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Abstract

Integrating deep learning and federated learning models, the study investigates the detection of cancer and chest
diseases. The researchers used a combination of 112,120 chest X-ray photographs annotated by the NIH and 5,400
lymphoma biopsy images from Kaggle to identify three distinct forms of lymphomas. The method's first aims are to
improve images, normalize data, and identify features. Afterwards, it evaluates features that rely on contours, such as
aspect ratio solidity and intensity fluctuations. The study included seven industry-standard models and federated
learning techniques. The InceptionV3, MobileNetV2, DenseNet161, ResNet50, VGG-19, and VGG-16 models are included
here. To measure performance, we employ F1l-score, recall, accuracy, and computational efficiency. Although
InceptionV3 dominated in terms of loss and root-mean-squared error, DenseNet161 had the best accuracy among deep
learning models used to detect chest illnesses at 88.01%. for compared to other models, VGG-19 had a superior accuracy
rate of 97.5% for classifying lymphomas. The newly integrated models that succeeded were InceptionV3 and VGG-19,
which had 95.8% accuracy in diagnosing lymphoma and 97.7% accuracy in detecting chest illnesses. With the use of
deep and federated learning algorithms to medical imagery, automated illness detection got increasingly accurate.

Keywords: Deep Learning; Chest Disease Detection; Feature Extraction; Medical Image Analysis; Federated Learning;
Transfer Learning

1. Introduction

The thoracic cavity contains various organs which fall under the category of chest diseases that medical science
classifies into a wide range of ailments. The human body faces numerous health problems in these regions and
additional structures of the thoracic cavity [1]. Since chest diseases present multiple interwoven anatomical
components, it becomes essential to use a combination of approaches to manage them effectively. Medical detection of
chest diseases becomes possible through three primary diagnostic methods which include CT scans and MRIs along
with pulmonary function testing [2], [3].

New technology from artificial intelligence helps deep learning models to increase disease identification accuracy
together with operational speed. Al systems using medical image inputs achieve high detection precision to identify
diseases at an early stage thus enabling combined diagnoses of pneumonia along with tuberculosis leukaemia and
cardiomegaly [4]. Predictive diagnostics receives enhanced effect from neural networks through their analysis of
patient information and imaging data which improves healthcare delivery results. The medical diagnostics field
experienced a breakthrough with deep learning models that deliver automated picture analysis at very high standards

* Corresponding author: Erin Jahan Meem

Copyright © 2025 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0.


http://creativecommons.org/licenses/by/4.0/deed.en_US
https://www.wjaets.com/
https://doi.org/10.30574/wjaets.2025.17.1.1392
https://crossmark.crossref.org/dialog/?doi=10.30574/wjaets.2025.17.1.1392&domain=pdf

World Journal of Advanced Engineering Technology and Sciences, 2025, 17(01), 233-247

ofaccuracy. The fundamental role of these models particularly CNNs and RNNs enables them to analyse medical imagery
effectively [5]. Image segmentation and classification together with anomaly detection form the main use cases for
which CNNs have become essential tools in medical diagnostics. The interpretation of X-rays and CT scans by human
specialists for chest disease detection through traditional methods shows errors and depends on differing levels of
medical expertise. DL models enhance diagnosis accuracy through their ability to find precise patterns and anomalies
which results in improved analysis [6], [7]. Rudimentary acceptance of this technology is blocked by the requirement of
extensive data and processing capacity as well as navigability issues within these models.

