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Abstract 

Integrating deep learning and federated learning models, the study investigates the detection of cancer and chest 
diseases.  The researchers used a combination of 112,120 chest X-ray photographs annotated by the NIH and 5,400 
lymphoma biopsy images from Kaggle to identify three distinct forms of lymphomas.  The method's first aims are to 
improve images, normalize data, and identify features.  Afterwards, it evaluates features that rely on contours, such as 
aspect ratio solidity and intensity fluctuations.  The study included seven industry-standard models and federated 
learning techniques.  The InceptionV3, MobileNetV2, DenseNet161, ResNet50, VGG-19, and VGG-16 models are included 
here.  To measure performance, we employ F1-score, recall, accuracy, and computational efficiency.  Although 
InceptionV3 dominated in terms of loss and root-mean-squared error, DenseNet161 had the best accuracy among deep 
learning models used to detect chest illnesses at 88.01%.  for compared to other models, VGG-19 had a superior accuracy 
rate of 97.5% for classifying lymphomas.  The newly integrated models that succeeded were InceptionV3 and VGG-19, 
which had 95.8% accuracy in diagnosing lymphoma and 97.7% accuracy in detecting chest illnesses.  With the use of 
deep and federated learning algorithms to medical imagery, automated illness detection got increasingly accurate.  

Keywords:  Deep Learning; Chest Disease Detection; Feature Extraction; Medical Image Analysis; Federated Learning; 
Transfer Learning 

1. Introduction

The thoracic cavity contains various organs which fall under the category of chest diseases that medical science 
classifies into a wide range of ailments. The human body faces numerous health problems in these regions and 
additional structures of the thoracic cavity [1]. Since chest diseases present multiple interwoven anatomical 
components, it becomes essential to use a combination of approaches to manage them effectively. Medical detection of 
chest diseases becomes possible through three primary diagnostic methods which include CT scans and MRIs along 
with pulmonary function testing [2], [3]. 

New technology from artificial intelligence helps deep learning models to increase disease identification accuracy 
together with operational speed. AI systems using medical image inputs achieve high detection precision to identify 
diseases at an early stage thus enabling combined diagnoses of pneumonia along with tuberculosis leukaemia and 
cardiomegaly [4]. Predictive diagnostics receives enhanced effect from neural networks through their analysis of 
patient information and imaging data which improves healthcare delivery results. The medical diagnostics field 
experienced a breakthrough with deep learning models that deliver automated picture analysis at very high standards 

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://www.wjaets.com/
https://doi.org/10.30574/wjaets.2025.17.1.1392
https://crossmark.crossref.org/dialog/?doi=10.30574/wjaets.2025.17.1.1392&domain=pdf


World Journal of Advanced Engineering Technology and Sciences, 2025, 17(01), 233-247 

234 

of accuracy. The fundamental role of these models particularly CNNs and RNNs enables them to analyse medical imagery 
effectively [5]. Image segmentation and classification together with anomaly detection form the main use cases for 
which CNNs have become essential tools in medical diagnostics. The interpretation of X-rays and CT scans by human 
specialists for chest disease detection through traditional methods shows errors and depends on differing levels of 
medical expertise. DL models enhance diagnosis accuracy through their ability to find precise patterns and anomalies 
which results in improved analysis [6], [7]. Rudimentary acceptance of this technology is blocked by the requirement of 
extensive data and processing capacity as well as navigability issues within these models. 

 

Figure 1 Representation of Deep learning models in medical science 

Figure 1 presents the different deep learning model types applied in medical science. Latent-dimensional reduction 
functions of autoencoders work alongside the image-processing capabilities of CNNs and sequential analysis from RNNs 
in addition to GAN and hybrid model technology addressing challenges [8]. The worldwide rise of chest diseases results 
from exposure to pollutants together with exposure to infectious pathogens and tobacco smoke consumption. Multiple 
chest diseases which affect patients include pneumonia, atelectasis, pleural diseases, consolidation, infiltration, 
pneumothorax and enema together with emphysema, fibrosis, effusion, cardiomegaly, nodules and masses. As an 
example, pneumonia produces alveolar inflammation that results in fluid buildup. Atelectasis refers to lung collapse due 
to airway obstruction or external pressure. The function and elasticity of lungs become adversely affected when patients 
have pleural diseases and fibrosis which results in serious respiratory complications. It is fundamental to image-based 
diagnosis since proper understanding of these diseases enables prompt medical treatment. 

