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Abstract 

The rise of big data has transformed the way complex problems in fields such as medicine and biology are solved. In the 
medical field, analyzing White Blood Cells (WBCs) is crucial for diagnosing diseases and evaluating the immune system. 
While automated tools like cell counters can quickly generate results, manual blood smear analysis remains critical for 
accuracy and patient monitoring. Unfortunately, this manual process is slow, labour-intensive, and prone to errors, 
making it challenging to manage large-scale data efficiently. This study combines the strengths of Federated Learning 
and Big Data to tackle these problems. The authors propose a new approach for classifying WBCs by leveraging 
Federated Learning (FL) for privacy-preserving, distributed training on large datasets, while utilizing Apache Spark's 
tools for big data management and processing. Additionally, advanced deep learning models, such as ResNet50, VGG19, 
and U-Net, enhance WBC classification accuracy by creating five RDDs and training each of the three models on each of 
the five RDDs. The ResNet50 model achieved the highest accuracy of 94.06% in RDD2 and RDD5, followed by VGG19 
with 94.27% in RDD1, and U- Net with 85.99% in RDD4. RDD has its validation accuracy. This study addresses the dual 
challenges of scalability and privacy. Additionally, distributed data on five Nodes of Resilient Distributed Datasets (RDD) 
demonstrated that both VGG19 and ResNet50 achieved higher accuracy compared to U-Net, while training each deep- 
learning model to enhance diagnostic accuracy by integrating Federated Learning with Big Data frameworks and recent 
deep-learning techniques. This innovative technique highlights the potential of combining these technologies to 
advance healthcare and biomedical research.  

Keywords:  Federated Learning; White Blood Cell Classification; Big Data Processing; Deep Learning Models; Resilient 
Distributed Datasets (RDDS) 

1. Introduction

The 10 Vs. of Big Data (BD)—volume, velocity, variety, veracity, value, validity, volatility, variability, visualization, and 
vulnerability. These qualities are essential for Big Data projects to be implemented successfully. Inconsistencies in 
outcomes resulting from various data dimensions and sources are called variability [1]. Graphically presenting data for 
simple interpretation is known as visualization. Security methods for data processing in compliance with laws and client 
preferences are vulnerable [2]. Additionally, Figure 1 draws attention to every industry's varying vulnerability. 

Ultimately, whereas big data poses obstacles, it simultaneously provides significant opportunities for those capable of 
leveraging it proficiently. Big companies now store vast amounts of data in various formats, from structured relational 
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databases to unstructured flat files, due to the ease of digitalization, the diversity of data descriptions, and individual 
preferences [3]. Researchers state that the volume of data worldwide will Reach 163 zettabytes by 2025, with 
businesses producing half of that data [4]. Decision- makers must consider data dispersed across several locations and 
in various forms to obtain insightful information that helps them in their day-to-day tasks, as it gains value when 
enriched and combined with other data. However, the explosion of data in volume, variety, and velocity—the "3Vs" of 
Big Data increases complexity and renders traditional methods of data integration like data warehousing. It is more 
expensive in terms of time and money and less able to ensure the freshness of data. 

 

Figure 1 General Concept of 10 Characteristic Growth Big Data 

Millions of sensors are needed for the Internet of Things to create and collect data, which is complicated and needs to 
be processed by conventional applications; big data is processed, stored, and analyzed using tools like Hadoop 
MapReduce and RDDs. However, MapReduce's time-consuming calculations make it ineffective for iterative algorithms. 
Distributed data collection, fault tolerance, parallel processes, and the utilization of numerous data sources are the four 
primary characteristics that RDDs provide [5]. They do not need HDFS storage, which speeds up operations and 
improves memory management. Compared to other contexts, RDDs are more suited to host iterative algorithms [6]. 

WBCs include neutrophils, monocytes, basophils, eosinophils, and lymphocytes (T, B, and Killer natural cells). These 
WBCs work together to detect and fight infections or diseases in the bloodstream, which is vital in maintaining overall 
health [7]. The number and diversity of WBCs in the body can provide important insights into a person’s health status. 
To accurately classify WBCs, the authors [8] utilized CNN-based models, such as U- Net, VGG19, and ResNet50, which 
excel at extracting high-level features from image data. These models were evaluated using both transfer learning and 
full- parameter learning. Additionally, it leveraged Spark to handle the large dataset efficiently and created five Resilient 
Distributed Datasets to distribute the data, enabling scalable processing and improving the classification workflow. So, 
one problem with WBC classification is that low resolution, noise, and poor image quality in WBC images make 
classification difficult [9]. Staining methods can alter color, cytoplasm, and nucleus, while light strength affects 
appearance. WBCs' development and size vary, and various imaging systems can cause noise and contrast. Data 
imbalance is a common issue, necessitating improved visual quality for accurate classification. WBC classification is 
crucial for diagnosing various blood diseases and conditions like lymphoma and leukemia [10]. Additionally, it aids in 
the detection of blood illnesses caused by bacteria, viruses, or parasites. 