Conventional
neural
network

Recurrent

Generative
Adversarial
network

Figure 1 Representation of Deep learning models in medical science

Figure 1 presents the different deep learning model types applied in medical science. Latent-dimensional reduction
functions of autoencoders work alongside the image-processing capabilities of CNNs and sequential analysis from RNNs
in addition to GAN and hybrid model technology addressing challenges [8]. The worldwide rise of chest diseases results
from exposure to pollutants together with exposure to infectious pathogens and tobacco smoke consumption. Multiple
chest diseases which affect patients include pneumonia, atelectasis, pleural diseases, consolidation, infiltration,
pneumothorax and enema together with emphysema, fibrosis, effusion, cardiomegaly, nodules and masses. As an
example, pneumonia produces alveolar inflammation that results in fluid buildup. Atelectasis refers to lung collapse due
to airway obstruction or external pressure. The function and elasticity of lungs become adversely affected when patients
have pleural diseases and fibrosis which results in serious respiratory complications. It is fundamental to image-based
diagnosis since proper understanding of these diseases enables prompt medical treatment.
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Figure 2 Outline of the types of chest diseases
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The diagram in Figure 2 outlines multiple chest diseases by their origins alongside their effects on lung functioning. The
identification of chest conditions during early stages leads to decreased mortality statistics. Machine learning (ML) and
deep learning algorithms perform advanced detection along with classification of various disorders in a significant
manner [9]. Chest X-rays function as the principal diagnostic method because they provide effective results and can be
easily accessed. CT scanners and MRI machines enable complex disease analysis which results in detailed descriptions
of diseases. Al algorithms evaluate X-ray and CT images to detect tuberculosis, pneumonia and lung cancer by achieving
accurate identification [10]. These detection models surpass traditional approaches because they recognize subtle
abnormalities which people viewing X-rays normally miss. Al diagnostic tools possess the capability to analyse large
data sets with rapid efficiency which enables clinicians to conduct real-time decisions in medical facilities. Modern
medical diagnostic tools advanced by Al in medical imaging now perform chest disease detection with high accuracy
levels. When artificial intelligence methods employing neural networks and transfer learning techniques are combined,
the accuracy of illness detection is significantly raised.

Federated learning provides a new approach that safeguards privacy during the collaborative Al model training process
between multiple institutions [11]. Multiple hospitals and research centres can contribute to Al progress through this
decentralized approach as it ensures they do not need to share protected patient data. Deep learning technology has
automated medical image analysis which enables fewer need for human interpreters to work on these diagnostic tasks.
VGG-16 ResNet50 along with DenseNet161 represent several pretrained neural networks that detect diseases widely
in various applications [12], [13]. Transfer learning in the models enhances both the diagnostic accuracy and decreases
the computational needs. Deep learning operates unlike traditional ML approaches because it needs little or no feature
engineering to function successfully [14]. The networks acquire their hierarchical data representations from the data
they process directly and produce very effective image pattern identification within medical contexts. Advantages from
self-contained design led to better diagnostic tasks and efficient healthcare outcomes.

Hospitals and institutions now use distributed model training through federated learning to revolutionize how they
deploy artificial intelligence systems for healthcare. Traditional centralized models differ from FL because data stays
locally while this system permits only model updates to be exchanged for patient protection. A central server within
federated learning distributes the first version of a model to participating clients who apply their individual datasets
forlocal training. Multiple institutions update their local models to refine the global model allowing improved predictive
capability and keeping data private in the process. The method provides exceptional benefits to chest disease detection
by allowing access to various datasets which enhances model robustness and generalizability properties. This research
unites deep learning with federated learning to develop an Al-driven medical diagnostic method which presents
scalable protection of patient data during chest disease detection processes.

2. Related Works

Recent breakthroughs, such as regenerative wound healing [15], hybrid nanoconjugates for glioblastoma [16], and
molecular erasers for cancer immunity [17], highlight the power of advanced technologies in healthcare. In parallel,
artificial intelligence has shown transformative potential across domains—improving precision agriculture through
self-driving systems [18], advancing road segmentation via attention models [19], enabling Alzheimer’s diagnosis with
hybrid CNN-SVM methods [20], predicting machine failures with multimodal learning [21], and enhancing plant disease
detection through deep stacking models [22]. Together, these innovations illustrate how Al and biomedical research
converge to address complex challenges in critical sectors.

Al applications for chest disease detection now receive wide acceptance due to their dual capability to cut down
misdiagnosis and provide support for radiologists in their diagnostic choices. CRIS models that utilize large databases
of medical images exhibit extraordinary precision when detecting different kinds of chest infections and abnormalities
[10]. Different Al technology approaches have been studied with deep neural networks, transfer learning as well as
hybrid Al model use. CNN technology has become essential for medical imaging analysis since it excellently identifies
complex radiographic patterns. Studies have shown that selected models provide excellent diagnostic results which
validate artificial intelligence capabilities in medical settings.