 

Figure 2 Outline of the types of chest diseases 
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The diagram in Figure 2 outlines multiple chest diseases by their origins alongside their effects on lung functioning. The 
identification of chest conditions during early stages leads to decreased mortality statistics. Machine learning (ML) and 
deep learning algorithms perform advanced detection along with classification of various disorders in a significant 
manner [9]. Chest X-rays function as the principal diagnostic method because they provide effective results and can be 
easily accessed. CT scanners and MRI machines enable complex disease analysis which results in detailed descriptions 
of diseases. AI algorithms evaluate X-ray and CT images to detect tuberculosis, pneumonia and lung cancer by achieving 
accurate identification [10]. These detection models surpass traditional approaches because they recognize subtle 
abnormalities which people viewing X-rays normally miss. AI diagnostic tools possess the capability to analyse large 
data sets with rapid efficiency which enables clinicians to conduct real-time decisions in medical facilities. Modern 
medical diagnostic tools advanced by AI in medical imaging now perform chest disease detection with high accuracy 
levels. When artificial intelligence methods employing neural networks and transfer learning techniques are combined, 
the accuracy of illness detection is significantly raised. 

Federated learning provides a new approach that safeguards privacy during the collaborative AI model training process 
between multiple institutions [11]. Multiple hospitals and research centres can contribute to AI progress through this 
decentralized approach as it ensures they do not need to share protected patient data. Deep learning technology has 
automated medical image analysis which enables fewer need for human interpreters to work on these diagnostic tasks. 
VGG-16 ResNet50 along with DenseNet161 represent several pretrained neural networks that detect diseases widely 
in various applications [12], [13]. Transfer learning in the models enhances both the diagnostic accuracy and decreases 
the computational needs. Deep learning operates unlike traditional ML approaches because it needs little or no feature 
engineering to function successfully [14]. The networks acquire their hierarchical data representations from the data 
they process directly and produce very effective image pattern identification within medical contexts. Advantages from 
self-contained design led to better diagnostic tasks and efficient healthcare outcomes. 

Hospitals and institutions now use distributed model training through federated learning to revolutionize how they 
deploy artificial intelligence systems for healthcare. Traditional centralized models differ from FL because data stays 
locally while this system permits only model updates to be exchanged for patient protection. A central server within 
federated learning distributes the first version of a model to participating clients who apply their individual datasets 
for local training. Multiple institutions update their local models to refine the global model allowing improved predictive 
capability and keeping data private in the process. The method provides exceptional benefits to chest disease detection 
by allowing access to various datasets which enhances model robustness and generalizability properties. This research 
unites deep learning with federated learning to develop an AI-driven medical diagnostic method which presents 
scalable protection of patient data during chest disease detection processes. 

2. Related Works 

Recent breakthroughs, such as regenerative wound healing [15], hybrid nanoconjugates for glioblastoma [16], and 
molecular erasers for cancer immunity [17], highlight the power of advanced technologies in healthcare. In parallel, 
artificial intelligence has shown transformative potential across domains—improving precision agriculture through 
self-driving systems [18], advancing road segmentation via attention models [19], enabling Alzheimer’s diagnosis with 
hybrid CNN-SVM methods [20], predicting machine failures with multimodal learning [21], and enhancing plant disease 
detection through deep stacking models [22]. Together, these innovations illustrate how AI and biomedical research 
converge to address complex challenges in critical sectors. 

AI applications for chest disease detection now receive wide acceptance due to their dual capability to cut down 
misdiagnosis and provide support for radiologists in their diagnostic choices. CRIS models that utilize large databases 
of medical images exhibit extraordinary precision when detecting different kinds of chest infections and abnormalities 
[10]. Different AI technology approaches have been studied with deep neural networks, transfer learning as well as 
hybrid AI model use. CNN technology has become essential for medical imaging analysis since it excellently identifies 
complex radiographic patterns. Studies have shown that selected models provide excellent diagnostic results which 
validate artificial intelligence capabilities in medical settings. 

Applications of deep learning and related machine learning techniques have revolutionized the solution of medical 
image problems [23]. Deep neural systems enable automatic process of extracting helpful information without requiring 
human interpretation. The training of deep learning models linked with big chest X-ray datasets enables them to 
successfully detect various pulmonary diseases with high accuracy levels [24]. The field of health research applies 
transfer learning by adjusting pre-trained CNN networks including ResNet, VGG16 and InceptionV3 for better diagnosis 
outcomes. Machine learning plays an essential role in respiratory medicine because certain models demonstrate high 
accuracy levels. The analysis includes support vector machines (SVMs) and long short-term memory (LSTM) networks 
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in addition to CNNs for ML exploration. Several techniques have found their applications throughout multiple aspects 
of detecting chest diseases particularly through lung sound evaluation and airflow tracking and disease development 
forecasting [25]. Multiple computers learning methods can achieve better predictive competencies through integrative 
model combinations according to roundtable analysis. 