However, the challenges and limitations of the classification of White blood cells may result in a less accurate estimation, 
and manual classification is time-consuming and requires extensive expertise. Additionally, the varying size of WBC and 
a massive amount of data lead to difficult control [11]. So, to address this limitation, the study used federated learning 
by using RDD to increase memory and speed. WBC classification is also essential for tracking a patient's health after 
chemotherapy, organ transplants, etc. Inaccurate WBC counts and classifications can cause serious health problems, 
including death. WBC function is essential for the correct diagnosis and course of treatment. WBC images with low 
quality, however, may be misdiagnosed, which could worsen health consequences or even cause death. This paper 
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addresses how large datasets can be efficiently managed by storing them across multiple locations instead of a single 
centralized location. Therefore, this study's primary contributions are: 

• RDDs allow multiple nodes to efficiently process large data sets through distributed preprocessing, achieving 
scalability and fault tolerance. 

• RDD nodes perform parallel execution of deep learning models, including VGG19, ResNet, and U-Net, which 
enables specialized feature extraction and flexible data modality adaptation. 

• Several distributed datasets collaborate under a federated learning scheme by aggregating their models into a 
unified global model. The decentralized raw data collection requirement decreases through this approach, 
strengthening privacy protection and regulatory compliance. 

• Data ingestion and processing must operate quickly through the pipeline using node-based workload 
distribution. The system performs time-efficient processes of large datasets during critical operational 
deadlines.  

2. Related works 

Recent biomedical research has significantly improved treatments, such as precision wound healing [12], which uses 
regenerative therapies for tailored recovery. Innovations like hybrid nanoconjugates of temozolomide enhance drug 
stability and effectiveness in glioblastoma [13], providing new options beyond traditional therapies. Molecular erasers 
also enable targeted protein degradation, transforming cancer immunity and creating new avenues in immuno-
oncology [14]. In parallel, Artificial Intelligence (AI) is transforming various sectors. In agriculture, AI-powered 
navigation systems in farming equipment boost productivity and resource use [15]. In transportation, computer vision 
with attention mechanisms improves road segmentation, enhancing the safety of autonomous vehicles [16]. In 
healthcare, hybrid models like CNN-SVM applied to MRI data show promise for accurately classifying Alzheimer’s 
disease [17]. Additionally, multimodal deep learning frameworks like MultiSenseNet improve predictive maintenance 
in industrial settings by assessing machine failure risks [18]. In plant science, deep stacking models combining CNNs 
with gradient boosting enhance the detection of plant leaf diseases, promoting early intervention [19]. 

Big data management involves collecting and organizing vast amounts of data from various sources. Its main goals are 
to ensure data quality, ownership, documentation, and accessibility. High-quality data is essential for gaining valuable 
insights. Veracity, or data accuracy, is crucial, as erroneous data can lead to meaningless insights. Managing the large 
volume of data requires significant resources. By 2020, the amount of digital data was projected to reach 44 trillion 
gigabytes, with 1.7 MB created every second. Traditional RDBMS struggles to handle these volumes, necessitating 
modern solutions like NoSQL, Apache Drill, and MapReduce. The variety of data formats complicates storage and 
processing, often requiring costly processing power and frequent updates. Once collected, data must be cleaned and 
refined for accuracy and relevance, which can be automated or done manually. Advanced tools leveraging machine 
learning help reduce costs and time while maintaining data integrity, preventing failures in data initiatives. 

Recent advancements in deep learning and multimodal fusion have significantly contributed to medical image analysis 
and sentiment classification across diverse domains. Hybrid and tensor fusion strategies have been employed to 
enhance multimodal object recognition by integrating vision and audio signals [20]. In the medical domain, several 
studies have introduced transformer-based and ensemble learning approaches for cancer detection and diagnosis, 
including a hybrid vision transformer with attention mechanisms for explainable lung cancer diagnosis [21], a 
hierarchical Swin Transformer ensemble for decentralized breast cancer diagnosis [22], a deep stacking ensemble for 
transparent brain tumor detection [23], and a novel stacking ensemble for accurate cervical cancer diagnosis [24]. 
Similarly, innovative data-driven solutions have been proposed for healthcare-related sentiment analysis, such as the 
identification of patient sentiments from online drug reviews [25]. Other works have advanced diagnostic capabilities 
for leukemia by integrating image processing with transfer learning [26], applied transformer-based ensembles for oral 
cancer segmentation [27], developed ensemble learning strategies for recognizing monkeypox [28], and introduced 
hybrid vision transformers for prostate cancer classification from MRI images [29]. Collectively, these studies 
demonstrate the growing importance of ensemble methods, transformers, and explainable AI in improving diagnostic 
accuracy, interpretability, and reliability across multiple healthcare applications. 