Applications of deep learning and related machine learning techniques have revolutionized the solution of medical
image problems [23]. Deep neural systems enable automatic process of extracting helpful information without requiring
human interpretation. The training of deep learning models linked with big chest X-ray datasets enables them to
successfully detect various pulmonary diseases with high accuracy levels [24]. The field of health research applies
transfer learning by adjusting pre-trained CNN networks including ResNet, VGG16 and InceptionV3 for better diagnosis
outcomes. Machine learning plays an essential role in respiratory medicine because certain models demonstrate high
accuracy levels. The analysis includes support vector machines (SVMs) and long short-term memory (LSTM) networks
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in addition to CNNs for ML exploration. Several techniques have found their applications throughout multiple aspects
of detecting chest diseases particularly through lung sound evaluation and airflow tracking and disease development
forecasting [25]. Multiple computers learning methods can achieve better predictive competencies through integrative
model combinations according to roundtable analysis.

Deep learning techniques have proved essential for increasing the precision of chest disease diagnosis through their
applications. Modern neural network systems analyze chest radiographs to detect pneumonia and fibrosis and tumors
inside the body. Multiple studies have applied convolutional neural networks and autoencoders and graph
convolutional networks for imaging analysis and chest classification purposes [26]. Research groups have created
specific CNN designs that deliver maximum accuracy results when conducting multi-class and binary classifications.
Deep learning technology achieved success in chest disease diagnosis by creating new neural network designs DC-
ChestNet and VT-ChestNet. The models have received training through large-scale dataset samples to identify normal
patients from those with lung diseases or heart ailments [27]. The VT-ChestNet model stands out because it
demonstrates excellent performance by reaching an area under the curve (AUC) score higher than 95% in multi-class
classification tasks.

The global COVID-19 pandemic caused healthcare institutions to fast-track their implementation of Al solutions in
medical diagnostics. The detection of COVID-19 pneumonia through chest X-ray and CT scan images has been
accomplished using intelligent Al-based models [28]. The development of Al-driven COVID-19 detection systems
heavily depends on CNNs together with transfer learning strategies. These models show great accuracy results which
enable quick screening and early diagnosis processes. According to research deep learning systems training on COVID-
19 datasets reveal the ability to discover COVID-19 at high sensitivity together with specificity rates in almost real-time.
Artificial intelligence diagnosis systems using patient clinical data from oxygen saturation tests and lung function
analysis achieve higher accuracy in medical diagnoses [29]. Federated learning serves as a research area to enable Al
training in multiple healthcare institutions without compromising patient privacy of data.

Al applications extend beyond medical image analysis by being used for lung sound analysis in respiratory disease
diagnosis. Deep learning algorithms receive training from audio data of lung sounds to detect asthma as well as
bronchitis and COPD among other conditions [30]. These diagnostic systems examine airborne sound patterns to detect
abnormal patterns which supports non-invasive assessment of chest diseases. Studies reviewed 160 publications which
focused on deep-learning-based lung sound analysis. Research results confirm that artificial intelligence models achieve
accurate classification of lung sounds for diagnosing pulmonary conditions at an early stage [31]. New advancements
include the coupling of artificial intelligence with electronic stethoscopes which enhances respiratory sound analysis
efficiency thus making it suitable for use in telemedicine.

The implementation of Al technologies for chest disease diagnosis continues to meet various obstacles even with
existing advancements. The main restriction in Al deployment arises from the insufficient use of diverse standardized
datasets [32]. Al systems can only deliver accurate diagnoses when trained on specific datasets even though they
become less effective when used with different groups of patients. The model performance suffers whenever training
datasets have an unbalanced distribution of diseases. Al models currently present difficulties when it comes to their
ability to show interpretable outputs. Deep learning systems operate as opaque mechanisms which prevent healthcare
providers from understanding their determination logic [33]. Healthcare professionals need transparent models for
clinical acceptance since interpretability allows them to validate diagnostic results. The rendition of Al algorithms
sometimes contains systemic biases which might endanger medically just healthcare [34]. Research reveals that Al
systems receiving input data which contains bias create mistakes for population segments that lack proper
representation in training samples. Fair and reliable Al-based diagnosis needs ethical standards for handling biases and
collection of datasets that represent diverse patient populations [35].

The integration of Al into medical imaging through machine learning makes chest disease diagnosis more accurate and
efficient along with being capable of large-scale implementation. Lung disease classification from radiographic images
succeeds at the highest level through deep learning models whose main component are convolutional neural networks
[36]. The breast cancer detection using Al has reinforced the diagnostic capabilities of artificial intelligence for medical
purposes [37]. Al deployment in healthcare requires solving problems with biased data and lack of interpretability and
privacy limitations to secure responsible implementation. Al research progress gives reason to expect positive changes
in chest disease diagnosis and custom treatment plans for the near future [38].