Deep learning techniques have proved essential for increasing the precision of chest disease diagnosis through their 
applications. Modern neural network systems analyze chest radiographs to detect pneumonia and fibrosis and tumors 
inside the body. Multiple studies have applied convolutional neural networks and autoencoders and graph 
convolutional networks for imaging analysis and chest classification purposes [26]. Research groups have created 
specific CNN designs that deliver maximum accuracy results when conducting multi-class and binary classifications. 
Deep learning technology achieved success in chest disease diagnosis by creating new neural network designs DC-
ChestNet and VT-ChestNet. The models have received training through large-scale dataset samples to identify normal 
patients from those with lung diseases or heart ailments [27]. The VT-ChestNet model stands out because it 
demonstrates excellent performance by reaching an area under the curve (AUC) score higher than 95% in multi-class 
classification tasks. 

The global COVID-19 pandemic caused healthcare institutions to fast-track their implementation of AI solutions in 
medical diagnostics. The detection of COVID-19 pneumonia through chest X-ray and CT scan images has been 
accomplished using intelligent AI-based models [28]. The development of AI-driven COVID-19 detection systems 
heavily depends on CNNs together with transfer learning strategies. These models show great accuracy results which 
enable quick screening and early diagnosis processes. According to research deep learning systems training on COVID-
19 datasets reveal the ability to discover COVID-19 at high sensitivity together with specificity rates in almost real-time. 
Artificial intelligence diagnosis systems using patient clinical data from oxygen saturation tests and lung function 
analysis achieve higher accuracy in medical diagnoses [29]. Federated learning serves as a research area to enable AI 
training in multiple healthcare institutions without compromising patient privacy of data. 

AI applications extend beyond medical image analysis by being used for lung sound analysis in respiratory disease 
diagnosis. Deep learning algorithms receive training from audio data of lung sounds to detect asthma as well as 
bronchitis and COPD among other conditions [30]. These diagnostic systems examine airborne sound patterns to detect 
abnormal patterns which supports non-invasive assessment of chest diseases. Studies reviewed 160 publications which 
focused on deep-learning-based lung sound analysis. Research results confirm that artificial intelligence models achieve 
accurate classification of lung sounds for diagnosing pulmonary conditions at an early stage [31]. New advancements 
include the coupling of artificial intelligence with electronic stethoscopes which enhances respiratory sound analysis 
efficiency thus making it suitable for use in telemedicine. 

The implementation of AI technologies for chest disease diagnosis continues to meet various obstacles even with 
existing advancements. The main restriction in AI deployment arises from the insufficient use of diverse standardized 
datasets [32]. AI systems can only deliver accurate diagnoses when trained on specific datasets even though they 
become less effective when used with different groups of patients. The model performance suffers whenever training 
datasets have an unbalanced distribution of diseases. AI models currently present difficulties when it comes to their 
ability to show interpretable outputs. Deep learning systems operate as opaque mechanisms which prevent healthcare 
providers from understanding their determination logic [33]. Healthcare professionals need transparent models for 
clinical acceptance since interpretability allows them to validate diagnostic results. The rendition of AI algorithms 
sometimes contains systemic biases which might endanger medically just healthcare [34]. Research reveals that AI 
systems receiving input data which contains bias create mistakes for population segments that lack proper 
representation in training samples. Fair and reliable AI-based diagnosis needs ethical standards for handling biases and 
collection of datasets that represent diverse patient populations [35]. 

The integration of AI into medical imaging through machine learning makes chest disease diagnosis more accurate and 
efficient along with being capable of large-scale implementation. Lung disease classification from radiographic images 
succeeds at the highest level through deep learning models whose main component are convolutional neural networks 
[36]. The breast cancer detection using AI has reinforced the diagnostic capabilities of artificial intelligence for medical 
purposes [37]. AI deployment in healthcare requires solving problems with biased data and lack of interpretability and 
privacy limitations to secure responsible implementation. AI research progress gives reason to expect positive changes 
in chest disease diagnosis and custom treatment plans for the near future [38]. 

Deep learning and federated learning provide substantial potential to improve healthcare results during chest disease 
detection processes. This research aims to 
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• A deep learning system should be created to recognize chest diseases successfully within X-ray and CT imaging 
data. 

• Netted training happens by using federated learning together with data privacy protection features. 
• The implementation of advanced AI techniques should focus on improving diagnostic efficiency together with 

precision of detection. 

The study works to solve major medical imaging problems which supports the development of advanced diagnostic 
systems that are both more secure and efficient. 

3. Methodology 

The quick progress of artificial intelligence (AI) technology has reshaped healthcare through its substantial influence 
on medical image examination. Medical detection of pneumonia along with lung fibrosis and lymphoma needs fast and 
precise detection methods to achieve better patient results. Medical diagnostic procedures require significant time and 
show subjective evaluation results. A deep learning framework utilizing federated learning and different pre-trained 
models and feature extraction approaches proposes to detect chest diseases together with lymphoma. The Figure 3 
shows the illustration of the proposed approach for detecting the chest diseases.  