Federated learning enables autonomous vehicles to train models collaboratively without sharing raw data; however, 
diverse, non-iid data across vehicles poses challenges to accuracy and convergence. The FedRAV framework addresses 
this by dividing vehicles into sub-regions and creating personalized models for each, selectively adopting valuable 
updates [30]. Experiments on real-world datasets show that FedRAV outperforms existing methods, offering a more 
effective solution for federated learning in autonomous driving. 
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Authors tackled strict and flexible fraud prevention and security rules for the Internet of Medical Things (IoMT). They 
introduced a privacy-focused strategy called FL-BEPP (Federated Learning with Blockchain-Enabled Privacy 
Preservation) to enhance data security and privacy in healthcare systems [31]. Authors used IDS-based anomaly 
detection to avoid cyberattacks on IoT networks. To be more precise, suggest applying Federated Deep Learning (FDL). 
Authors [32] describe a fog-based intrusion detection system (IDS) architecture that uses the Bot-IoT dataset and the 
Lost Short-Term Memory (LSTM) model. Because the solution uses a local learning strategy, devices. Furthermore, 
authors [33] introduced a differentially private FL approach for intent classification using text data. They implemented 
privacy protection at the sample level, updating local parameters with gradients and introducing Gaussian noise to 
preserve privacy. The sampling ratio affected the model's performance. Authors [34] proposed a blockchain-based 
Federated Learning Intrusion Detection System (FL IDS) for IoT healthcare, featuring an Artificial Neural Network 
(ANN) model for detecting attacks and monitoring sensors. While this approach goes beyond existing methods, it still 
faces challenges like privacy concerns and managing decentralized patient data. Authors [35] examined the application 
of clustered federated learning (CFL) and edge computing in healthcare settings to address security, privacy, and latency 
challenges in COVID-19 diagnosis, highlighting their potential and addressing these challenges. 

Several studies have explored robust architectures and ensemble strategies for improving accuracy and interpretability 
in crop disease detection. For instance, a MaxViT-based framework has been proposed for accelerated and precise 
identification of soybean leaf and seed diseases [36], while the ViX-MangoEFormer model integrates Vision 
Transformer, EfficientFormer, and stacking ensembles to achieve reliable mango leaf disease recognition with 
explainable AI [37]. Similarly, an ensemble-driven explainable approach has been developed for the recognition and 
conservation of rare medicinal plants [38], and deep learning has been applied for automated weed species 
classification in rice cultivation [39]. Other contributions include a web-based transfer learning application for effective 
cucumber disease recognition [40] and a robust ensemble of transfer learning architectures for accurate diagnosis of 
eggplant diseases [41]. Collectively, these works highlight the growing role of advanced neural architectures and 
ensemble methods in enhancing precision, efficiency, and interpretability in agricultural disease detection. 

To address model poisoning, the authors [42] developed FL-WBC, a client-based protection method to address model 
poisoning attacks in Federated Learning, ensuring model convergence and preventing attacks, with high model accuracy 
demonstrated in tests. Recent studies [43], [44] have shown that FL can enhance privacy and security in machine 
learning models, mitigating model poisoning attacks and improving smartphone prediction performance while 
maintaining user data privacy. Several Convolutional Neural Network (CNN) models have been investigated recently by 
several researchers [44], [45] for the classification of WBCs in complete blood cell counting (CBC). Authors proposed a 
bilinear CNN that reduces the number of learnable parameters while capturing interactions between local pair features 
using two separate CNNs. Authors [45] used sophisticated machine-learning methods for WBC segmentation and 
classification along with a deep contour-aware CNN. Authors [46] proposed a hybrid method that uses SVM 
classification after feature extraction from WBC pictures using GoogleNet and AlexNet. It deals with blood cell 
categorization, essential for evaluating health, using a CNN and RNN merging model that uses Canonical Correlation 
Analysis (CCA) to improve. In contrast to traditional techniques, by effectively managing overlapping cells, CCA 
accelerates network convergence, reduces classification time, and compresses input dimensions. Authors [47] focused 
on identifying high-performing machine learning (ML), deep learning (DL), and CNN-based methods for white blood 
cell (WBC) analysis, highlighting their potential to improve early diagnosis and clinical decision-making. The study [48] 
proposed an ensemble model for deep learning to achieve high accuracy. The ensemble combined three models, 
including EfficientNet and DenseNet-201 ConvNeXt, for the classification of WBCs. 

3. Methodology 

3.1. Dataset 

A Blood Cell Classification dataset containing five categories—eosinophil, lymphocyte, monocyte, basophil, and 
neutrophil images—is used in the suggested WBC classification method. The authors collected 53,385 images from 
public and private sources. The author utilized 48000 images to make balanced classes. The public datasets used are 
Kaggle for WBC, which has (28,000) images with a pixel size (64x64x3); Rabin, which has (3,787) images with pixel size 
(112x112x3), Mendeley, which has (10,229) images with pixel size (360x360x3), IEEE, which has (1,408) images with 
pixel size (722x722x3), and the private Hiwa hospital dataset, which has (10,299) images with pixel size (64x64x3). 
Two months were needed to collect the dataset. Applying oil to the slide beneath the microscope is required for Hiwa 
Hospital—there are two sections to this dataset. The data was split into the validation and training sections, 
respectively. There is an 80:20 split between the training and testing components. 
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3.2. Methods 

The study proposed an architecture for classifying and analyzing the white blood cell dataset into five RDDs (Resilient 
Distributed Datasets). For each RDD, apply three model architectures of deep learning, and for each RDD, make it by 
taking 20% of each of the five classes of white blood cells and then training each model of deep learning. Since U-Net 
generates a segmentation mask, this study converts the output to a single label for classification tasks. Replace the final 
segmentation layer with a Global Average Pooling (GAP) layer. Add fully connected (Dense) layers for classification. The 
author utilizes methods that aren't yet widely used in big data, such as U-Net, ResNet50, and VGG 19, as illustrated in 
Figure 2. 

