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Abstract

Healthcare Al will realize long-lasting clinical and operational improvements only if technical innovation can be
combined with organizational strategy, governance, security, and continued adoption. We describe a five-pillar strategic
model - Leadership & Strategy, MLOps & Technical Infrastructure, Governance & Ethics, Education & Workforce
Development, and Change Management & Adoption - for responsible Al in healthcare. Unlike other guidance, our
approach includes Al-specific security and lifecycle MLOps combined with cross-disciplinary governance and user-
centered change management - aligning a “compliance-by-design” philosophy with emerging regulatory expectations.
We demonstrate the framework in two practical applications: (A) a hospital service for inpatient length-of-stay
prediction and (B) an Al-assisted radiology second-reader for lung nodules. The LOS model achieved R? » 0.4-0.6 in
pilot evaluation across cohorts and was used by >75% of case managers, with targeted units implementing 5-10%
reductions in average LOS for complex-discharge patients. A radiology tool (sensitivity * 95%) was embedded in PACS
with thresholding and explanation overlays to decrease alert fatigue, resulting in an 8% increase in detection of sub-
centimeter actionable findings and no significant read slowdown. Overall, Al services were run under monitored and
auditable pipelines in both cases, with no reported security incidents, and user-facing model cards informed trust and
appropriate use. These findings show that robust MLOps and security, when coupled with governance, education, and
change management, significantly enhance both acceptance and impact of Al at the bedside as well as in operations. We
conclude by considering limits, generalization, and a roadmap for scaling. LOS pilot (n=3,184 encounters across 4 adult
units at a single U.S. hospital, June-August 2025) achieved R? = 0.41-0.58; case-manager adoption reached 78% by week
6; targeted units observed 5-10% relative reductions in mean LOS for complex discharges versus each unit’s pre-pilot
baseline. The radiology second-reader pilot (n=1,126 chest CTs over 8 weeks) showed +8.0 percentage-points in sub-
centimeter actionable nodule detection (95% CI [2.1, 13.9]; x* p=0.008), with median report turnaround time
unchanged at 23 min (Wilcoxon p=0.64).

Keywords: Responsible Al; Healthcare MLOps; Al governance & ethics; Change management & clinical adoption; Al
security & robustness; Radiology decision support

1. Introduction

Healthcare, in particular, is seeing a surge of interest and investment in Al/ML technologies, driven by the emergence
over the past few years of powerful models (e.g., generative Al) and a profusion of clinical data. This wave of innovation
has led stakeholders at all levels (from day-to-day practitioners on the front lines to C-suite executives) to ask what role
they can play in realizing Al within practice and how to balance them against their risks[1]. Early wins in Al, such as
medical image analysis and predictive analytics, have shown huge potential for advancing patient outcomes and
operational effectiveness. Deep learning models, for instance, now achieve near-human performance in diagnosing
diseases from high-resolution medical images (e.g., screening diagnostics such as diabetic retinopathy in eye
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examinations or tumors in radiological analysis) [2][3]. This sort of analysis can be performed by ML models, which can
predict hospital-relevant metrics such as patient length-of-stay, assisting administrators in capacity planning and
resource allocation[4]. These progressions are suggestive of the transformative impact of Al in diagnostics, treatment
decision support, and healthcare management.

But the promise also comes with well-documented challenges that have prevented Al tools from moving from pilots to
clinical workflow. There are a number of technical and organizational reasons that many healthcare Al projects fail to
have enduring impact[26]. Typical fail points are misconceptions of use case, lack of leadership buy-in, lack of
competence, bad data quality, and poorly integrated workflows[6]. Moral and ethical concerns like algorithmic bias,
black-box model opacity, and patient safety harm have also raised concerns. Al systems that are opaque or make
surprising decisions can discourage patients and clinicians from embracing them and limit adoption. Additionally, Al
brings new security threats - for example, adversarial attacks might tamper with a model’s inputs and outputs with
potentially harmful repercussions in a clinical environment[23]. These complex problems illustrate that the successful
adoption of healthcare Al is not only a data science challenge, but also a socio-technical initiative with strategic
considerations.

In this paper, we present a strategic approach so that Al can be implemented in healthcare in a responsible, secure, and
sustainable manner. This framework builds upon current literature and experience - in particular, Monga’s writings
around responsibly, safely, and sustainably navigating the “Al/ML maze” within healthcare[7], as well as Singh et al. on
deep learning for biomedical signal and imaging, to draw axes of success. We define five foundational components of
implementation: (1) Leadership & Strategy, (2) MLOps & Infrastructure, (3) Governance & Ethics, (4) Education &
Workforce Development, and (5) Change Management & Adoption. In each, we detail leading practices for Al initiatives
that deliver clinical and operational impact, maintain ethical considerations, and mitigate concerns.
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The rest of the paper is organized as follows. Background: We present the background to the state of play in Al adoption
for healthcare and why there is a clear need for ethical, explainable, and trustworthy Al today, as well as regulatory
trends. Methods: We describe the proposed framework and its components. Results: The Results section discusses real-
world deployment considerations and how the framework addresses these challenges through two use cases: a hospital
length-of-stay prediction model and an Al tool in radiology for decision support. Discussion: We give a wider discussion
of implications, including the merging of biomedical signal and imaging Al, future trends (e.g., generative Al), and
lessons learned in scaling Al clinically. We end with suggestions and future perspectives for enabling impactful and
trustworthy Al at large scale in healthcare.

2. Background

2.1. AI's Growing Role and Challenges in Healthcare

Al and ML have evolved significantly in recent years, with solutions for challenging healthcare issues increasingly
developed. In the medical field, deep learning algorithms can now outperform humans in some diagnostic tasks. Indeed,
most Al-based medical devices that have been granted regulatory approval to date are based on imaging data; for
example, more than 84% of all Al-based medical devices cleared by the US FDA employ medical images, primarily from
radiology, with a smaller proportion working on physiological signals and electronic health record data[8]. These trends
mirror the strong alignment of deep learning (DL) models for image analysis and enthusiasm in the radiology
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community for Al tools, exemplified by detection of diabetic retinopathy on fundus photographs and lung nodules on
CT scans, as tools that can be leveraged to enhance clinical decision-making[2][9]. Beyond imaging, Al tools applied to
biomedical signals (such as ECG or EEG waveforms) are beginning to evolve for early detection of cardiac arrhythmias
and seizures among other conditions - often achieving performance that is on par with expert interpretation[10].
Elsewhere, predictive models applied to hospital administrative and clinical data have demonstrated potential for
predicting outcomes such as length-of-stay and risk of readmission[53], which in turn can be used to anticipate the need
for intervention and resource allocation[5]. These progressions are suggestive of the transformative impact of Al in
diagnostics, treatment decision support, and healthcare management.

However, despite these advances, there remain a number of challenges that must be overcome to make Al have a real-
world impact in healthcare. Quality and bias are consistent challenges - models trained on retrospective or institution-
based data may fail to work well in new environments, introducing bias that can worsen disparities in health. Complex
model types (such as deep neural networks) suffer from a lack of interpretability, also known as the “black box”
problem[10]; it is not readily apparent to stakeholders how an Al arrived at its recommendation. This opacity erodes
trust and accountability. Healthcare is an area where decisions can have life-or-death consequences, and so clinicians
and regulators require at least some degree of explainability - in fact, the lack of it has been a basis to oppose some Al
algorithms for clinical use[10]. Indeed, in some instances in patient care, a less accurate but interpretable model is
preferred to a difficult-to-understand and complex tool[14]. This has led to a growing interest in explainable Al (XAI)
methods for health use cases, but adopting these approaches into practice is difficult.

Ethical and governance challenges represent another significant barrier. Bias in training data can be harmful, resulting
in unfair and even unsafe outcomes for minority groups who are underrepresented in models. In the absence of
intentional regulation, Al might be used in ways that compromise patient privacy or informed consent. Global
organizations and panels of experts (e.g.,, OECD, WHO)[28] have set forth principles for responsible Al in healthcare -
such as transparency, accountability, fairness, human oversight, data privacy, and safety - as guiding principles to the
development and adoption of Al technology[16]. Venturing from high-level principles to operationalization requires
specific organizational processes and oversight mechanisms, which many health organizations still lack.