 

Figure 3 Illustration of the proposed approach 

3.1. Dataset Description 

The research uses the NIH Chest X-ray dataset as well as the Malignant Lymphoma Classification dataset from Kaggle 
which serves as the primary sources. This NIH dataset includes 112,120 chest X-ray images with 14 different disease 
annotations ranging from pneumonia to pneumothorax and fibrosis to atelectasis to edema. A structured labeling 
system based on Natural Language Processing technology extracts medical report information regarding diseases. All 
patient files contain metadata links that include demographic information about age, gender, diagnostic type, and 
imaging protocol details. The set provides bounding box annotations which allow viewers to precisely identify regions 
of disease appearance in order to enhance area localization. 

Histopathological images from many pathologies centers total 5,400 samples which medical professionals grouped into 
the three lymphoma types Chronic Lymphocytic Leukemia (CLL), Follicular Lymphoma (FL), and Mantle Cell Lymphoma 
(MCL). The staining with Hematoxylin and Eosin (HandE) technique helps enhance image contrast so cellular structures 
become easier to view. The RGB format with high resolution provides the dataset for enhanced features extraction 
capabilities. The extensive dataset enables deep learning models to learn many patterns which relate to chest diseases 
alongside lymphoma characteristics. The research depends on two different datasets to build diagnostic capabilities for 
disease identification in X-ray and biopsy images because deep learning proves its potential for medical imaging data 
sets. 

3.2. Preprocessing Techniques 

The deep learning models undergo extensive preprocessing steps that both improve image quality as well as normalize 
inconsistent data in the dataset before training. Applying a standardized resolution to every image constitutes the first 
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part of preprocessing before deep learning model training. The procedure begins by resizing Chest X-ray pictures to 
224 × 224 pixels and setting lymphoma images at 1388 × 1400 pixels. The next stage applies normalization to convert 
all pixel values between zero and one so that every image possesses equal intensity ranges. The training process reaches 
convergence speedily because of this technique. 

Gaussian filtering smooths medical images without distorting essential edges in order to eliminate background noise. 
The Gaussian function exists as follows: 

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2 ⅇ
−

𝑥2+𝑦2

2𝜎2                                                    (1) 

The standard deviation σ defines the width of the Gaussian kernel in this formula. The pre-processing contains a filtering 
function to remove small variations together with imaging artifacts which preserves the quality of feature extraction. 

The process of image enhancement through contrast enhancement plays an essential role when working with chest X-
ray images because it helps reveal important disease characteristics which may otherwise stay hidden owing to weak 
contrast levels. The process of equalizing pixel intensities with histogram equalization improves image contrast in the 
data. The processing of missing metadata values within the dataset occurs either through substitution techniques or by 
taking out incomplete records. Last but not least in the preprocessing scheme are categorical variables that receive 
numerical encoding which enables their compatibility with deep learning frameworks. By implementing preprocessing 
steps to the dataset its quality improves which results in better model performance and generalization during 
classification. 

3.3. Data Augmentation 

The medical image datasets show substantial variations regarding disease samples distribution where specific 
conditions possess significantly less image data than others. The data augmentation technique creates artificial images 
through modifications which apply to existing dataset images. The augmentation techniques generate new image 
versions while the learning process focuses on identifying features which remain consistent throughout. This leads to 
better generalization together with improved robustness. 

The applied data augmentation strategies include both rotation and translation methods as well as horizontal flipping 
and scaling operations and zoom functions. Images get rotated by small angular values (±5∘) as a method to correct 
slight positioning differences between X-ray and biopsy images. The translational movements apply to both x- and y-
axes to keep disease characteristics visible while maintaining small repositioned images. The system applies horizontal 
image flipping at random to X-ray images for simulating patient position differences. The image features are refined by 
scaling and zooming operations while maintaining slightly modified dimensions because this method allows the model 
to develop mastery over various levels of image magnification. 

The mathematical definition of augmentation transformation appears as follows 

𝐼′ = 𝑆𝑅𝑇𝐼                                                                     (2) 

 

Figure 4 Deep Learning Architecture for Chest Disease Classification 
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The image transformation produces I′ with scaling factor S and rotation matrix R and translation T. The images used for 
lymphoma contain color jittering because this method randomly alters brightness levels and contrast together with 
saturation conditions to replicate different staining variances noticed in biopsy examples. The augmented data elements 
enlarge the dataset diversity to reduce overfitting while boosting model performance during real medical image 
evaluations. 