FL is pivotal in this context, as it offers several benefits compared to conventional centralized training, including 
addressing privacy concerns, reducing computational costs, and enhancing model robustness. This differs from 
centralized learning, which involves the centralization of essential medical data, thereby increasing privacy risks and 
potentially violating laws. FL also includes the collaborative training of the model without exchanging the training data, 
therefore minimizing costs in terms of bandwidth and storage. Besides, centralized models are sensitive to domain shifts 
with variations of imaging devices, staining techniques or even patient population, and thus, poor in generalization. FL 
addresses this systematically by enabling the construction of models on different diverse real datasets across multiple 
institutions, making the models more robust and adaptive. From a computational perspective, centralized training 
involves a large number of computations at a single point. In contrast, FL decentralizes the training process across 
multiple parties, thereby increasing the scalability and efficiency of the training phase. Based on these factors, FL is not 
just an option, but a requirement for achieving large-scale, non-intrusive, and efficient WBC classification. Additionally, 
80% of the preprocessed dataset is used for training, and the remaining 20% is used for testing. The batch size is set to 
32 for the three models, and the learning rate is set to 0.0001. Using a preprocessed and normalized dataset, first choose 
three pre-trained models (ResNet50, U-Net, and VGG19). Then, resize the images to be different to be consistent. To 
improve model robustness, ImageDataGenerator will then be used for data augmentation. Random rotations, 
translations, shearing, zooming, and flipping were all included in the augmentation. Following training, each model 
predicted the class and improved classification accuracy. Once the model is trained, its performance will be assessed 
using accuracy, precision, recall, and F1-score. After that, generate a confusion matrix to see how well the model 
classifies each category. 

 

Figure 2 Proposed framework for WBC classification 

3.3. Dataset Preprocessing 

The suggested method utilizes a customized dataset consisting of images of blood cells. The collection, which consists 
of 48,000 images, is divided into five categories: eosinophil (E.P.), lymphocyte (L.C.), monocyte (M.C.), neutrophil (N.P.), 
and basophil (B.C.). They are all downsized to 64 x 64 x 3. There are two sections to this dataset. There is an 80:20 split 
between the training and testing components. During the preparation stage, several steps are taken to clean the dataset, 
including eliminating inaccurate or unnecessary images, detecting duplicates, and resizing images to 71 by 71 pixels. 
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Apart from normalizing images by scaling them to the (0,1) range, data augmentation methods like rotation, flipping, 
and dataset balancing were used to ensure that all five classes had 10,000 samples, except for the basophile class, which 
has 8,000 samples because only 1% of human cells are basophils. 

3.4. U-Net 

The U-Net model is a type of neural network designed initially for image segmentation but adapted here for classifying 
WBCs into five categories: Basophil (B), Neutrophil (N), Eosinophil (E, Monocyte (M), and Lymphocyte (L). It has an 
encoder that captures essential features through convolution and pooling layers and a decoder that restores spatial 
details using upsampling and skip connections. To classify images, the model includes a final layer that uses global 
average pooling and a softmax activation to predict the class. The dataset, processed with PySpark, contains 9,600 
images per RDD (1,920 from each class) to manage the large-scale data efficiently. Images are resized, normalized, and 
split into training (80%) and testing (20%) sets, with the learning rate set to 0.0001 and the batch size set to 32. The 
model is trained for 70 epochs using the categorical cross-entropy loss and Adam optimizer, with performance tracked 
throughout. This approach combines U-Net’s powerful feature extraction with scalable data processing, making it 
practical for WBC classification. As illustrated in the figure below, the designing U-Net in each RDD with an illustration 
of the Pseudo code for the U-Net structure. Table 1 summarizes the architecture. 

Table 1 Summary of the U-Net Architecture 

Layer Details Output Shape (128x128x3 input) 

