. 

5. Discussion 

In this study we have demonstrated that ensemble learning methods—particularly weighted hard voting and ensemble 
stacking consistently outperformed individual base learners in the task of lung cancer prediction from tabular clinical 
data. On Dataset 1, the weighted voting ensemble achieved an accuracy, F1-Score, and ROC-AUC of 89.04%, matching 
the performance of the best single Random Forest model. On Dataset 2, ensemble stacking with multilayer perceptron 
achieved 87.9% accuracy and F1-Score with an average precision of 86.5%, which surpassed not only the individual 
models such as Random Forest (85.5%) and MLP (78.0%) but also soft and hard voting classifiers. These findings 
directly address our primary research questions by confirming that (1) while Random Forest and MLP are strong 
predictors, (2) ensemble strategies such as weighted ensemble and meta-learning models provide statistically 
meaningful gains in both discriminative power and threshold-independent metrics such as ROC-AUC and Average 
Precision. 

Our precision-recall analysis from Figure 4 and Figure 6 revealed that Weighted Ensemble Voting and Ensemble 
Stacking maintained high precision across a broad range of recall values, indicating robust confidence as models capture 
more true positives in highly imbalanced contexts. Confusion matrices at Figure 5 and Figure 7 show that these 
ensemble models reduce both false-positives and false-negatives relative to the individual classifiers, which is more 
critical in clinical settings as the cost of misdiagnosis is very high. Together, the results show that combining diverse 
algorithms via hybrid weighted majority voting and ensemble stacking harness complementary decision boundaries 
which mitigates overfitting and variance inherent to single models. 

Importantly, For RQ3, it is directly answered by our methodological choices where for Data Preprocessing methods 
such as handling missing values, SMOTE oversampling after splitting the data which removes data leakages, and 
standard scaling ensured clean, well distributed inputs for the machine learning models. For all the classifiers extensive 
hyperparameter optimization across nine algorithms and fifty parameter configurations allowed us to select the best 
parameter settings for each of the machine learning classifiers. Feature level analysis such as Pearsons Correlation 
Heatmap allowed us to remove weak predictive attributes, reducing noise and overfitting. The exploration of the 
Ensemble Paradigms demonstrated Weighted Ensemble Approach and Ensemble Stacking yielded the greatest gains 
which was further confirmed by metrics such as Accuracy, F1-Score and threshold independent metrics such as ROC-
AUC and average precision. 

6. Conclusion 

This study presents a comprehensive analysis on machine learning and ensemble learning techniques for lung cancer 
prediction using structured tabular data. With different techniques applied for preprocessing such as Label Encoding, 
Over Sampling to balance the dataset. A pool of 50 machine learning models with different hyper parameter settings 
were created and among them top performing models such as Random Forest, Multi-Layer Perceptron, KNN were 
selected to construct different Ensemble Models such as Majority Hard Voting, Weighted Hard Voting, Soft Voting, and 
Ensemble Stacking. Experimental results show that the ensemble models specially Ensemble Stacking and Ensemble 
Weighted Hard Voting performed consistently across different datasets and outperforming the machine learning 
models in terms of accuracy, F1-Score, ROC-AUC curve and Average Precision score, and. Notably, Weighted Ensemble 
and Stacking approaches showed superior generalization capability and an analysis confirms lower false positives and 
false negatives. The findings support the integration of Ensemble Learning in clinical decision support systems for lung 
cancer prediction as it leverages the strengths of diverse base learners.  Despite the promising results there are some 
potentials threats to validity. Firstly, both the datasets were collected from Kaggle which doesn’t reflect real world 
scenarios that include noise and diversity. Secondly, the class imbalance was addressed using SMOTE which may 
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introduce bias and artifacts. Lastly, no external dataset was used for validation which may affect generalizability of the 
finding to other populations and settings. For future work, incorporating additional real-world datasets with diverse 
temporal features, and imaging data may help enhance the predictive accuracy. Moreover, exploring deep learning 
ensemble techniques and explainable AI methods can also help improve both performance and interpretability, making 
models more practical for clinical deployment. 
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