Figure 4 illustrates a Convolutional Neural Network (CNN) design that applies convolutional layers for feature 
extraction after which it moves on to pooling and fully connected layers for classification. Medical image processing 
within CNNs reveals their ability to detect chest disorders as well as distinguish different lymphoma categories. 

3.4. Feature Extraction 

Medical image classification highly depends on feature extraction because it enables deep learning models to recognize 
important image patterns. The extraction process of morphological and texture-based features helps improve disease 
characteristic understanding. The shape characteristics and dimensional information that concern disease-affected 
areas form part of the morphological features extracted from the images. These include 

Area of the disease region 

𝐴𝑟ⅇ𝑎 =  ℎⅇ𝑖𝑔ℎ𝑡 ×  𝑤𝑖𝑑𝑡ℎ                                  (3) 

The boundary length of disease regions is captured as the measurement known as perimeter. 

𝑃ⅇ𝑟 = ∑√(𝑥𝑖+1 − 𝑥𝑖)
2 + (𝑦𝑖+1 − 𝑦𝑖)

2             (4) 

In Aspect Ratio, healthcare practitioners track the stretch length of medical conditions at the target site. 

𝐴𝑠𝑝ⅇ𝑐𝑡 𝑅𝑎𝑡𝑖𝑜 =
𝑤𝑖𝑑𝑡ℎ

ℎ𝑒𝑖𝑔ℎ𝑡
                                                (5) 

The compactness of a lesion is determined by filling a syringe with its material while measuring the volume. 

𝑆𝑜𝑙𝑖𝑑𝑖𝑡𝑦 =
𝐴𝑟𝑒𝑎

𝐶𝑜𝑛𝑣𝑒𝑥 𝐻𝑢𝑙𝑙 𝐴𝑟𝑒𝑎
                                          (6) 

Texture-Based Features: The features describing pixel intensity variations that exist inside disease regions fall under 
the category of texture features. This measure evaluates the standard measurement of grayscale value across an area. 

𝐼𝑚𝑒𝑎𝑛 =
1

𝑁
∑ 𝐼𝑖

𝑁
𝑖=1                                                              (7) 

Histogram equalization enhances contrast: 

𝐻(𝐼) =
(𝐼−𝐼𝑚𝑖𝑛)

(𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑛)
× 255                                              (8) 

The features of CNNs enable them to concentrate on disease-relevant patterns which enhances their ability to classify 
medical images effectively. 

3.5. Model Selection and Training 

This research uses deep convolutional neural networks (CNNs) since they demonstrate high efficiency in image 
classification tasks. Each CNN organizes into three essential layers that consist of convolutional layers and pooling 
layers and fully connected layers. The convolution procedure involves the following definition 

𝑂(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛)𝑛𝑚 ⋅ 𝐾(𝑚, 𝑛)                                     (9) 

The process uses three variables namely input image I(i,j), filter kernel K(m,n) and output feature map O(i,j). SGD and 
backpropagation methods enable training the models to reduce classification errors. 
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3.6. Transfer Learning Models 

Deep learning utilizes transfer learning as a strong method that adapts a large dataset-trained model for applications in 
related but different contexts. Deep neural networks receive better performance after pre-trained ImageNet models are 
adjusted to analyze medical pictures. The training method results in better performance together with reduced training 
duration and successful resolution of the low-number of labeled medical data challenge. 

This research utilized six state-of-the-art transfer learning models namely VGG-16, VGG-19, ResNet-50, DenseNet-161, 
MobileNetV2, and InceptionV3 for detecting chest diseases and lymphomas. Each architecture within these models 
provides features that aid extraction and classification processes. 

VGG-16 (Visual Geometry Group-16): The Visual Geometry Group (VGG) at the University of Oxford has created VGG-16 
as their deep CNN model. This network contains sixteen layers starting with thirteen convolutional layers before ending 
in three fully connected layers. Feature extraction at the model occurs through the combination of 3×3 convolutional 
filters and small receptive field elements and max pooling layers. 

A REL activation function follows each convolutional layer for the purpose of creating non-linear behavior. 

𝑓(𝑥) = max(0, 𝑥)                                                     (10) 

The last classification layer includes a softmax activation function for its operation. 

𝑃(𝑦 = 𝑗|𝑥) =
𝑒

𝑧𝑗

∑ 𝑒𝑧𝑘
𝑘

                                                   (11) 

VGG-19: VGG-19 expands upon VGG-16 by adding more layers to reach a total of 19 between convolutional and fully 
connected components. The model includes extra depth to its features since it employs the same 3×3 convolutional 
filters and max pooling layers. 

ResNet-50 (Residual Network-50): ResNet-50 introduced residual learning for deep network training (50 layers) 
through the solution of the vanishing gradient problem. Skip connections are the fundamental concept of ResNet 
because they direct gradient propagation across layers for faster network convergence. 