Input Layer Input image (RGB) 128x 128x3 

Encoder 

Conv2D + ReLU 64 filter, 3x3 kernel, same padding 128x128x64 

MaxPooling2D 2x2 pool size 64x64x64 

Conv2D +ReLU 128 filter,3x3 Kernel, same padding 64x64x128 

MaxPooling2D 2x2 pool size 32x32x256 

Conv2D +ReLU 256 filter,3x3 kernel, same padding 32x32x256 

Decoder 

Conv2DTranspose 128 filter, 2x2 Kernal,2x2 strides 64x64x128 

Concatenate Skip connection 64x64x256 

Conv2DTranspose 128 filter, 3x3 kernel, same padding 64x64x128 

Concatenate 64 filter,2x2 kernal, 2x2 strides 128x128x64 

Conv2D +ReLU Skip connection 128x128x 128 

Classification Head 64 filter, 3x3 kernel, same padding 128x128x64 

Classification Head 

GlobalAveragePooling2D Reduce spatial dimensions 64 

Dense 5 units, SoftMax activation 5 

3.5. ResNet50 

The ResNet50 model is a pre-trained feature extractor with its top layer removed. A GlobalAveragePooling2D layer and 
custom fully connected layers are then added for classification. The data is split into training and testing sets, and the 
model is trained using the Adam optimizer. After training, its performance is evaluated on the test set, and validation 
accuracy is displayed. Finally, a plot shows how training and validation accuracy change over time.  Spark speeds up 
data loading and preprocessing by distributing the work across multiple RDDs, making it easier to handle large datasets 
efficiently. This code utilizes Spark to process large image datasets in parallel for training a ResNet-50 model on five 
classes of white blood cells. First, it initializes a Spark Context and loads 1,920 images from each class (9,600 images 
per RDD) into separate RDDs. Each RDD is processed by sampling images and then preprocessing them for the ResNet50 
model. Images are resized and normalized before being labeled according to the class, as shown in Figure 3 below. 
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Figure 3 Model architecture of ResNet50 

3.6. VGG19 

VGG19 is a deep convolutional neural network (CNN) architecture used to classify images into five categories: Basophil, 
Eosinophil, Neutrophil, Monocyte, and Lymphocyte. It consists of 19 layers and is known for its simplicity and 
effectiveness. The workflow for classifying WBCs involves loading images, preprocessing them, building the model, 
training it using the Adam optimizer, and evaluating its performance. The approach uses PySpark to handle the large 
dataset, which contains 9,600 images per RDD, with a batch size of 32 and a learning rate of 0.0001, ensuring efficient 
data distribution across multiple nodes in a cluster. The model's performance is then evaluated and plotted to visualize 
the accuracy over epochs. Illustrate the architecture of VGG19, as shown in the table below. 

Table 2 Proposed VGG19 Architecture for the last 20 layers 

Layer Type Output Shape Parameters Description 

Input Layer (224, 244,3) 0 Input RGB image resized to 224,224 pixels 

VGG19(pre-trained) Variable 20,024,384 Convolution layers of VGG19 with 

include_top=false, preserving feature extraction layers. 

Flatten (7,7,512-25088) 0 Flattens the output of VGG19 into a single vector 

Dense (256) 6,422,784 Fully connected layer with 256 units and ReLU activation. 

Dense (5) 1,285 Output layer with 5 units (one for each class) and softmax 
activation. 

Pooling layers simplify the data by reducing its size, allowing the model to focus on essential features while minimizing 
computation. Max pooling, often with a 2×2 or 3×3 filter, selects the highest value in each section, making it more 
effective than average pooling at keeping essential details. Dense (fully connected) layers come after convolutional and 
pooling layers to perform the final classification. They typically have 512–1024 neurons to handle complex patterns. 
ReLU is commonly used in hidden layers for its efficiency, while the output layer uses Sigmoid for binary classification 
or Softmax for multi-class problems.  

4. Result and Discussion 

The human body consists of WBC, RBC, and PBC, which are very important for the immune system of the human body; 
the thousands of people around the world have died because of leukemia and lack of medical devices, so through some 
advanced algorithms of deep learning can reduce the percentage of human death by classifying and detecting human 
blood cell. The proposed model is to classify White blood cells into five sub-classes, which are Neutrophil, Basophil, 
Lymphocyte, Monocyte, and Eosinophil. The proposed work collected data about five types of (WBC) White blood cells 
through public site and private sites; public sites include(mendeley, Rabin, IEEE, and Kaggle) and on our private site, 
Hiwa Hospital, the author collected about 10.000 images through a microscope and put oil on the slide and take images 
of cell that contains blood cell type and then crop each cell alone for each class to put in one folder, as well as some of 
the data it was not completed or scratch and cleaned the data through deleted images or some it was not clear. Hence, 
all of them are the same size (64x64) in RGB and augmented images and normalized data between (0,1). They used a 
learning rate to prevent overfitting from becoming a vast dataset and used learning rate to prevent overfitting, so the 
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customized dataset is about (48,000) images; so after collecting the data, preprocessed the data utilized five RDD 
(Resilient distributed database), and made balanced classes, that each RDD by taking 20% of each of the five classes (B, 
E, N, M, L), created 5 RDDs, and then trained deep learning models like (ResNet50, U-Net, and vgg19) on each RDD. This 
experiment has been done on Kaggle by using (GPUx100) and compared five values of accuracy for five RDDs by training 
a deep learning model. The comparison of the confusion matrix for precision, recall, and F1 score is illustrated in Table 
3. Utilizing RDD differs from using a deep learning model because some algorithms, such as VGG19 and ResNet50, 
achieve high accuracy with 30 epochs, while U-Net achieves high accuracy at epoch 70. 