Deep learning and federated learning provide substantial potential to improve healthcare results during chest disease
detection processes. This research aims to
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e Adeep learning system should be created to recognize chest diseases successfully within X-ray and CT imaging
data.

o Netted training happens by using federated learning together with data privacy protection features.

e The implementation of advanced Al techniques should focus on improving diagnostic efficiency together with
precision of detection.

The study works to solve major medical imaging problems which supports the development of advanced diagnostic
systems that are both more secure and efficient.

3. Methodology

The quick progress of artificial intelligence (Al) technology has reshaped healthcare through its substantial influence
on medical image examination. Medical detection of pneumonia along with lung fibrosis and lymphoma needs fast and
precise detection methods to achieve better patient results. Medical diagnostic procedures require significant time and
show subjective evaluation results. A deep learning framework utilizing federated learning and different pre-trained
models and feature extraction approaches proposes to detect chest diseases together with lymphoma. The Figure 3
shows the illustration of the proposed approach for detecting the chest diseases.
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Figure 3 Illustration of the proposed approach

3.1. Dataset Description

The research uses the NIH Chest X-ray dataset as well as the Malignant Lymphoma Classification dataset from Kaggle
which serves as the primary sources. This NIH dataset includes 112,120 chest X-ray images with 14 different disease
annotations ranging from pneumonia to pneumothorax and fibrosis to atelectasis to edema. A structured labeling
system based on Natural Language Processing technology extracts medical report information regarding diseases. All
patient files contain metadata links that include demographic information about age, gender, diagnostic type, and
imaging protocol details. The set provides bounding box annotations which allow viewers to precisely identify regions
of disease appearance in order to enhance area localization.

Histopathological images from many pathologies centers total 5,400 samples which medical professionals grouped into
the three lymphoma types Chronic Lymphocytic Leukemia (CLL), Follicular Lymphoma (FL), and Mantle Cell Lymphoma
(MCL). The staining with Hematoxylin and Eosin (HandE) technique helps enhance image contrast so cellular structures
become easier to view. The RGB format with high resolution provides the dataset for enhanced features extraction
capabilities. The extensive dataset enables deep learning models to learn many patterns which relate to chest diseases
alongside lymphoma characteristics. The research depends on two different datasets to build diagnostic capabilities for
disease identification in X-ray and biopsy images because deep learning proves its potential for medical imaging data
sets.

3.2. Preprocessing Techniques

The deep learning models undergo extensive preprocessing steps that both improve image quality as well as normalize
inconsistent data in the dataset before training. Applying a standardized resolution to every image constitutes the first
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part of preprocessing before deep learning model training. The procedure begins by resizing Chest X-ray pictures to
224 x 224 pixels and setting lymphoma images at 1388 x 1400 pixels. The next stage applies normalization to convert
all pixel values between zero and one so that every image possesses equal intensity ranges. The training process reaches
convergence speedily because of this technique.

Gaussian filtering smooths medical images without distorting essential edges in order to eliminate background noise.
The Gaussian function exists as follows:

x2+y2

1 e 202 €))]

2ma?

G(x,y) =

The standard deviation o defines the width of the Gaussian kernel in this formula. The pre-processing contains a filtering
function to remove small variations together with imaging artifacts which preserves the quality of feature extraction.

The process of image enhancement through contrast enhancement plays an essential role when working with chest X-
ray images because it helps reveal important disease characteristics which may otherwise stay hidden owing to weak
contrast levels. The process of equalizing pixel intensities with histogram equalization improves image contrast in the
data. The processing of missing metadata values within the dataset occurs either through substitution techniques or by
taking out incomplete records. Last but not least in the preprocessing scheme are categorical variables that receive
numerical encoding which enables their compatibility with deep learning frameworks. By implementing preprocessing
steps to the dataset its quality improves which results in better model performance and generalization during
classification.

3.3. Data Augmentation

The medical image datasets show substantial variations regarding disease samples distribution where specific
conditions possess significantly less image data than others. The data augmentation technique creates artificial images
through modifications which apply to existing dataset images. The augmentation techniques generate new image
versions while the learning process focuses on identifying features which remain consistent throughout. This leads to
better generalization together with improved robustness.