Res Net trains itself to solve a residual function instead of designing a function H(x). 

𝐹(𝑥) = 𝐻(𝑥) − 𝑥                          (12) 

The output of a residual block is: 

𝑦 = 𝐹(𝑥) + 𝑥                                  (13) 

DenseNet-161 (Densely Connected Convolutional Networks): DenseNet-161 represents an advanced CNN design which 
builds feature propagation through sequential layer connections between each element during model forward 
processing. The DenseNet architecture implements feature map concatenation instead of residual connection methods 
like ResNet does to improve efficiency in feature reuse. 

For layer l, the output is 

𝑥𝑙 = 𝐻𝑙([𝑥0, 𝑥1, ⋯ 𝑥𝑙−1])                                        (14) 

MobileNetV2: The solution creators designed MobileNetV2 specifically for efficient deep learning models at low power 
because this model works well for medical imaging tasks on limited-capacity systems. Depthwise separable 
convolutions form a key part of MobileNetV2 by decreasing computational requirements without sacrificing 
performance quality. 

Instead of a standard convolution 

𝑌 = 𝑋 ∗ 𝐾                                                                                (15) 
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MobileNetV2 factorizes it into 

𝑌𝑑𝑒𝑝𝑡ℎ𝑤𝑖𝑠𝑒 = 𝑋 ∗ 𝐾𝑑            (16) 

𝑌𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 = 𝑌𝑑𝑒𝑝𝑡ℎ𝑤𝑖𝑠𝑒 ∗ 𝐾𝑝     (17) 

InceptionV3: The efficiency of CNN depends on InceptionV3 because it conducts parallel convolution layers and multi-
scale feature extraction. The network employs parallel 1×1, 3×3 and 5×5 convolution operations to obtain pattern 
recognition at varying scales as an alternative to using standard filter size. 

Given an input X, the output is computed as 

𝑌 = ∑ (𝑋 ∗ 𝐾𝑖)
𝑁
𝑖=1                                                       (18) 

Here Ki = filters, Kd = depthwise filter, Kp = pointwise filter, xl = outcome, Hl = transformation, [𝑥0, 𝑥1, ⋯ 𝑥𝑙−1]  = 
concatenation of previous feature, x = input, F(x) = learned residual mapping, y = outcome,  

3.7. Federated Learning for Privacy Preservation 

The training process in Federated learning takes place on various devices locally without revealing actual data to protect 
privacy. During the aggregating process through Federated Averaging (FedAvg) the algorithm unites model updates 
sent by multiple device clients. 

𝑤𝑡+1 = ∑
𝑛𝑖

𝑛
𝑤𝑖

𝑘

𝑖=1
                                                            (19) 

Each client provides their model updates wi while also reporting their sample count ni. Hospitals can train models 
together through this approach which stands as a guarantee for patient data confidentiality. 

The combination of deep learning along with federated learning enhances disease identification by improving medical 
diagnostic security through controlling personal information access. 

The research contains medical image classification segments using deep learning with federated learning techniques 
which enhance privacy and disease detection precision. A prediction enhancement model utilizes CNNs together with 
transfer learning and morphological feature extraction through the proposed approach. 

4. Result Analysis 

The results section provides an extensive analysis of the proposed deep transfer learning and federated learning models 
which classify chest diseases and lymphomas. Analysis of effectiveness measures accuracy, loss, precision, recall, F1-
score, and AUC provides an assessment of model performance. The analysis determines medical diagnostic optimal 
models by measuring different architectural efficiency. Visual model performance evaluation for model effectiveness is 
enabled using AUC curves and loss-accuracy plots. The research investigates multiple threshold parameters together 
with dataset variations to validate the proposed method through accuracy validation. Accuracy demonstrates the 
number of correctly classified instances among all available instances in a particular study. It is given by 

𝐴𝑐𝑐 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
            (20) 

Precision evaluates the number of truly positive cases among all those cases that the model predicts positively. The 
system needs to perform well in situations which require a low rate of false positive results. 

𝑃𝑟ⅇ =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
          (21) 

Recall demonstrates which actual positive cases exist and correctly get detected. Medical diagnosis requires immediate 
detection of all positive cases because missing a single one constitutes a false negative. 

𝑅ⅇ𝑐 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
               (22) 
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The F1-score calculates precision and recall with an equation that computes their harmonic mean for balanced 
evaluation. The metric finds its best application during work with data that contains imbalanced distributions. 

𝐹𝑆 =  2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                          (23) 

AUC-ROC provides insight into model discrimination ability through the representation of True Positive Rate vs False 
Positive Rate at different threshold choices. 