Moreover, security threats specific to Al/ML systems have been revealed[45]. One can think of “adversarial attacks” as
malicious inputs that cause a model to give the wrong outputs: in medical images, for example, this might involve very
slight changes to an image that bamboozle a diagnostic algorithm. Additional attack vectors include data poisoning
(tainting the training data to influence the model), model inversion (recovering sensitive training samples from a
model)[13], and even outright model theft. Healthcare Al is a prime target for cyberattacks, with increasing reports of
security breaches targeted at AI[18]. The potential consequences of a compromised clinical Al system are significant:
incorrect diagnoses, inappropriate treatments, privacy breaches, and regulatory failure. Classical IT security measures
are necessary but not sufficient for Al; in practice, proactive risk estimation and defense methods that can be adapted
to ML (e.g., adversarial robustness testing, model-drift or anomaly detection) will be required[19][20].

These technical problems are exacerbated by organizational and human considerations. Most Al pilot projects never
become lasting clinical programs because of lack of workflow integration and change-management issues. Frontline
staff may resent a tool that they consider cumbersome, incomprehensible, or an invasion of their professional judgment.
Technology, no matter how good the algorithm, will remain unused if training and clinical leadership are not engaged.
What's more, healthcare Al applications tend to involve team-based efforts across functions (IT, data science, clinicians,
compliance), and if there isn't harmony among these groups, integration can lose traction. Healthcare leaders surveyed
have cited a lack of stakeholder buy-in, inadequate readiness and skills training deficits, and ineffective communication
as top reasons Al initiatives fail to achieve expected ROI[6]. The combination of social and technical factors is estimated
to reduce the chances for a significant return on investment by 40-50%][21].

Finally, the question of sustainability in Al solutions is emerging. In this context, sustainability means being able to keep
Al systems running and scale them over time so they continue to provide value - not just deploy once and let them sit
fallow or rust. Model performance can change over time as clinical practice or the patient population evolves, thus
requiring ongoing monitoring, updating, and re-validation of models (often referred to as “MLOps” practices). The Al
environmental sustainability agenda, including the computational energy requirements to train models, has been
noted[50]. But in healthcare there is particular interest in sustainability because of its focus on maintaining operational
value. An Al solution that is not deeply integrated into the organization with clear ownership and momentum behind it
will be unlikely to survive long beyond the initial wave of excitement. Thus, planning for maintenance over time and
consideration of system evolution should be addressed from the start. It is also important to align Al initiatives with
business goals.
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In conclusion, the proposed benefits of Al in healthcare are vast, but realizing these promises requires resolving issues
related to ethics, security, explainability, and adoption. A systemic approach is required that considers both technical
strength and human context. Recent works have started to map pathways for this. Monga (2025), in particular,
highlights a triptych of must-dos - building Al systems responsibly (with ethical guardrails), securely (with defenses
against threats), and sustainably (with processes for continued value creation) - as foundations to success. Singh et al.
(2025) have shown that high-performance Al models must integrate domain knowledge and rigorous validation in
order to be useful for medical practice, using multiple biomedical imaging case studies. Leveraging these insights, we
present an integrated framework that instantiates these concepts into practical strategies for healthcare organizations.

2.2. Regulatory and Policy Landscape

It should be mentioned that the regulatory landscape more generally, including in contexts such as healthcare where
real-world impacts are paramount, is moving towards mandating responsible Al practices. Within the United States, the
FDA has ramped up scrutiny over Al/ML-powered medical software by promoting practices such as algorithm
transparency, post-market surveillance, and bias abatement for Al as a medical device. In the European Union, most
healthcare Al systems (notably diagnosis or treatment) will be deemed “high-risk” under the new EU Al Act[31] and
will be placed under stringent requirements concerning risk controls, training data quality, transparency regarding
training data, human oversight, and continuous monitoring[5]. For instance, EU businesses that offer high-risk Al under
the EU AI Act are required to build in risk-management systems, require high-quality, non-discriminatory datasets,
maintain exhaustive technical documentation, and ensure human oversight or control in an Al's operations[22]. What
is clear from these regulations is that robust governance, documentation, and human supervision - as incorporated into
our framework - are not only good practice but will soon also be legal requirements.

Furthermore, international standards bodies and professional associations are also promulgating guidelines and
frameworks (for example ISO standards on Al or the World Health Organization’s guidance on Al ethics and governance
in health). Together, these trends suggest a future that will require responsible Al development and deployment.
Healthcare organizations that build expertise early on in responsible Al - with cross-disciplinary governance councils,
compliance processes, and adherence to frameworks such as the one we propose here - will be far better equipped to
confront regulatory requirements and sidestep implementation pitfalls. With this background established, we now
describe our approach for enabling Al in healthcare, placed within that strategic framework and echoing these drivers
of success.

3. Methods: Conceptual Framework for Responsible Al Implementation

To tackle the difficulties detailed in the previous section, we have designed a high-level structure which consists of five
vertically integrated cornerstones: Leadership and Strategy, MLOps and Technical Infrastructure, Governance and
Ethics, Education and Workforce Development, and Change Management and Adoption. Each pillar corresponds to a
key dimension of capability that health systems will need to build in order to deploy Al at scale effectively.
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Figure 1 Responsible Al framework
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Figure 1 shows the architecture of the framework and how these components interact with each other. In what follows,
we describe each pillar and present the essential practices and structures associated with it, through integration of
insights from practical evidence in healthcare Al case studies and expert recommendations.

3.1. Leadership and Strategy

Powerful leadership is the foundation of any significant healthcare innovation at scale, and Al is no different. Leadership
and Strategy in healthcare Al is when executives and clinical leaders lead their organization on Al initiatives, ensuring
that these are aligned with organizational objectives, enabling objective-setting guidance, and creating a top-down
culture of support. It starts with having a strong Al vision or charter articulated at the C-level. Health systems should
establish an Al/ML steering committee or center of excellence (CoE) with representation from C-suite leadership (e.g.,
a Chief Al Officer or Chief Data Scientist, in addition to the CIO, CMIO, CMO, etc.). These leaders are also in charge of
clearly communicating how Al enhances the delivery system’s mission (e.g., better quality, efficiency and patient
experience) and leading the drive for resources (finance, people and technology) to achieve that future state.

A key leadership function is instilling focus around Al use cases that support strategic goals and have a clear path to
implementation. Instead of pursuing every shiny Al application, top firms “start with the end in mind” by first choosing
projects that have a well-defined value proposition and predetermining how success will be measured[25]. Leaders
need to support cross-discipline assessment of potential Al use cases (e.g., clinical relevance, data readiness, workflow
fit and ROI) before initiating development. This well-defined intake and prioritization process is meant to avoid
technically interesting, strategically misaligned projects that aren’t practically viable.

Leadership should also work to weave moral principles and risk consciousness into the Al strategy. Many organizations
are developing their own set of Al ethics or “Al use” principles, which usually refer to international guidelines, to guide
all of their Al projects, such as a “north star”[16]. For instance, an institution may decide to use only Al models for which
there is a sufficient degree of explainability from the perspective of end-users (thereby allowing clinicians to interpret
model outputs)[17]. Fairness, accountability, and human oversight are also among the principles that must be
formalized and publicly articulated. Leadership can and should leave it to the Al governance body (addressed next) to
operationalize these principles over time and keep tabs on compliance. This top-level commitment from leadership
demonstrates to all staff that the pursuit of Al will be conducted in a considered, responsible way, not a technology-
push-at-any-cost approach.

A second area of leadership activity is to nurture an Al-ready culture. This implies the promotion of a data-driven culture
and innovation across an organization. Leaders should promote early “wins” of Al projects to create momentum, and at
the same time be open about failures and learnings, making learning part of normal working life. Because Al
implementation may involve changes to existing, well-entrenched processes, it will probably require leadership with
vision who can galvanize the consensus required to overcome inertia or resistance. That includes explicitly stating how
Al will complement, not replace, people - for example, by explaining that Al can duplicate predictable analytic work so
that clinicians can focus on spending more time with patients.