The applied data augmentation strategies include both rotation and translation methods as well as horizontal flipping
and scaling operations and zoom functions. Images get rotated by small angular values (+5¢) as a method to correct
slight positioning differences between X-ray and biopsy images. The translational movements apply to both x- and y-
axes to keep disease characteristics visible while maintaining small repositioned images. The system applies horizontal
image flipping at random to X-ray images for simulating patient position differences. The image features are refined by
scaling and zooming operations while maintaining slightly modified dimensions because this method allows the model
to develop mastery over various levels of image magnification.

The mathematical definition of augmentation transformation appears as follows

I' = SRTI (2)
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Foulize mapa

Subeampling

Figure 4 Deep Learning Architecture for Chest Disease Classification

238



World Journal of Advanced Engineering Technology and Sciences, 2025, 17(01), 233-247

The image transformation produces I' with scaling factor S and rotation matrix R and translation T. The images used for
lymphoma contain color jittering because this method randomly alters brightness levels and contrast together with
saturation conditions to replicate different staining variances noticed in biopsy examples. The augmented data elements
enlarge the dataset diversity to reduce overfitting while boosting model performance during real medical image
evaluations.

Figure 4 illustrates a Convolutional Neural Network (CNN) design that applies convolutional layers for feature
extraction after which it moves on to pooling and fully connected layers for classification. Medical image processing
within CNNs reveals their ability to detect chest disorders as well as distinguish different lymphoma categories.

3.4. Feature Extraction

Medical image classification highly depends on feature extraction because it enables deep learning models to recognize
important image patterns. The extraction process of morphological and texture-based features helps improve disease
characteristic understanding. The shape characteristics and dimensional information that concern disease-affected
areas form part of the morphological features extracted from the images. These include

Area of the disease region

Area = height X width 3)

The boundary length of disease regions is captured as the measurement known as perimeter.

Per = ¥/ (X1 — %) + (ie1 — ¥0)? (4)
In Aspect Ratio, healthcare practitioners track the stretch length of medical conditions at the target site.

width
height

Aspect Ratio =

(5)

The compactness of a lesion is determined by filling a syringe with its material while measuring the volume.

Area

Solidity = (6)

Convex Hull Area

Texture-Based Features: The features describing pixel intensity variations that exist inside disease regions fall under
the category of texture features. This measure evaluates the standard measurement of grayscale value across an area.

1gnN
Lnean = NZi:l I; (7)
Histogram equalization enhances contrast:

H(1) = ~Clmind ¢ 955 8)

Imax—Tmin)

The features of CNNs enable them to concentrate on disease-relevant patterns which enhances their ability to classify
medical images effectively.

3.5. Model Selection and Training

This research uses deep convolutional neural networks (CNNs) since they demonstrate high efficiency in image
classification tasks. Each CNN organizes into three essential layers that consist of convolutional layers and pooling
layers and fully connected layers. The convolution procedure involves the following definition

00,j) = XmXZnl(i+m,j+n)-K(m,n) 9)

The process uses three variables namely input image I(i,j), filter kernel K(m,n) and output feature map O(i,j). SGD and
backpropagation methods enable training the models to reduce classification errors.
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3.6. Transfer Learning Models

Deep learning utilizes transfer learning as a strong method that adapts a large dataset-trained model for applications in
related but different contexts. Deep neural networks receive better performance after pre-trained ImageNet models are
adjusted to analyze medical pictures. The training method results in better performance together with reduced training
duration and successful resolution of the low-number of labeled medical data challenge.

This research utilized six state-of-the-art transfer learning models namely VGG-16, VGG-19, ResNet-50, DenseNet-161,
MobileNetV2, and InceptionV3 for detecting chest diseases and lymphomas. Each architecture within these models
provides features that aid extraction and classification processes.

VGG-16 (Visual Geometry Group-16): The Visual Geometry Group (VGG) at the University of Oxford has created VGG-16
as their deep CNN model. This network contains sixteen layers starting with thirteen convolutional layers before ending
in three fully connected layers. Feature extraction at the model occurs through the combination of 3x3 convolutional
filters and small receptive field elements and max pooling layers.

A REL activation function follows each convolutional layer for the purpose of creating non-linear behavior.
f(x) = max(0, x) (10)
The last classification layer includes a softmax activation function for its operation.

Zj

P(y = jlx) =ﬁ (11)

VGG-19: VGG-19 expands upon VGG-16 by adding more layers to reach a total of 19 between convolutional and fully
connected components. The model includes extra depth to its features since it employs the same 3x3 convolutional
filters and max pooling layers.