𝑇𝑃𝑅 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
                            (24) 

𝐹𝑃𝑅 =
𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
                            (25) 

The evaluation of predicted and actual value divergence is accomplished through loss functions. Two common loss 
functions are 

𝑀𝑆𝐸 =
1

𝑚
∑ (𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢ⅇ −  𝑝𝑟ⅇ𝑑𝑖𝑐𝑡ⅇ𝑑 𝑣𝑎𝑙𝑢ⅇ)

𝑚

𝑘=1
                              (26) 

𝐸𝐿 = − ∑ 𝑏𝑖 log(𝑏̂𝑖)
𝑚

𝑖=1
                                 (27) 

The error quantity known as RMSE functions as another metric to calculate actual-predicted value discrepancies. The 
loss function assigns greater weight to large deviations above and below the true value than it does to MSE. 

𝑅𝑀𝑆𝐸 = √
1

𝑚
∑ (𝑏𝑖 − 𝑏̂𝑖)

2𝑚

𝑘=1
                                (28) 

MCC maintains balanced measurements for datasets with any imbalance level. TMCC presents a full performance 
evaluation system by using TP and TN together with FP and FN. 

𝑀𝐶𝐶 =
(𝐶𝑃×𝐶𝑁)−(𝐼𝑃×𝐼𝑁)

(𝐶𝑃+𝐼𝑃)(𝐶𝑃+𝐼𝑁)(𝐶𝑁+𝐼𝑃)(𝐶𝑁+𝐼𝑁)
                       (29) 

Here CP = correct positive, CN = correct negative, IP = incorrect positive, IN = incorrect negative, m = total number of 

information points, bi = actual value, 𝑏̂𝑖 = Predicted value, m = total samples. 

 

Figure 5 Visualization of compared performance of existing approach with suggested approach 

The performance metrics display that the Deep + Federated Learning method ranks higher than traditional methods for 
classifying chest diseases and lymphomas is shown in Figure 5. X-ray models using CheXNet, Deep Chest, and Mobile 
Net for X-ray achieve diagnostic accuracy from 82.3% to 87.2% whereas the Lymphoma Detection CNN stands at 89%. 
The proposed method demonstrates superior diagnostic capability through its 97.7% accuracy which surpasses other 
systems. Deep + Federated Learning produces outstanding results through its precision of 95.2% and recall of 96.2% 
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and F1-score of 95.4% which surpasses the Lymphoma Detection CNN's performance indicators (85%, 88% and 86% 
respectively). The proposed detection system exhibits 96.2% recall which maintains maximum sensitivity toward 
disease diagnosis thus making it ideal for medical practice. Using deep learning in conjunction with federated learning 
allows the proposed model to safeguard patient data privacy while boosting classification accuracy which leads to 
becoming an efficient advanced instrument for detecting diseases in real medical environments.  

 

Figure 6 Visualization of compared error rate of existing approach with suggested approach 

The combination of Deep with Federated Learning produces enhanced performance results across each essential 
assessment metric better than other existing techniques is shown in Figure 6. The AUC value of 0.95 stands as the 
highest among all present methods which demonstrates outstanding discrimination power for separating diseased from 
non-diseased cases. The MCC (0.90) produces superior results than all other tested models because it demonstrates 
robust performance in maintaining a strong balance for true positive and true negative identifications within 
imbalanced datasets. The proposed model performs better in prediction accuracy than CheXNet (0.43, 0.65) and 
DeepChest (0.38, 0.61) based on its lower loss (0.15) and RMSE (0.39) values. The proposed approach exceeds 
ResNet50-based and Lymphoma Detection CNN models because it uses federated learning to distribute training across 
different datasets with no privacy compromise. The proposed method shows potential for real-world medical image 
classification due to its improved accuracy together with robustness and efficiency levels. 

 

Figure 7 Visualization of compared performance of suggested approach with different model 

The proposed approach demonstrates VGG-19 as its best-performing deep learning model by succeeding with 97.7% 
accuracy and reaching 92% precision and 94% recall while establishing a 93% F1-score is shown in Figure 7. The 
feature extraction abilities of VGG-19 establish it as the most trustworthy model for medical diagnosis of both chest 
diseases and lymphomas. The model InceptionV3 accomplishes high precision (94%) and recall (95%) scores to 
position itself as an effective alternative to other models. ResNet-50 alongside DenseNet-161 achieve balanced 
performance through their 95% accuracy levels and stable precision and recall measures that establish them as efficient 
diagnosis tools. MobileNetV2 provides the least accurate results at 92.5% yet its compact framework enables quick 
processing suitable for live utilization. Several versions of deep transfer learning implemented through federated 
learning demonstrated VGG-19 as the most accurate while InceptionV3 and DenseNet-161 followed closely in terms of 
performance thus improving medical image classification effectiveness. 
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Table 1 Comparison of error metrics of different models can be used in proposed approach 