Significantly, leadership needs to invest in the organizational building blocks for Al enablement. Several health systems
have seen benefit from the creation of a dedicated Al-focused leader (such as a Chief Al Officer)[27,28] or formalized an
Al Centre of Excellence to consolidate expertise and resources. The point is that someone needs to own and be
accountable for setting and driving the Al agenda. This management team oversees cross-functional activities, manages
Al projects, and acts as a liaison between technical teams and clinical operations. We emphasise that leadership
guidance is not a one-off like executive sponsorship: it requires continuous executive support throughout the lifetime
of Al initiatives to overcome obstacles, including addressing inter-departmental tensions and authorizing policy
changes (e.g., on data sharing or IT investments).

In conclusion, strong leadership is better able to guide Al direction and orient it towards goals and values, activating the
organization for the adoption of Al. Without such leadership, even the best Al technology is likely to have little system-
level effect.

3.2. MLOps and Technical Infrastructure

The second pillar, MLOps and Technical Infrastructure, encompasses routines and tools that lead to the reproducible
building of AI/ML models in a healthcare setting[15]. “MLOps” (Machine Learning Operations) is a field based on
DevOps, which drives operational best practices around machine learning lifecycle needs in order to ensure that models
are deployable and updatable in an automated, reliable manner[29]. In an industry like healthcare, where the safety of
patients and the privacy of data are a priority, a clearly defined MLOps pipeline is essential to move prototypes into
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production systems that clinicians can rely on. Ongoing monitoring (Algorithm 1) detects drift and triggers controlled
responses.

Algorithm 1
SCHEDULE: run daily/weekly
INPUT: recent_predictions P_t, outcomes Y_t (when available), reference_baseline B

metrics < {AUC, MAE/R2, calibration, PSI(data), drift(embedding)}

FOR m in metrics:
delta[m] < compare(m(P_t, Y_t), B[m])

IF any delta|m] > alert_threshold[m]:
create_incident(ticket, attach_artifacts, notify {DS, Product, ClinOwner})
IF safety_metric_breach: trigger_safeguard (rollback_or_shadow)

LOG all metrics, deltas, actions for audit; update dashboard

A strong MLOps framework will cover the following components: a) version-controlled workflows for model
development, which include code repositories and experiment tracking; b) rigorous validation and testing processes,
including - but not limited to - validation on separate data sets, bias and performance audits of models, and simulation
in a clinical setting; c) automated deployment pipelines that can move models from staging environments to production
services (e.g. via containerization or APIs); d) monitoring systems that can continuously track the performance of an
ML model (accuracy, data drift, prediction drift, etc.) with triggers if it goes beyond preset thresholds; e) processes for
tracking all outputs and relevant data derived from those outputs for later audits (to support explainability and
debugging); and f) defined procedures for rollback or updating - such as regular retraining on new data or patching
models if errors are uncovered during their lifetime. Integrating these components helps to guarantee that when an Al
model is created, it can perform within the clinical IT ecosystem and be sustained over the long term.

Providing suitable infrastructure for these MLOps pipelines should be pursued by healthcare institutions. This might
take the form of data management platforms (e.g., a feature store that centrally manages and serves validated features
for models[30]), as well as orchestration tools and monitoring for productionized models. As an example, a feature store
can cut data-prep duplication significantly while also ensuring that training and inference data are consistent - critically
important in healthcare where the definition and quality of data must be under tight control. Setting up a model catalog
or registry also permits traceability of all models, their versioning, metadata (such as the training data used, the
algorithm type and its hyperparameters), and ownership[32]. Not only is this critical for internal governance, but also
for compliance - e.g., knowing at any given point which models are having an impact on patient care.

Security must be built into the MLOps pipeline. Unlike common software, ML models cannot simply “plug into” currently
used security scanning tools. Checks for ML-specific vulnerabilities should be added as part of model testing, including
whether the model is resistant to small variations in input (adversarial tests)[47] and whether patient data are
memorized unintentionally by the model[19]. The literature indicates that many existing industry MLOps pipelines fall
short from a security perspective, leaving room for open issues[35]. As such, health organizations will need to extend
their dev/test pipelines to encompass Al-specific security evaluation, and partner with cybersecurity teams to modify
controls for Al (for example, adding checks that look for abnormal usage patterns of an Al service which could be
indicative of an attack).

Another key aspect of MLOps is the ability to continuously learn and improve models. In healthcare, changing
populations or practice can lead to reduced deployed model accuracy (i.e., a model whose performance decreases after
an important change in clinical protocols or during a pandemic). Our approach emphasizes the importance of ongoing
model surveillance and feedback between model outputs and outcomes, allowing new models to be tested as they
arise[36]. This can be done with dashboards that contrast model predictions and actuals at various timescales, as well
as mechanisms to gather user feedback. For example, if many of an Al's recommendations are overridden or corrected
by clinicians, such feedback should be quantified and analyzed by data science staff to help pinpoint possible sources of
flaws in a model or the need for retraining.

Infrastructure should be scalable and reliable. In healthcare, for example, we may want models to run in real time or
near real time (such as an Al reading a radiology scan in the ER). Architectures should be designed for high availability
and low-latency inference - considering the use of cloud services or on-site GPU servers. Given the inevitable security
and privacy compliance requirements (since health-related data are very sensitive), such as HIPAA or GDPR, all
processing pipelines must be designed from the start to comply[56][36] through proper use of encryption, access policy
monitoring mechanisms, audit logging controls, and related safeguards.
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In conclusion, MLOps and technical infrastructure are the engines that safely and effectively drive Al models from bench
to bedside. Organizations that build these capabilities will be far better positioned to deploy multiple Al applications
and scale results. Conversely, the absence of these capabilities is what prevents promising projects from ending up in
“pilot purgatory” or unexpectedly flopping in practice due to a lack of support processes.

3.3. Governance and Ethical Oversight

The Governance and Ethics pillar guarantees that ethical principles, regulation, and accountability are embedded into
Al initiatives. We suggest that healthcare organizations establish an Al governance council or committee to oversee
Al/ML initiatives enterprise-wide. This council should be cross-functional, with participation by representatives from
clinical leadership, data science/IT, legal/compliance, data governance, security, etc., as is standard in most health
systems (e.g., nursing operations)[40][41]. The responsibilities of the governing body are multi-faceted.

Endorsing Use Cases and Tools: The governance committee will assess new potential Al use cases to make sure they
align with the organization’s strategic objectives and its ethical stance. As mentioned before, leaders bring use case
proposals for screening to this committee. The governance group further challenges each submission by asking: Is the
clinical/operational need clear? Is the dataset suitable and of high quality? Have biases or risks been taken into account?
Is there a clear place where the model output will be used in workflow? Only cases that satisfy certain prerequisite
conditions proceed further[42]. This step ensures that experiments without adequate oversight or those that might be
harmful will never reach patients. The committee also reviews new Al tools or software platforms for implementation,
checking them against regulatory approval, security, and integration with other systems[43][44].

Policy Development: An important responsibility is for Al governance to create the policies, procedures, and best
practices around how data will be used in Al development and usage[45][46][48]. These may comprise a policy on Al
explainability (any output the Al displays to clinicians must be shown with necessary details, including an explanation
or confidence level), policies about how data will be used and consented for model training, validation and
documentation of models, and an Al vendor code of conduct. With these ground rules in place, the organization
establishes clear lines of responsibility that every Al project follows. Similarly, the governance committee must
periodically review and modify these policies as external laws and standards change.
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Figure 2 Government/Pillar heatmap

Continuous Oversight and Risk Monitoring: Governance does not end with the deployment of an Al system; it is ongoing.
The committee (or subcommittees it may establish) must constantly oversee adherence to standards and risk
management. This may include: managers reading regular reports on how the model is performing and being used;
auditing algorithms for bias or drift; and ensuring there is a process for users to report issues they find. For example, if
an Al to predict patient deterioration is being utilized, the governance team may call for a quarterly report validating
the accuracy of predictions made by the model and any adverse events or near-misses associated with its
recommendations. If issues do arise, governance can require mitigation measures or even suspend the Al tool until
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matters are addressed. In essence, this body provides the human oversight that is one of the hallmarks of trustworthy
Al - a way to step in if Al does not behave as it should or when context changes[47]. In the length-of-stay prediction
example we discuss, the governance plan consisted of appointment of clinical owners with authority to stop use of Al if
abnormal behavior or safety concerns arose[49].