ResNet-50 (Residual Network-50): ResNet-50 introduced residual learning for deep network training (50 layers)
through the solution of the vanishing gradient problem. Skip connections are the fundamental concept of ResNet
because they direct gradient propagation across layers for faster network convergence.
Res Net trains itself to solve a residual function instead of designing a function H(x).

F(x) =H(x)—x (12)
The output of a residual block is:

y=F(x)+x (13)
DenseNet-161 (Densely Connected Convolutional Networks): DenseNet-161 represents an advanced CNN design which
builds feature propagation through sequential layer connections between each element during model forward
processing. The DenseNet architecture implements feature map concatenation instead of residual connection methods
like ResNet does to improve efficiency in feature reuse.
For layer ], the output is

x; = Hy([xo, 1, x1-1]) (14)

MobileNetV2: The solution creators designed MobileNetV2 specifically for efficient deep learning models at low power
because this model works well for medical imaging tasks on limited-capacity systems. Depthwise separable
convolutions form a key part of MobileNetV2 by decreasing computational requirements without sacrificing
performance quality.

Instead of a standard convolution

Y=XxK (15)
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MobileNetV2 factorizes it into

Ydepthwise =X *Ky (16)

Ypointwise = Ydepthwise * Kp (17)

InceptionV3: The efficiency of CNN depends on InceptionV3 because it conducts parallel convolution layers and multi-
scale feature extraction. The network employs parallel 1x1, 3x3 and 5x5 convolution operations to obtain pattern
recognition at varying scales as an alternative to using standard filter size.

Given an input X, the output is computed as
Y =EiL (X «K) (18)

Here Ki = filters, Kd = depthwise filter, Kp = pointwise filter, xI = outcome, HIl = transformation, [xg, x;, - x;_1] =
concatenation of previous feature, x = input, F(x) = learned residual mapping, y = outcome,

3.7. Federated Learning for Privacy Preservation

The training process in Federated learning takes place on various devices locally without revealing actual data to protect
privacy. During the aggregating process through Federated Averaging (FedAvg) the algorithm unites model updates
sent by multiple device clients.

n

k .
Wi = § ) ﬂWi (19)
=1

Each client provides their model updates wi while also reporting their sample count ni. Hospitals can train models
together through this approach which stands as a guarantee for patient data confidentiality.

The combination of deep learning along with federated learning enhances disease identification by improving medical
diagnostic security through controlling personal information access.

The research contains medical image classification segments using deep learning with federated learning techniques
which enhance privacy and disease detection precision. A prediction enhancement model utilizes CNNs together with
transfer learning and morphological feature extraction through the proposed approach.

4. Result Analysis

The results section provides an extensive analysis of the proposed deep transfer learning and federated learning models
which classify chest diseases and lymphomas. Analysis of effectiveness measures accuracy, loss, precision, recall, F1-
score, and AUC provides an assessment of model performance. The analysis determines medical diagnostic optimal
models by measuring different architectural efficiency. Visual model performance evaluation for model effectiveness is
enabled using AUC curves and loss-accuracy plots. The research investigates multiple threshold parameters together
with dataset variations to validate the proposed method through accuracy validation. Accuracy demonstrates the
number of correctly classified instances among all available instances in a particular study. It is given by

__ Correct positive + Correct negative

Acc =

(20)

Total samples

Precision evaluates the number of truly positive cases among all those cases that the model predicts positively. The
system needs to perform well in situations which require a low rate of false positive results.

Correct positive

Pre = 21D

correct positive + Incorrect positive

Recall demonstrates which actual positive cases exist and correctly get detected. Medical diagnosis requires immediate
detection of all positive cases because missing a single one constitutes a false negative.

Correct positive

Rec = (22)

correct positive + Incorrect negative
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The F1-score calculates precision and recall with an equation that computes their harmonic mean for balanced
evaluation. The metric finds its best application during work with data that contains imbalanced distributions.

Precision * Recall
 —_

FS = 2 (23)

Precision + Recall

AUC-ROC provides insight into model discrimination ability through the representation of True Positive Rate vs False
Positive Rate at different threshold choices.