Model AUC MCC Loss RMSE 

VGG-16 0.96 0.87 0.216 0.464 

VGG-19 0.98 0.91 0.155 0.393 

ResNet-50 0.95 0.88 0.272 0.521 

DenseNet-161 0.97 0.89 0.183 0.427 

MobileNetV2 0.94 0.85 0.255 0.504 

InceptionV3 0.97 0.9 0.133 0.364 

The performance evaluation of several deep learning models using AUC, MCC and loss and RMSE metrics resulted in 
VGG-19 as the optimal model choice as shown in Table 1. The classification performance of VGG-19 is exceptional 
because it achieves both AUC 0.98 and MCC 0.91 which indicate strong prediction correlation to actual clinical data. The 
prediction errors remain minimal because VGG-19 shows both the lowest value of loss at 0.155 and RMSE at 0.393. The 
performance indicators for InceptionV3 model include an AUC of 0.97 and MCC of 0.90 and both loss and RMSE levels 
(0.133 and 0.364) that prove it to be a robust alternative to VGG-19. The AUC score of DenseNet-161 reaches 0.97 and 
MCC stands at 0.89 while its loss remains at 0.183. ResNet-50 and MobileNetV2 present lower detection results yet 
MobileNetV2 provides higher efficiency compared to other models in real-time operations. Medical image classification 
achieves its most effective results with VGG-19 as the best performer and InceptionV3 and DenseNet-161 ranking 
among the top alternatives. 

Table 2 Comparison of Computation Time Between Existing Approaches and the Proposed Approach with Different 
Models 

Approach  Computation Time (ms) 

CheXNet [1] 45,320 

DeepChest [3] 39,750 

MobileNet for X-ray [5] 28,560 

ResNet50-based Chest Diagnosis [7] 31,200 

Lymphoma Detection CNN [9] 37,800 

VGG-16 37,831 

VGG-19 36,910 

ResNet-50 29,150 

DenseNet-161 24,645 

MobileNetV2 27,958 

InceptionV3 35,284 

The proposed method delivers better computational speed than traditional methods especially through DenseNet-161 
(24,645 ms) and MobileNetV2 (27,958 ms) which represent the speediest models is shown in Table 2. The time 
requirements for the medical diagnosis systems CheXNet and DeepChest at 45,320 milliseconds and 39,750 
milliseconds negatively impact their suitability for real-time medical applications. DenseNet-161 stands out as the 
model offering the fastest execution time which makes it suitable for quick and efficient medical diagnosis based on 
diseases. These two methods ResNet-50 (29,150 ms) along with MobileNetV2 (27,958 ms) achieve efficient processing 
which delivers a balance of speed and accuracy output. The computation time of VGG-16 (37,831 ms) and VGG-19 
(36,910 ms) is high while their accuracy remains strong which means they are suited for situations requiring precision 
over performance speed. The proposed methodology equipped with DenseNet-161 and MobileNetV2 delivers better 
results than current models by providing efficient diagnosis together with high classification precision which positions 
it as an ideal solution for medical imaging needs.  
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5. Conclusion 

The research presents deep transfer learning and federated learning as effective tools for medical imaging analysis in 
chest disease and lymphoma diagnosis. The proposed approach reaches 97.7% accuracy through the utilization of VGG-
16, VGG-19, ResNet-50, DenseNet-161, MobileNetV2, and InceptionV3 pre-trained CNN models and outperforms 
CheXNet, Deep Chest and ResNet50-based Chest Diagnosis methods. Federated learning integrates with privacy 
preservation capabilities to let different institutions work together for training purposes. The performance study 
indicates that VGG-19 demonstrates peak accuracy as the most precise model because it achieved an AUC score of 0.98 
and MCC score of 0.91 yet DenseNet-161 operates at the fastest computational speed of 24,645 ms thus making it the 
most effective solution. The proposed medical diagnosis system confirms its reliability through precision and recall 
together with F1-score and RMSE measurements which maintain a balanced classification operation. The proposed 
framework exhibits better generalization capabilities and robustness by decreasing loss rates to 0.15 and RMSE values 
to 0.39 than existing approaches. The utilization of deep learning technology together with federated learning leads to 
improved diagnosis accuracy and operational efficiency thus creating a highly effective solution for practical medical 
use. An improved version using this approach could achieve better accuracy through implementation of multi-modal 
medical data including CT scans and MRI images. The system can achieve advanced performance through creation of 
lightweight edge models which work efficiently in medical facilities for real-time diagnostics. Federated learning has 
the potential to grow across multiple hospital institutions, so models achieve better generalization capabilities while 
maintaining patient data confidentiality. With explainable AI techniques implemented into the system radiologists gain 
greater clarity into how algorithms work which improve their trust in AI medical decisions thus generating improved 
patient results.  
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