Ethical and Legal Compliance: The governance committee should monitor whether each Al system conforms to
healthcare regulations and ethical standards. This means collaborating with the privacy office to ensure HIPAA
compliance in all handling of data, assessing whether appropriate patient consent is needed (for instance, for secondary
analyses or Al development), and determining whether use of the Al raises any ethical questions - for example, around
accountability for automated decision making. If an Al system gives diagnostic or treatment advice, the committee
should also examine whether it is a medical device and therefore regulated[58], and whether it needs to be subject to
regulatory approval (or notification). Proactive engagement of legal and compliance experts would prevent the rollout
of solutions that later face regulatory or trust headwinds.

Documentation and Transparency: Governance must ensure rigor in documentation of all Al models, along with their
development methodologies. This documentation should cover, for example: training-data lineage; model algorithm
design; validation results; intended use; documented limitations; and appropriate mitigation strategies for relevant
risks. This is not only best practice but is increasingly demanded by regulators and standards - for example, the EU Al
Act will require technical documentation for high-risk Al systems. Documenting these elements is a forcing function for
being explicit about limitations and assumptions. Further, the governing body can mandate that model cards or user-
facing documentation be developed for each Al tool (as recommended in responsible Al literature). A model card is a
brief overview of what a model is designed to do, the data it was trained on, performance metrics, caveats, and
considerations of use for people who access that model[11]. In our use case, the nursing staff were given a user guide
(effectively a model card) explaining how the remaining length-of-stay model works and what factors it uses[50]. This
approach promotes transparency and fosters user trust.

By institutionalizing such governance structures, healthcare entities establish an internal checkpoint for Al projects to
pass that greatly decreases the risks of unanticipated negative consequences. It bakes Al risk management into the
fabric of an organization. It is interesting to note that a recommendation appearing increasingly in industry guidelines
for responsible Al is to set up an Al governance council. Early adopters report that this helps strengthen
interdisciplinary communication and promotes a more thoughtful process of introducing AI[52]. Our model positions
governance not as a bureaucratic obstacle, but as an enabler of sustainable Al: it is the vehicle for translating
leadership’s intent and ethical principles into action - safeguarding durable effectiveness and public trust in Al
capabilities.

3.4. Education and Workforce Development

The introduction of Al to healthcare workflows changes the roles and skills required of health professionals. Therefore,
Education and Workforce Development is one essential foundation for training both technical teams and end-users who
will create, understand, and utilize Al tools. There are two sides to this: training the technical talent (data scientists,
engineers, and informaticians) on healthcare-specific topics and best practices, and educating clinical and operational
staff in Al literacy and usage.

On the technical side, health systems increasingly value talent who possess Al/ML expertise in combination with an
understanding of clinical context, regulatory guardrails, and the quirks of healthcare data (like interoperability
standards and issues related to data quality). An investment in training data scientists and engineers on issues related
to medication, natural language processing, healthcare workflows, or biostatistics may help ensure that Al solutions
developed are relevant and safe[54]. Conversely, healthcare professionals with analytics acumen can be taught data-
science methodologies - often referred to as “citizen data scientists” if they don’t hold official titles of that nature - so
they can take part in the development of Al alongside more technical teams or communicate effectively[55]. "In-
sourcing” may also be facilitated by sponsored fellowship or rotation programs in organizations where clinicians
shadow IT staff and clinicians rotate to the data-science group. If we follow the framework, it makes a case for
developing more interdisciplinary learning opportunities to train an Al-and-healthcare-savvy workforce.

Al expertise is essential for the wider clinical and operational workforce. It is not necessary that frontline workers
understand the nuts and bolts of how neural networks are trained, but they need to grasp some first principles: what is
possible with Al and what is not; how to interpret an Al output; and why issues like bias and validation matter. As part
of our framework, we propose sustained educational campaigns about Al. One way to do this is by integrating Al
discussions into existing opportunities for medical education - e.g., including elements on Al at grand rounds, CME
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(continuing medical education) events, nursing education days, and the like. These sessions need to demystify Al,
breaking down concepts in lay terms (e.g., what is machine learning, what is an algorithm, what is meant by model
accuracy vs. bias)[57]. As Einstein’s quote goes, “We can’t solve problems by using the same kind of thinking we used
when we created them.” If we cannot explain it simply, then we do not understand it enough - analogously, the burden
is on Al specialists to share fundamental concepts with clinicians in an easy and intuitive manner.
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Figure 3 Responsible, secure and sustainable healthcare Al

In addition to general literacy, training should be available for individual Al tools before they are rolled out. There
should be a required official training module or workshop for intended users each time a new Al system is implemented
(e.g., an Al sepsis alert in the EHR or a triage tool for radiology images). In doing so, users learn how the Al operates at
a high level of abstraction and what its outputs look like, interface features that inform their decision-making process,
and-perhaps most critically-they become aware of known limitations of the AI[24]. For instance, radiologists could be
trained to know that an Al nodule detector highlights areas of interest on a chest X-ray with a specific sensitivity and
specificity, but that they should not rely on it to catch every nodule. In one application, we provided nurse managers
and discharge staff with detailed user guides, one-pager desk drops (laminated reference cards), and in-person
quarterly introductory sessions plus a gap analysis of typical decision errors versus most impactful clinical
decisions[34][51]. These informal sessions gave users the opportunity to ask questions, make suggestions, and learn to
use the tool with confidence over time. An iterative educational approach is more powerful than a single training data
dump.

We also emphasize the importance of Al champions or super-users being created among employees. Identifying a few
people in each department who are super-users, receive more intense training, and act as the go-to for the rest of their
departments is an extremely effective way to spread awareness. These champions usually provide support in
troubleshooting problems users experience, advocate for the correct use of the tool, and pass user feedback to the Al
development team. Peer influence is pivotal to change-management theory - clinicians trust the experience of their
peers. Nurse or physician champions who act as evangelists for the Al and help get other people involved accelerate
adoption. In the case study, user champions were involved early and remained engaged until completion, which
smoothed change management and training efforts.

From a leadership perspective, organizations should embed Al skills into relevant job descriptions and performance
expectations. For example, managers in operations may need to be able to interpret data analytics or Al outputs as part
of their role. Some health systems have begun measuring baseline Al literacy of staff and are establishing targeted goals
for improvement (for example, having all department heads complete an “Al in Healthcare” online course within 12
months). It is also about integrating Al training into on-the-job learning structures as well as leveraging external
education resources (universities, online platforms, industry workshops) to reinforce internally established practices.
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Finally, there is a theme of continuous learning. Al is a rapidly developing field; the technology leading today may be
obsolete soon. A robust program should therefore support continued learning. This might include regular Al learning
sessions for your workforce (such as an update on “what is new in explainable Al techniques” for the data-science team,
or “the potential of GPT-like models in healthcare” for clinical leaders). It is also helpful to encourage employee
attendance at suitable conferences or cross-industry forums to keep up with changes. A culture that embraces learning
will be more flexible to the changing times ushered in by Al

In conclusion, the Education pillar of our framework emphasizes the role of the human workforce in keeping abreast of
Al technology. By raising Al literacy, creating in-house knowledge, and empowering end-users to learn from and trust
Al with appropriate judgment, healthcare organizations can greatly reduce roadblocks to Al adoption, misuse, or
misunderstanding of recommendations. An educated workforce is one that is able to work well with Al, using judgment
about when to trust the technology and when to challenge it.

3.5. Change Management and Adoption

Excellent technology and great governance won'’t matter if the people who need to use an Al system refuse to use it or
circumvent it. Change Management (and Adoption) is the final pillar of our framework, dedicated to discussing how to
adopt Al solutions into clinical and operational everyday workflows and how to manage the human side of this change.
In healthcare, where workflows are intricate and the stakes are high, implementing a new Al tool often requires strategic
planning, communication, and iteration.