Correct positive

TPR = (24)

Correct positive + Incorrect negative

Incorrect positive

FPR =

(25)

Incorrect positive + Correct negative

The evaluation of predicted and actual value divergence is accomplished through loss functions. Two common loss
functions are

1 m .
MSE = ~ Zkzl(actual value — predicted value) (26)

EL=—Y" b;log(h;) (27)

The error quantity known as RMSE functions as another metric to calculate actual-predicted value discrepancies. The
loss function assigns greater weight to large deviations above and below the true value than it does to MSE.

RMSE = Jizm (b — b)° (28)
M Ldp=1

MCC maintains balanced measurements for datasets with any imbalance level. TMCC presents a full performance
evaluation system by using TP and TN together with FP and FN.

(CPXCN)—(IPXIN)
(CP+IP)(CP+IN)(CN+IP)(CN+IN)

MCC =

(29)

Here CP = correct positive, CN = correct negative, IP = incorrect positive, IN = incorrect negative, m = total number of
information points, bi = actual value, b; = Predicted value, m = total samples.
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Figure 5 Visualization of compared performance of existing approach with suggested approach

The performance metrics display that the Deep + Federated Learning method ranks higher than traditional methods for
classifying chest diseases and lymphomas is shown in Figure 5. X-ray models using CheXNet, Deep Chest, and Mobile
Net for X-ray achieve diagnostic accuracy from 82.3% to 87.2% whereas the Lymphoma Detection CNN stands at 89%.
The proposed method demonstrates superior diagnostic capability through its 97.7% accuracy which surpasses other
systems. Deep + Federated Learning produces outstanding results through its precision of 95.2% and recall of 96.2%
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and F1-score of 95.4% which surpasses the Lymphoma Detection CNN's performance indicators (85%, 88% and 86%
respectively). The proposed detection system exhibits 96.2% recall which maintains maximum sensitivity toward
disease diagnosis thus making it ideal for medical practice. Using deep learning in conjunction with federated learning
allows the proposed model to safeguard patient data privacy while boosting classification accuracy which leads to
becoming an efficient advanced instrument for detecting diseases in real medical environments.
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Figure 6 Visualization of compared error rate of existing approach with suggested approach

The combination of Deep with Federated Learning produces enhanced performance results across each essential
assessment metric better than other existing techniques is shown in Figure 6. The AUC value of 0.95 stands as the
highest among all present methods which demonstrates outstanding discrimination power for separating diseased from
non-diseased cases. The MCC (0.90) produces superior results than all other tested models because it demonstrates
robust performance in maintaining a strong balance for true positive and true negative identifications within
imbalanced datasets. The proposed model performs better in prediction accuracy than CheXNet (0.43, 0.65) and
DeepChest (0.38, 0.61) based on its lower loss (0.15) and RMSE (0.39) values. The proposed approach exceeds
ResNet50-based and Lymphoma Detection CNN models because it uses federated learning to distribute training across
different datasets with no privacy compromise. The proposed method shows potential for real-world medical image
classification due to its improved accuracy together with robustness and efficiency levels.
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Figure 7 Visualization of compared performance of suggested approach with different model

The proposed approach demonstrates VGG-19 as its best-performing deep learning model by succeeding with 97.7%
accuracy and reaching 92% precision and 94% recall while establishing a 93% F1-score is shown in Figure 7. The
feature extraction abilities of VGG-19 establish it as the most trustworthy model for medical diagnosis of both chest
diseases and lymphomas. The model InceptionV3 accomplishes high precision (94%) and recall (95%) scores to
position itself as an effective alternative to other models. ResNet-50 alongside DenseNet-161 achieve balanced
performance through their 95% accuracy levels and stable precision and recall measures that establish them as efficient
diagnosis tools. MobileNetV2 provides the least accurate results at 92.5% yet its compact framework enables quick
processing suitable for live utilization. Several versions of deep transfer learning implemented through federated
learning demonstrated VGG-19 as the most accurate while InceptionV3 and DenseNet-161 followed closely in terms of
performance thus improving medical image classification effectiveness.
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Table 1 Comparison of error metrics of different models can be used in proposed approach

Model AUC | MCC | Loss | RMSE
VGG-16 0.96 | 0.87 | 0.216 | 0.464
VGG-19 0.98 | 0.91 | 0.155 | 0.393
ResNet-50 0.95 | 0.88 | 0.272 | 0.521