Table 3 The 5 RDDs' Val-accuracy for five classes 

 U-Net VGG19 ResNet50 

RDD 1(Accuracy) 83.23% 94.27% 93.59% 

RDD 2(Accuracy) 85.42% 92.34% 94.06% 

RDD 3(Accuracy) 85.05% 92.29% 93.12% 

RDD 4(Accuracy) 85.99% 89.84% 93.80% 

RDD 5(Accuracy) 84.32% 93.23% 94.06% 

The performance evaluation of three deep learning algorithms (ResNet50 and VGG19, alongside U-Net) on various RDD 
(Red Blood Cell Disorders) diagnosis types is presented in Table 3, which displays their recall scores and precision 
metrics, resulting in F1-score calculations. Multiple RDD datasets evaluate models based on their capability to correctly 
detect B, E, N, M, and L class types. The evaluation analysis reveals how each model performs well or poorly in terms of 
its classification output. VGG19 demonstrates superior performance over ResNet50 and U-Net among the three deep 
learning models during most testing scenarios, including precision-based examinations and F1-score analyses. 
Numerical evidence supports the claim that VGG19 provides a superior capacity to recognize positive test examples 
with fewer errors correctly. VGG19 demonstrates superior performance over ResNet50 and U-Net among the three deep 
learning models during most testing scenarios, including precision-based examinations and F1-score analyses. 
Numerical evidence supports the claim that VGG19 provides a superior capacity to recognize positive test examples 
with fewer errors correctly. 

The recall outcomes of ResNet50 are high, which indicates that this model detects many important instances. Some 
model cases reveal that the precision rate has lower numbers while the trade-off between sensitivity and specificity 
exists. U-Net delivers the worst results in every metric evaluation, showing specific underperformance when identifying 
class M samples across multiple RDD datasets. The segmentation-focused structure of U-Net leads to performance 
problems in specific medical class categories.  

• Class (B) and Class (E): The performance of ResNet50 and VGG19 excels in the detection task since their recall 
and precision values remain above 0.90 throughout most evaluation tests. U-Net demonstrates acceptable 
scoring though it falls short behind other models, especially in precision evaluation metrics. 

• Class (N): The F1-score remains high for VGG19 because it demonstrates near- perfect precision and recall in 
multiple examined cases. ResNet50 demonstrates consistent performance in different RDDs, although it 
performs at a slightly different level than its peers. U-Net maintains acceptable results, although its 
performance remains below VGG19 and ResNet50. 

• Class (M): All models struggle to overcome this class with the highest difficulty level. U-Net demonstrates 
significant difficulty achieving its tasks as recall reaches an all-time low of 0.17 within RDD 1, followed by 
overall low performance across datasets. ResNet50 and VGG19 have imprecise results since precision varies 
from 0.68 to 0.98. 

• Class (L): The VGG19 model establishes itself as high-performing by regularly surpassing precision and recall 
values of 0.95. ResNet50 demonstrates efficient performance while displaying different prediction variations 
on tasks. U-Net demonstrates inferior precision, with evidence pointing to problems in identifying positive 
samples correctly.  

U-Net fails to correctly classify type M samples, thus demonstrating its inability to process the dataset effectively. Select 
ResNet50 when recall achievement is the most critical factor because it performs better in detecting all potential cases. 
The VGG19 model offers optimal performance when precision needs to be balanced with recall for medical diagnosis 
applications. The performance metrics of U-Net indicate it struggles with classifying data because its original design 
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targets segmentation tasks. The U-Net model should be improved through hybrid techniques and beneficial fine- tuning 
methods to enhance its classification abilities. It should examine DenseNet alongside transformer-based models to 
establish their superiority level against VGG19—analysis of why the M class proves challenging to classify and test 
various preprocessing and feature extraction methods. The data presented in Tables 4 and 5 demonstrates the 
capabilities of different deep- learning models when classifying RDD entities. The robust performance of VGG19 makes 
it the preferable choice due to its superior recall metrics F1-score, and precision levels. The ResNet50 model proves 
itself as a solid replacement for specific classification needs where recall demands become primary. The classification 
competency of U-Net appears insufficient when tackling specific tasks. The studies confirmed that selecting the 
appropriate model becomes critical when dealing with various classification requirements. 

Table 4 Comparison between Recall, Precision, and F1 scores for each (RDD) while training three deep learning models 

Classes of 
(WBC) 

ResNet50 (Recall / Precision / 
F1 Score) 

VGG19 (Recall / Precision / 
F1 Score) 

U-Net (Recall / Precision / 
F1 Score) 

RDD 1 - 
Class(B) 

0.96 / 0.93 / 0.95 0.92 / 0.96 / 0.94 0.79 / 0.90/ 0.84 

RDD 1 - Class 
(E) 

0.95 / 0.97 / 0.96 0.94 / 0.96/ 0.95 0.81 / 0.87 / 0.84 

RDD 1 - 
Class(N) 

0.97 / 0.91 / 0.94 0.95 / 0.93/ 0.94 0.87 / 0.96/ 0.91 

RDD 1 - 
Class(M) 

0.88/ 0.91 / 0.89 0.92 / 0.92 / 0.92 0.82 / 0.66 / 0.73 

RDD 1 - Class 
(L) 

0.93 / 0.96 / 0.94 0.97 / 0.94 / 0.96 0.87 / 0.84 / 0.85 

RDD 2 - 
Class(B) 