A fundamental tenet of change management is getting end-users engaged early and frequently. In the context of Al
projects, this means consulting clinicians, nurses, and other front-line staff from the start - not just at go-live. Their
feedback is crucial for design (ensuring that the Al output is clinically relevant and displayed accessibly) and for
identifying potential barriers to use. For our example length-of-stay application, nursing and case management were
consulted during development, and such stakeholders signed off on major decisions around how the prediction would
be computed and displayed[63,50]. This early engagement engendered a feeling of ownership and trust: people believed
that the tool was created "with them" rather than for them. For every Al project, it is a good idea to create a user-advisory
group that can test-drive the tool, provide feedback, and promote it among peers.

Having realistic expectations and verbalizing them is also key. Al shouldn’t be sold to users as an infallible or magical
solution. Instead, leaders and project managers need to share what Al can and cannot do, and where it sits in current
workflows. For example: “This ML model can indicate which patients are likely to need longer stays in the hospital with
around 80 percent accuracy. It's designed to help you plan by identifying those patients early, but it's not a replacement
for your clinical judgment.” By framing Al as decision support rather than decision autonomy, users are more likely to
see it as helping rather than threatening. On the implementation side, accessibility is key - consistent touchpoints (live
Q&A sessions, emails with tips and tricks, on-call support) will also drive positive uptake.

Workflow integration is a mundane yet decisive consideration for adoption. The Al output must be presented in the
correct place and at the time in a workflow when a user can act on it. In many cases, this means harmonizing with
established IT systems, such as the Electronic Health Record (EHR) or hospital dashboards, to make Al insights visible
in a clinician’s typical workflow[49]. If using the Al requires logging into another system or remembering to run a
manual query, adoption will languish. In our case the revised length-of-stay prediction was added to the nursing
dashboard for patient-flow management already in use, with a clear label that this was an Al-derived value. It was easier
for nurses to notice and utilize this prediction, as it was directly in their workflow and required no additional effort.
Further, the system offered context including the "factors driving the prediction” next to the score to help make sense
of it.

Feedback loops after delivery are essential for ongoing acceptance. Users should have straightforward ways to provide
feedback about the Al tool - whether reporting an erroneous recommendation, suggesting refinements, or reflecting on
inconveniences. This may take the form of an in-app feedback button, monthly surveys, or meetings with user groups.
We advocate creating a cycle where user feedback is examined by the Al team and governance committee, which then
alters the Al system or its use-cases in response. In fact, taking user feedback into account is a form of model monitoring:
if many users are overriding an Al's recommendations, that could signal that the model needs retraining or that users
need further training; governance would want to know what is happening. For instance, the application’s development
team in the case study reported reasons for not acting on Al scores, which were used to understand and enhance the
model. This two-way communication helps members feel heard and creates a partnership perspective.

A third element is handling human reactions and feelings around Al. Some employees may worry that Al will replace
their jobs or compromise their professional independence. Openly discussing these fears is critical. Change-
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management plans need messaging that frames Al as a tool that can automate mundane tasks or offer an added safety
net - not as a competitor. At the same time, organizations must be transparent about potential role changes; an Al might,
for example, automate some documentation or image-analysis tasks, altering workload. If these transformations are
anticipated, HR and leadership can engage in reassigning duties or providing training to turn a potential obstacle into
an opportunity for staff to grow into higher-value roles. Monga (2025) recommends working with human resources to
develop a workforce-focused change-management plan in the context of potential job-function reshaping with vision
Al including generative models. It is wise to make such arrangements in advance.

Adoption and impact are important for lending weight to change. Establish KPIs for the usage and impact of the Al tool
(e.g., percentage of clinicians who use it, reduction in adverse events, or improvements in efficiency). Track these
metrics and feedback, and communicate findings to relevant parties. Indeed, when data demonstrates a positive impact
- “Since implementing the Al discharge-planning tool, our average length of stay for the target patient cohort has
reduced by 0.5 day” - celebrate this and, more importantly, attribute it to both the technology and the people who
adapted to it. Acknowledging teams or champions that were key to an implementation’s success can encourage others
and create goodwill for future Al projects.

The change efforts (user champions, extensive training, user override with feedback, clear mission) resulted in strong
nurse-manager penetration of Al predictions into daily huddles and planning in our illustrative length-of-stay model.
Nurses did not see it as an imposed algorithm but as a tool they had helped design. As the model’s early predictions
proved reasonable and respectful of their time, trust grew - a virtuous cycle of adoption.

Finally, the Change Management pillar addresses where people and data must coexist. It pragmatically attends to human
needs, workflow compatibility, and feedback mechanisms to maximize the chance that Al advances will be accepted and
sustained in practice, converting technical potential into actual clinical and operational enhancements.

4. Results: Applying the Framework in Practice

We demonstrate the likely path of successful Al deployment with two use cases - (A) A hospital length-of-stay prediction
model (operational Al) and (B) An Al-augmented radiology diagnostic tool (clinical Al). In each case, we discuss the
issues encountered and which strategies (from our framework) were used to deploy them ethically, securely, and
effectively. These examples illustrate the utility of the framework in guiding various Al efforts and offer lessons learned.

4.1. Case A: Predicting Hospital Length of Stay - Responsible Operational Al

Context: Length of stay (LOS) is a key hospital metric that influences capacity planning, cost, and quality of
care[4][12][27]. An updated daily ML model was developed to predict actual inpatient remaining LOS with a one-day
lead time so case management could proactively arrange resources (e.g., post-acute care, authorizations) for timely
discharge. The model used EHR data (demographics, diagnoses, laboratories, procedures) and was developed using a
gradient-boosted trees algorithm; it performed reasonably well (R*> » 0.4-0.6 for different patient groups) in
retrospective validation. The challenge was to fit this tool to nurse managers and discharge planners across a large 48-
hospital system while preserving clinician trust and avoiding inadvertent harm or bias.
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4.1.1. Framework Application:

Leadership & Strategy: The COO and CNO strongly supported the initiative, positioning it as part of a larger strategy to
optimize patient flow and reduce avoidable days. They resourced the project (data scientists, IT integration support)
and established a clear success criterion (reduce average LOS for targeted long-stay patients by n). Crucially, they made
it clear to all managers in the hospital that this was a tool to help staff - not to pressure them into discharging people
too soon - which helped relieve anxiety. Leadership also pinpointed pilot sites (a handful of hospitals) that had especially
eager local leadership to begin with, so we could have initial successful proof stories.

g Baseline
Past-implemantatian
7F ;
o

; b
m
Sl
("]
3 4
i
o
o
o 3
=
o

2

l -

0 — k k :

o Lal L AD
wed-SHTE i phed SuTd o pyen™ cardV

Figure 5 LOS before vs after

Governance & Ethics: The Al governance council thoroughly vetted the LOS model prior to implementation. They
analyzed its development data for representativeness between hospitals and red-flagged it, finding that the initial model
performed a few percentage points less accurately for patients in several minority service lines. The data scientists
reacted by re-fitting the model to include more features in a bid to improve fairness and performance. The governance
team also required a risk analysis of side effects[19]. For instance, is there any patient-safety risk associated with the
model’s use? Because the LOS prediction was advisory and did not drive clinical actions, they considered direct patient
risk low. They also considered systemic risks: if the model were wrong, might it allocate resources in ways that did more
harm than good? The council determined that even if an estimate was off, it would most likely either invoke earlier
review (no harm in unnecessary action) or be overly optimistic (in which case staff would revert to typical procedures),
so no serious harm was expected. They added guardrails: clinicians would not use the model output to make discharge
decisions unilaterally; they would use it only as a prompt for review. The governance policy also required transparency:
each prediction would come with the top contributing factors (drivers) and a confidence estimate, visible to users so
they understood the output. Our intake process (see Algorithm 2) standardizes portfolio prioritization across clinical
and operational use cases

Algorithm 2
INPUT: use_case proposal U
SCORE U across dimensions D = {StrategicFit, DataReadiness, WorkflowFit, RiskLevel, ROI, StakeholderSponsor}
FOR each d in D:
U.score[d] <- normalized_score(d, evidence)
IF any gating_criteria_fail(U): RETURN REJECT
U.total <- weighted_sum(U.score, weights set by steering committee)
IF U.total = deploy_threshold: RETURN APPROVE_FOR_BUILD
ELSE IF U.total = incubate_threshold: RETURN INCUBATE_AND_REASSESS
ELSE: RETURN REJECT

MLOps & Security: On the technical side, an MLOps pipeline was created for daily batch prediction. The EHR data lake
was accessed via an automated nightly extract process, the model executed, and results were written to a secure table
that the dashboard extracted from each morning. Monitoring: we set up processes so that data scientists could check
the distribution of predictions versus actual LOS for discharged patients weekly and catch any drift. IT implemented
alerts so that if a model did not successfully run or data were misused, the system would raise an alert. On the security
side, our model ran on internal servers behind a firewall and only service accounts could run it. As a countermeasure
against tampering, it was set up to alert the security team for any abnormal calls to the model API (for example, an
unknown user attempting to access the service) and to suspend service temporarily. Data used and generated by the
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model were managed under strict data governance, with all patient identifiers contained inside a secure environment
and on-screen outputs available only to authorized users via dashboard login (administered via roles)[39]. Periodic
audits were conducted to verify that no unauthorized accesses occurred. These largely unseen processes provided
assurance that deploying the model would not open new cybersecurity backdoors or privacy leaks.