DenseNet-161 | 0.97 | 0.89 | 0.183 | 0.427
MobileNetV2 | 0.94 | 0.85 | 0.255 | 0.504
InceptionV3 0.97 | 0.9 0.133 | 0.364

The performance evaluation of several deep learning models using AUC, MCC and loss and RMSE metrics resulted in
VGG-19 as the optimal model choice as shown in Table 1. The classification performance of VGG-19 is exceptional
because it achieves both AUC 0.98 and MCC 0.91 which indicate strong prediction correlation to actual clinical data. The
prediction errors remain minimal because VGG-19 shows both the lowest value of loss at 0.155 and RMSE at 0.393. The
performance indicators for InceptionV3 model include an AUC of 0.97 and MCC of 0.90 and both loss and RMSE levels
(0.133 and 0.364) that prove it to be a robust alternative to VGG-19. The AUC score of DenseNet-161 reaches 0.97 and
MCC stands at 0.89 while its loss remains at 0.183. ResNet-50 and MobileNetV2 present lower detection results yet
MobileNetV2 provides higher efficiency compared to other models in real-time operations. Medical image classification
achieves its most effective results with VGG-19 as the best performer and InceptionV3 and DenseNet-161 ranking
among the top alternatives.

Table 2 Comparison of Computation Time Between Existing Approaches and the Proposed Approach with Different
Models

Approach Computation Time (ms)
CheXNet [1] 45,320
DeepChest [3] 39,750
MobileNet for X-ray [5] 28,560
ResNet50-based Chest Diagnosis [7] | 31,200
Lymphoma Detection CNN [9] 37,800
VGG-16 37,831
VGG-19 36,910
ResNet-50 29,150
DenseNet-161 24,645
MobileNetV2 27,958
InceptionV3 35,284

The proposed method delivers better computational speed than traditional methods especially through DenseNet-161
(24,645 ms) and MobileNetV2 (27,958 ms) which represent the speediest models is shown in Table 2. The time
requirements for the medical diagnosis systems CheXNet and DeepChest at 45,320 milliseconds and 39,750
milliseconds negatively impact their suitability for real-time medical applications. DenseNet-161 stands out as the
model offering the fastest execution time which makes it suitable for quick and efficient medical diagnosis based on
diseases. These two methods ResNet-50 (29,150 ms) along with MobileNetV2 (27,958 ms) achieve efficient processing
which delivers a balance of speed and accuracy output. The computation time of VGG-16 (37,831 ms) and VGG-19
(36,910 ms) is high while their accuracy remains strong which means they are suited for situations requiring precision
over performance speed. The proposed methodology equipped with DenseNet-161 and MobileNetV2 delivers better
results than current models by providing efficient diagnosis together with high classification precision which positions
it as an ideal solution for medical imaging needs.
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5. Conclusion

The research presents deep transfer learning and federated learning as effective tools for medical imaging analysis in
chest disease and lymphoma diagnosis. The proposed approach reaches 97.7% accuracy through the utilization of VGG-
16, VGG-19, ResNet-50, DenseNet-161, MobileNetV2, and InceptionV3 pre-trained CNN models and outperforms
CheXNet, Deep Chest and ResNet50-based Chest Diagnosis methods. Federated learning integrates with privacy
preservation capabilities to let different institutions work together for training purposes. The performance study
indicates that VGG-19 demonstrates peak accuracy as the most precise model because it achieved an AUC score of 0.98
and MCC score of 0.91 yet DenseNet-161 operates at the fastest computational speed of 24,645 ms thus making it the
most effective solution. The proposed medical diagnosis system confirms its reliability through precision and recall
together with F1-score and RMSE measurements which maintain a balanced classification operation. The proposed
framework exhibits better generalization capabilities and robustness by decreasing loss rates to 0.15 and RMSE values
to 0.39 than existing approaches. The utilization of deep learning technology together with federated learning leads to
improved diagnosis accuracy and operational efficiency thus creating a highly effective solution for practical medical
use. An improved version using this approach could achieve better accuracy through implementation of multi-modal
medical data including CT scans and MRI images. The system can achieve advanced performance through creation of
lightweight edge models which work efficiently in medical facilities for real-time diagnostics. Federated learning has
the potential to grow across multiple hospital institutions, so models achieve better generalization capabilities while
maintaining patient data confidentiality. With explainable Al techniques implemented into the system radiologists gain
greater clarity into how algorithms work which improve their trust in Al medical decisions thus generating improved
patient results.
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