0.94 / 0.96 / 0.95 0.90 / 0.97 / 0.93 0.81/ 0.90 / 0.85 

RDD 2 - Class 
(E) 

0.96 / 0.95 / 0.95 0.95 / 0.93 / 0.94 0.86 / 0.92 / 0.89 

RDD 2 - 
Class(N) 

0.97 / 0.92 / 0.95 0.94 / 0.96 / 0.95 0.92 / 0.89 / 0.91 

RDD 2 - 
Class(M) 

0.86 / 0.96 / 0.91 0.89 / 0.89 / 0.88 0.76 / 0.78 / 0.77 

RDD 2 - Class 
(L) 

0.97 / 0.92 / 0.94 0.93 / 0.92 / 0.93 0.90 / 0.81 / 0.85 

RDD 3 - 
Class(B) 

0.94 / 0.96 / 0.95 0.91 / 0.93/ 0.92 0.83 / 0.91/ 0.87 

RDD 3 - Class 
(E) 

0.93 / 0.96 / 0.94 0.95 / 0.92 / 0.94 0.83 / 0.95 / 0.88 

RDD 3 - 
Class(N) 

0.92/ 0.98/ 0.95 0.95/ 0.95 / 0.95 0.92 / 0.85 / 0.89 

RDD 3 - 
Class(M) 

0.93/ 0.83 / 0.88 0.85 / 0.87 / 0.86 0.80 / 0.71 / 0.75 

RDD 3 - Class 
(L) 

0.94 / 0.95 / 0.94 0.95 / 0.94 / 0.94 0.88 / 0.85 / 0.87 

RDD 4 - 
Class(B) 

0.95 / 0.93 / 0.94 0.89 / 0.93 / 0.91 0.88 / 0.82 / 0.85 

RDD 4 - Class 
(E) 

0.92 / 0.98 / 0.95 0.89 / 0.94 / 0.92 0.90 / 0.93 / 0.91 
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RDD 4 - 
Class(N) 

0.96 / 0.92 / 0.94 0.91 / 0.97 / 0.94 0.89 / 0.96 / 0.92 

RDD 4 - 
Class(M) 

0.96 / 0.92/ 0.94 0.92 / 0.75 / 0.83 0.68 / 0.85/ 0.75 

RDD 4 - Class 
(L) 

0.94 / 0.96 / 0.95 0.88 / 0.94 / 0.91 0.95 / 0.77 / 0.85 

RDD 5 - 
Class(B) 

0.93 / 0.97 / 0.95 0.92/ 0.95 / 0.94 0.84 / 0.91 / 0.88 

RDD 5 - Class 
(E) 

0.98 / 0.91 / 0.94 0.97 / 0.92 / 0.94 0.78 / 0.92 / 0.84 

RDD 5 - 
Class(N) 

0.97 / 0.95 / 0.96 0.91 / 0.96 / 0.94 0.91 / 0.92 / 0.91 

RDD 5 -Class 
(M) 

0.88 / 0.91 / 0.89 0.92 / 0.88 / 0.90 0.75 / 0.75 / 0.75 

RDD 5 - Class 
(L) 

0.94 / 0.97 / 0.95 0.93 / 0.97 / 0.95 0.93 / 0.75 / 0.83 

The training and testing accuracy curves with corresponding confusion matrices of each RDD (RDD 1 to RDD 5) appear 
in Figure 4 to show the U-Net deep learning model's performance during training and evaluation. The statistical test 
results are shown in Table 5. 

 

Figure 4 Plot for accuracy and confusion matrix for the U-Net model 
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Table 5 Statistical tests for each class in the RDDs 

  WBC classes ResNet50/support VGG19/support U-Net/support 

  B 383 377 381 

RDD1 E 386 397 352 

  N 368 369 385 

  M 385 390 388 

  L 398 387 414 

  B 351 381 355 

RDD2 E 402 390 388 

  N 375 385 405 

  M 391 396 389 

  L 401 368 383 

  B 401 370 385 

  E 356 398 405 

RDD3 N 394 371 366 

  M 361 390 379 

  L 408 391 385 

  B 393 371 364 

RDD4 E 384 387 391 

  N 381 392 406 

  M 373 375 379 

  L 389 395 380 

  B 391 370 399 

RDD5 E 406 391 369 

  N 361 369 385 

  M 359 383 391 

  L 403 407 376 

4.1. Training and Testing Accuracy 

All RDDs show learning improvement through increasing accuracy in training and validation results during the epochs. 
At the beginning of training, the models show quick upward trends in accuracy, while validation accuracy follows 
training accuracy at a slight distance. The deep learning process displays sufficient convergence, but testing accuracy 
exhibits some tiny variations, which point to possible overfitting, especially with RDD 1 and RDD 2. Training accuracy 
for RDD 1 and RDD 2 demonstrates a persistent development pattern because it steadily rises throughout the process. 
The peak in testing accuracy is unstable as the results start to vary slightly afterwards, potentially due to data variability 
and possible overfitting issues. The learning process of RDD 3 and RDD 4 produces orderly convergence as training and 
testing accuracy levels rise together steadily, thus indicating balanced model training. The accuracy evolution in RDD 5 
remains steady because both curves attain high accuracy levels, demonstrating reliable generalization capabilities. 