Education & Training: Prior to go-live, the project team offered training at each pilot hospital. They explained what
the LOS prediction is and how it’s calculated in broad strokes (“it looks at patterns from thousands of past patients with
similar conditions”) and how staff should use it (“it’s a tool to help prioritize which patients may need more attention
on discharge planning; remember to use your judgment if the number seems strange”). Nurses and case managers
received a one-page user guide (a simplified model card) listing the input variables considered by the model, example
scenarios, and FAQs. They were informed when several days remained and a color (e.g., red for high risk of long stay)
appeared on their patient list. Role-play scenarios were considered (e.g., “What if you get a much longer forecast than
expected? Flag that patient for a care conference to explore underlying problems.”). The training made it clear that staff
should question and challenge any prediction that didn’t make sense. Because the model contained explanations (the
top factors such as “no post-discharge support plan” or “multiple comorbidities”), trainers taught how to interpret them.
Post-training surveys indicated that >90% of participants reported that they understood the tool’s purpose and how to
use it correctly. Some early-adopter case managers who recognized the value became local champions and encouraged
peers by sharing success stories (for example, “The tool said Ms. X likely needed an additional 2 weeks, so we lined up
arehab bed early, and it prevented a delay”).

Change Management: Change management was evident throughout deployment. Advocates were engaged from day
one; many staff were involved in development and were openly supportive of the tool launch. The project team
organised twice-weekly virtual huddles for the first month post-implementation, during which staff from pilot units
could share experiences, ask questions, and get updates. This engendered a community of practice around the new tool.
Atfirst, some nurses were skeptical - one concern was “Will administration use this to blame us for long stays if we don'’t
meet the predicted date?” Leadership addressed this by clearly stating that the tool would not be used to evaluate
individual performance and that its purpose was to help surface information that could otherwise go undetected. This
was relieving and reassuring to staff. Another piece of change management was a feedback loop: a basic form in the
dashboard let users click “Feedback” and send a note if a prediction seemed way off or if the tool saved them time. The
Al team reviewed these notes. For instance, they saw feedback that the model didn’t account for certain social factors
(like lack of transportation) and forwarded this to governance for discussion about including a proxy for transportation
availability in future updates.

Adoption metrics were strong after a 3-month pilot: >75% of case managers checked the LOS prediction daily. Staff, in
qualitative feedback, mostly responded favorably to the tool, reporting that the page either confirmed their clinical
hunch or alerted them to a patient they had not realized would need additional time (“It’s like my second set of eyes,”
one nurse manager said). Nurse managers began brainstorming new ideas - wondering if the model could be expanded
to predict ICU stay or readmission risk - as comfort with and interest in Al tools grew.

In outcomes, attributing causation directly is difficult, but hospitals that used the tool had a modest reduction in average
LOS for complex-discharge patients (the primary target metric) versus control sites and also saw fewer last-minute
scrambles for post-acute placements. The governance council tracked these results and signalled to scale the tool to
additional hospitals, with ongoing monitoring.

This case illustrates how the pillars of the framework operate in ensemble. It was the vision and trust provided by
leadership; governance that held us accountable and kept us safe; an effective MLOps implementation for technical
reliability; user training via education; and a means to ease human adoption through change management. All of these
were required to take the capable ML model and make it live - something people accepted as part of delivering
healthcare that drove operational efficiencies.

Evaluation: Observational pilot; no randomized controls. The dataset comprised 3,184 adult inpatient encounters
across 4 units (June-August 2025). Performance on new data was R? = 0.41-0.58 for validation folds/cohorts. Adoption
was 78% in week 6. Complex discharges on targeted units had ~5-10% relative reduction in mean LOS versus pre-pilot
baselines (descriptive), guiding a planned controlled evaluation.

4.2. Case B: Al-Assisted Radiology Diagnostics - Balancing Accuracy and Explainability

Context: Radiology has stood at the vanguard of clinical AI[38]. In this instance, assume a deep learning model intended
to help identify lung nodules on the chest CT to facilitate early detection of lung cancer. The model is a convolutional
neural network (CNN) that can read CT images and pick out suspicious lesions for the radiologist, essentially serving as
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a “second reader.” It was developed on thousands of annotated scans and achieved high sensitivity (x95%) for known
nodules at the expense of some specificity (let’s say, generously, ~25% false positives). The hope was faster reads and
higher rates of detecting small nodules that a busy radiologist might overlook, but implementing it in an actual hospital
radiology department posed a number of real-world questions: How would it integrate with the PACS imaging system?
How would radiologists perceive the tool - would they trust it or consider it an extra burden? If it fails to detect a cancer,
could it increase liability? And how can it be used so that it doesn’t generate false alarms too frequently, reducing
effectiveness?
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4.2.1. Framework Application:

Leadership & Strategy: The chief of the department was tech-forward and advocated for the project, setting a strategy
that the department would use Al to improve quality. To respect radiologists’ autonomy, he presented it as an
enhancement to aid them rather than replacing or evaluating their performance. The hospital CMO and quality officer
were involved, connecting the Al tool to early cancer detection (a patient-safety/quality metric). They put in place a
phased approach: first the Al findings would be recorded but not shown to radiologists (to gather baseline information),
and second, they would be presented as an assist on some cases[37]. By employing this intentionally slow strategy,
leaders signalled that they were committed to rigorously evaluating the tool’s impact and integrating clinician feedback
- rather than rushing it into operation.

Governance & Ethics: A clinical-algorithm assessment protocol was used by the Al governance committee when
assessing the CNN[33]. They asked for an AUC of at least 0.85 and required local testing on the patient population - for
example, an additional validation on a set of 500 CT scans from the hospital. While sensitivity remained high (0.96), the
model also flagged some benign scars or calcifications as potential nodules. Committee radiologists voiced concern over
alert fatigue: if there are too many false positives, the Al might be tuned out. The committee therefore specified that the
Al output should not be a binary alarm on every slice, but rather a summary identifying just a few top suspicious areas
and only if above a certain confidence threshold (to control noise). They also insisted on an explainability feature: the
system should furnish a visual annotation (e.g., a bounding box around a suspected nodule) and an estimate of nodule
probability, rather than only a “nodule detected” text note. On the ethics side, the team discussed fairness and
accountability. They determined that in initial use a second radiologist would double-check every case where the Al
disagreed with a primary radiologist’s read to assess added value and safety. Legal also provided perspective: the
hospital communicated to its liability insurer and clarified that final reads remain the responsibility of radiologists; the
Al is consultative and FDA clearance labels it as a second-reader device.

MLOps & Security: Integration with radiology IT systems was complex yet essential. The IT and vendor teams installed
the model on a server that links to the PACS, so when an urgent CT arrives for reading it also goes to the Al for
simultaneous processing. To keep the Al response timely, the system was designed to return results in around 30
seconds on a GPU. Monitoring was put in place to detect system slowdowns or failures; if the Al service was down,
radiologists would be alerted that Al results were not available for that case[60]. Because patient images are highly
sensitive, all processing was performed on-site; no cloud transfer was used. The model outputs (the marked images)
were cached temporarily and cleared after 24 hours to limit data retention. The Al server was penetration-tested by the
cybersecurity team before go-live and strict access controls were maintained. The team also considered adversarial
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risks - for example, doctored images intended to deceive the Al - and mitigations included monitoring for anomalous
input patterns and regular retraining and validation with new imaging data. A library of known non-nodule patterns
that the Al frequently misclassified (e.g., certain calcified granulomas) was maintained; when the system flagged those
patterns it would mark “possible false-positive pattern” for the radiologist based on prior knowledge - an evolving set
of rules layered on top of the Al.

Education & Training: Because radiologists are highly trained professionals, the Al introduction was approached
thoughtfully. Prior to implementation the department conducted round-table discussions during which the data-science
team shared how the model had been developed and its performance, showing sample images the Al had correctly and
incorrectly classified. This transparency helped set expectations. To train users, the department ran a workshop on Al
in radiology covering how such algorithms work and their limitations (for example, that the Al may miss findings
outside its training scope or mislabel unusual appearances). A few radiologists interested in Al research served as
internal champions. For the initial phase, each radiologist received a quick-reference guide explaining how to view the
annotations suggested by the Al, accept or reject them, and provide feedback. The system allowed radiologists to flag
false positives and to report missed lesions; this feedback was gathered to improve the model. Feedback examples were
reviewed (anonymized, in aggregate) in monthly meetings, and radiologists gradually developed an understanding of
common patterns the Al flagged (for example, “Al frequently flags this background scar tissue - we now recognize it as
a pattern”).

Change Management: Al was first deployed in shadow mode, collecting and logging findings without showing them live.
After two weeks of analysis they found the Al picked up a few small nodules that radiologists had later mentioned, but
also raised many findings radiologists deemed clinically insignificant. With these caveats acknowledged, they proceeded
to live mode with the understanding that a radiologist could disregard Al advice. Change-management measures
included reassuring radiologists that their expertise remained primary - the Al was like a junior resident offering
suggestions, and the attending radiologist retained final authority. Leadership emphasized that the Al was FDA-cleared
as an assistive, second-reader device and that final responsibility for the read remained with clinicians; this helped allay
liability concerns. A feedback loop in the interface allowed users to report false positives or useful detections; the Al
team used these reports to refine the model.

Overall, this approach - phased deployment, rigorous governance, secure MLOps integration, transparent education,
and active change management - helped the radiology department adopt the CNN as a practical assistive tool rather
than an intrusive or risky addition to workflow.

They introduced it incrementally, starting with a subset of scans (e.g., only routine outpatient CTs for moderate-risk
patients where time pressure was less). User experience was closely monitored. A support channel was set up so that
radiologists could call or text if the Al system got in their way. An early problem: the Al occasionally flagged tiny nodules
with no clinical significance, which bothered some radiologists. The team soon tuned the sensitivity threshold to
eliminate them entirely. By including those radiologists in that decision, they felt listened to and had a part in the
solution, so acceptance flowed more easily. Soon, there were positive stories: for example, one Al detected an early-
stage tumor that the radiologist missed (possibly because it was the end of the day and the radiologist was tired). That
was called out (anonymously) in a department meeting - not to humiliate the miss, but to demonstrate the importance
of having a second set of eyes. That story did more to change minds than any lecture; peers saw an actual patient benefit.
A few months later, most radiologists were actively using the Al annotations in their reads. Some said they usually
agreed with the Al's picks; others said they often ignored it except for a final check. More important, no one felt they
were meaningfully slowed down by it once they learned how to use it. Read times for average or complicated cases were
steady or slightly improved. The department chose to extend the Al across additional scanning types (such as high-
resolution lung CTs), retraining the model iteratively with their own data under ongoing governance oversight.

This case from radiology serves as a reminder to weigh accuracy against explainability and workflow integration. The
framework’s focus on user feedback and iterative change management was key - if the tool had not been adapted to suit
radiologists’ needs and concerns (about alert fatigue and liability), the Al's advanced accuracy alone would not have
guaranteed adoption. Using the framework, the hospital reached a situation where Al can enhance clinical practice in a
meaningful way: radiologists still lead diagnostics, but Al serves as a safety net and efficiency amplifier, aligning with
the principle that in healthcare Al should empower clinicians, not replace them.

4.3. Evaluation of Deployment Outcomes

In these scenarios, our strategic framework provided a number of interesting conclusions and lessons learned:

95



World Journal of Advanced Engineering Technology and Sciences, 2025, 17(01), 081-102

ser Trust and Adoption: The conscious emphasis on explainability, user training, and engagement (through the
Education and Change Management pillars) led to high end-user trust in both scenarios. Nurses and radiologists, initially
skeptical of Al, eventually started integrating the tools into their daily workflows. Quantitatively, user adoption rates
(as determined by tool-usage logs) surpassed 75% in target groups within months of launch. Qualitatively, users
reported that the AI outputs were helpful and that they knew how to use them appropriately - a result of the
framework’s focus on transparency and education. This contrasts with many documented Al pilot failures where user
distrust inhibited uptake. It confirms that investing in the “people” elements is as important as model accuracy.

Safe and Ethical Operation: The Al tools were deployed in a safe (no patient-harm incidents) and ethically responsible
(no major ethical violations) manner under governance oversight and risk-management plans. The LOS prediction
model remained under close monitoring and was designed not to influence care decisions without human validation,
meaning no patients were admitted or discharged solely on the basis of an algorithm. The radiology Al was configured
to flag findings while requiring final judgment from the operator when unsure. In some instances the radiology Al
missed findings the human found (and vice versa), but because workflows always included human double-checks,
patient care was not compromised. Fairness was also addressed: after initial adjustments, the LOS model showed no
clear performance bias between patient subgroups. This underscores the role of Governance in proactively addressing
ethical and safety concerns - an often-overlooked aspect of tech-centered adoption.

Operational and Clinical Implications: Both Al systems showed benefits for their intended indications. The LOS model
was associated with a modest but clinically meaningful reduction in average length of stay for complex-discharge
patients (pilot sites estimated reductions on the order of ~5-10%). Attendees attributed these outcomes in part to
better coordination and reduced last-minute delays driven by Al prompts that triggered earlier action. The radiology Al
increased detection of actionable lung nodules; in the first six months the department recorded an ~8% rise in detection
rate of sub-centimeter findings on CTs, some of which translated into earlier intervention. Radiologists also reported
slightly faster reads on image-heavy studies, as the Al helped direct attention. These early results should be interpreted
cautiously and validated over time, but they suggest Al can increase efficiency and quality when used responsibly.

Sustainability and Iterative Improvement: Sustainability was achieved where systems continued to deliver value after
deployment because they evolved with continued feedback. Organizations established ongoing review committees
(under the governance council) to examine usage data, outcomes, and new evidence to inform model updates or process
tweaks. For example, the LOS model is scheduled for annual retraining with current data and adjustments for social
factors that influence discharge. The radiology model improved as it learned from cases where radiologists provided
feedback on misses or false alarms. This cycle of incremental improvement aligns with the notion of Sustainable Al:
models are iteratively refined within an organizational learning process rather than built once and left unchanged. Both
examples are being scaled to new sites and applications across their organizations.

Security and Reliability: From an IT perspective, there were no security incidents or major outages of the Al services
during the reference period. This reliability was possible because of the forward-looking MLOps processes and security
mechanisms (access control, monitoring alerts) that were implemented. It shows that Al systems can be robustly used
in clinical routine when supported by appropriate infrastructure. In the radiology example, integrating into PACS
without impeding workflow was a key success factor - had the Al introduced latency or frequent technical issues,
radiologists would likely have turned it off. These shortcomings were avoided through careful planning and multiple
stress-testing under the MLOps pillar.