The model classification results for various RDDs can be found in detail through the confusion matrix analysis. Key 
observations include: High Classification Accuracy for Most Classes: Strong classification achievements emerge from 
the diagonal elements, which control most spaces in each confusion matrix. Recall and precision performance of the B, 
E, and N classes demonstrate high stability when evaluating all RDDs. The model performs poorly with Class M, as 
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evidenced by noticeable incorrect classifications that primarily affect RDD 1 and RDD 2, since these rounds exhibited 
many Class M samples being misclassified as Class N. The misclassification in these classes stems from their overlapping 
features, which causes trouble in their distinction. The Class L prediction achieves success rates, except for minor cases 
where some samples in RDD 4 and RDD 5 are misclassified into the wrong categories. Class L requires better 
modifications to its feature extraction techniques. The model demonstrates uniform success throughout RDDs, 
regardless of a few incorrect predictions. The deep learning method demonstrates robustness through its steady 
classification outcomes. The deep learning models demonstrate robust learning capabilities through their high accuracy 
scores in classifying most instances, as shown in Figure 4. Further improvements are required to overcome classification 
difficulties with Class M objects and to decrease the number of wrong assignments for Class L types. The performance 
and error rate of the classification system are expected to improve with additional parameter refinements, specialized 
feature extraction methods, and class-specific modifications. To avoid unstable validation accuracy and overfitting in 
some of the RDDs, the author employs the following approach: First, the technique of augmenting the current dataset 
through random operations, such as rotation, translation, and scaling, is used to improve model generalization. Second, 
the concept of early stopping is employed about validation loss to prevent overfitting as training progresses. Third, 
dropout layers and L2 regularization are introduced in deep learning models to avoid dependency on specific features. 
Additionally, it accelerates learning by normalizing activations and reducing covariance at each layer during the training 
process. Therefore, the use of the concept of learning rate scheduling involves gradually adjusting the learning rate to 
improve convergence rates. Using multiple subsets of RDD validation also enables estimation of model reliability. 
Finally, federated averaging helps ensure that all models trained using the various sections in the RDDs converge to a 
single global model, thereby eliminating biases present in a specific RDD. The techniques mentioned above together 
make the model more robust and prevent the model from overfitting in the distributed data. 

The evaluation focused on five distinct RDDs, utilizing deep learning models such as VGG19, ResNet50, and U-Net. The 
results, analyzed through the confusion matrix, showed that the performance of VGG19 on the 5 RDDs achieved higher 
accuracy compared to ResNet50 and U-Net. VGG19 demonstrated superior metrics such as precision, recall, and F1 
scores, highlighting its ability to handle the complexities of WBC classification more effectively than the other models. 
In contrast, ResNet50 and U-Net performed well but did not match the accuracy levels achieved by VGG19 in this setup. 
These findings demonstrate the potential of leveraging advanced deep learning models with the distributed architecture 
of RDDs to manage large-scale data efficiently. This approach provides a reliable solution for medical applications 
requiring precise classification. While the data is divided among 5 RDDs and the data size is smaller than the entire 
dataset, utilizing RDD in big data has 9600 images and takes less memory. FL is an important aspect of this study because 
centralized training faces challenges of scalability and memory, especially when used in the classification of WBC in this 
study. Training VGG19 is not possible for a classical system given that 50,000 training images can cause out-of-memory 
errors and require much time. RDDs of Apache Spark support distributed computation, and although training the VGG19 
architecture inside RDDs, it is slower due to processes such as shuffling, serialization, and transformation, which took 
approximately 2,275.088 sec per RDD across 70 epochs. This is because although designing and implementing these 
operations for RDDs takes a longer time compared to standardized formats, RDDs help avoid cases of memory overload 
on large-scale models, thus making FL with RDDs feasible where centralized training (from personal computers) would 
not be feasible.   

5. Conclusion 

The problems of scalability, accuracy, and privacy in medical diagnostics can be improved by combining FL, Big Data, 
and sophisticated deep learning models. To categorize WBCs, this study employed Apache Spark for effective data 
processing and FL for safe, distributed training across big datasets. The analysis utilized deep learning models, including 
VGG19, ResNet50, and U-Net, across five different RDDs. VGG19 regularly outperformed ResNet50 and U-Net, achieving 
the highest accuracy among the models, according to the data examined using the confusion matrix. VGG19 proved its 
capacity to manage the intricacies of WBC categorization more successfully by exhibiting superior metrics, including 
precision, recall, and F1 scores. U-Net underperformed compared to ResNet50, which also produced competitive results, 
demonstrating the different capabilities of these models for the given job. This method shows how the latest methods 
can be combined to increase diagnosis accuracy by using sophisticated deep-learning models trained on distributed 
RDDs. The results underscore the importance of utilizing both FL and Big Data frameworks to efficiently and securely 
manage massive datasets. This novel approach has great potential to improve biomedical research and healthcare by 
opening the door to more precise and scalable medical diagnostics.  
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