Lessons Learned: The lessons from the use cases can be generalized into some real-life learnings for deploying Al in
healthcare. First, an interdisciplinary approach is needed in every sense: it is far better to have data scientists, clinicians,
IT, etc., working together under the same framework rather than in siloed activities. Our design makes this easier by
default (e.g., governance councils, cross-functional teams, user involvement). Second, small-to-fail thinking - piloting in
a controlled environment, compiling data, and refining an approach before scaling - clearly has merits for risk
management and confidence-building. Both projects began as pilots and scaled up once they proved their worth and
worked out the kinks. This step-wise method is desirable in a high-stakes environment such as healthcare. Third,
communication and transparency are key. If people comprehend an Al's behavior, feel they know why it behaves as it
does, and trust that they can count on its choices in a predictable fashion, they are more forgiving of the Al's mistakes.
Explanation features and open discussion of performance gaps created a healthier human-AlI relationship than a black
box would have.

Finally, one thing we noticed was that positioning Al as a way to augment human decision-making (not supplant it) was

key to getting buy-in. In both cases, the story was that Al is used to enable professionals to do their jobs better - not
replace their expertise. This framing and implementation in practice (e.g., Al suggestions rather than directives)
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resulted in a synergy where humans and Al achieved better outcomes working together than alone. We see this human-
centered design and deployment as emblematic of responsible Al, which is a through-line for our framework.

5. Discussion

The examples above illustrate how strategic, multi-faceted action can enable Al to fulfill its potential in healthcare whilst
mitigating risks. In this paper we offer some reflections on more general aspects of the approach, its applicability to
other use cases (including biomedical signal data and emerging modalities), and prospects for future research, including
what recent advances in generative Al might mean for healthcare. We then consider limitations and how organizations
can customize the framework to the local context.

Cross-Domain Al Interoperability: We applied our framework to two very different case uses - operational forecasting
with tabular clinical data and an image-analytic clinician tool - illustrating flexibility. We expect the same pillars apply
to other areas (such as Al for the analysis of ECG signals - e.g., for recognizing arrhythmias - or Al for pathology slide
interpretation). Each field has specifics (some signal data - like ECG - might require special preprocessing and tailored
deep-learning architectures, and imaging Al usually involves very large volumes of data), but the organizational and
human factors operate at a similar level. Management needs to embrace the mission and align it with domain-specific
objectives (for instance, an Al that flags significant ECG changes might be aligned behind faster response times to signs
of cardiac events). Governance must address domain-specific deontological concerns (e.g., if an Al predicts a genetic
disorder, how should that be handled ethically?). MLOps [59] should be adapted to the data type (e.g., real-time
streamed data from patient monitors for signals). Critically, end-user training and workflow integration should be
created for that context (i.e., how an Al alert looks to an ICU-based cardiologist versus how a risk score is displayed to
a primary-care doctor). The framework is a scaffold to ask the right questions in every domain, while the answers and
implementations will differ.

Relevant to biomedical signal analysis, deep learning has shown promise for the analysis of EEGs for seizure detection
and for EMG-based outcomes[10]. The introduction of such Al into practice would also require responsible design. For
example, an Al system deployed to provide real-time EEG monitoring for seizures might ease the burden on busy
neurologists but would need real-world validation to ensure it does not miss seizures or generate too many false alarms
at 3 a.m. In applying our framework, a hospital exploring such a tool would want to ensure: the project is neurologist-
led with clear patient-safety goals (Leadership); an agreed model sensitivity and false-alarm rate with governance to
balance safety and alarm fatigue (Governance); secure connections between the system and bedside monitors with fail-
safes (MLOps); neurophysiology techs and nurses trained on system alerts (Education); and procedures for how to
respond when Al-detected events occur (Change Management). This illustrates how the framework can keep pace with
advances across diverse classes of biomedical data.

Transparency vs. Accuracy - A Medical Point of View: One consistent point is that insight is crucial to trust. Doctors are
taught to question and to understand the reasons for decisions. An entirely black-box algorithm - no matter how
accurate - is often met with skepticism or even restricted by some regulators for high-stakes decisions. Our framework’s
focus on explainability aligns with emphasis from medical-Al communities on interpretable, transparent Al for health.
The Monga volume itself notes that in healthcare, interpretable or more straightforward models may be preferable to
complex black boxes when the latter’s performance improvements are modest[13]. Our findings are consistent with
this: we saw greater adoption when providing reasoning and involving clinicians in model logic. Future Al development
in healthcare should explore XAl (explainable AI) technologies that can be used alongside deep learning. Methods such
as imaging saliency maps, predictive-model feature-importance scores, or natural-language explanations for model
predictions show promise. Pragmatically, users can be overwhelmed by too much information or poor explanations.
The aim is adequate explainability - enough to give a clinician confidence in reliability, without overloading them with
model internals. Further research and user-centered design will be necessary here, with our framework offering a lever
(through user feedback and governance) to dial the level of explainability toward what users need.

Ethical Al and Bias Mitigation: Ethical deployment is a dynamic objective that demands diligence. Although our use cases
did not raise substantial ethical concerns beyond fairness and informed consent, other Al systems may. Think of Al
algorithms that guide treatment recommendations or triage patients for scarce resources - these pose deep ethical
questions (e.g., by creating biases against certain socio-demographic groups). The Governance pillar must address such
questions head on, together with leadership. This could include setting up an ethics subcommittee to assess societal
impact beyond technical capability. Bias audits should be routine; if an Al systematically underpredicts risk for a
particular minority group, corrective action should follow (data augmentation, algorithmic fairness techniques, or even
choosing not to deploy the model). We recommend pre-deployment bias testing and post-deployment impact
surveillance for all Al in healthcare. This could be accomplished by assessing performance on subpopulations (e.g., sex,
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racial groups, insurance types) as appropriate and legal. Adding patient representatives or ethicists to the governance
committee may surface viewpoints internal teams miss. Transparency to patients on the use of Al is another dimension
- some organizations now notify patients when their care involved Al, consistent with principles of autonomy and trust.
Regulatory Readiness: As described, practices such as risk management, documentation, and monitoring might
become de facto requirements because of regulations such as the EU Al Act and the evolving FDA guidance. Our
approach enables organizations to be in compliance by design with these. In fact, adopting the framework could be
considered akin to implementing an internal Al quality-management system similar to those used in manufacturing or
pharma but customized for Al-specific challenges. It not only prevents the organization from being caught in a last-
minute compliance scramble, but it also fosters confidence among external stakeholders (regulators, payers, and
accreditors) in the organization’s uses of Al. We anticipate that soon, demonstrating responsible Al governance will be
required for an organization’s reputation and may even factor into legal indemnification. Those who adopt frameworks
like ours will have a leg up.

Generative Al and Future Trends: A current frontier is the shift towards generative Al (such as large language models,
e.g., GPT-4), which is being explored in the health domain. These models can generate text, summarize medical records,
and even propose diagnostic possibilities based on case descriptions. They promise potential for reducing
documentation burden and offering decision support, but also bring new risks (for example, providing falsely confident
medical advice) and, if they learn from sensitive data, raise privacy concerns. The strategic framework is well suited to
this. For example, early trials that attempt to deploy GPT-based assistants for clinical documentation or patient-facing
chatbots need strong leadership oversight (to ensure clinical standards are met), governance (to establish policies
around use and vet outputs for accuracy and bias), and education (so clinicians know how to operate and double-check
these tools). Change management is critical: clinicians need reassurance that using a language model to draft a note will
not jeopardize their position, and patients need to understand when they are interfacing with an Al-driven chatbot.
Monga'’s chapter “Looking Ahead” points to lessons from prior Al advances as guides for rolling out generative Al with
a focus on governance and change management. Indeed, our framework is a ready vehicle to address these technologies
- simply treating them as another class of Al requiring tailored scrutiny. A caveat is that generative models tend to be
less interpretable and can introduce subtle errors; for any direct patient-care use they may require a higher bar for
acceptance. Our framework would incentivize initial use in low-risk tasks (such as drafting sections of reports for human
review) and phased increases to higher-stakes uses as confidence and controls improve.

Limitations and Generalization: Our framework is not complete. Organizations will likely prioritize certain pillars
differently depending on their context. For example, a small community hospital with few on-staff data scientists is
likely to depend on Al vendors for products - and therefore may emphasize governance and education (i.e., the ability
to safely incorporate external tools) rather than in-house MLOps, which will be outsourced - while still needing
fundamental features for oversight. At the other end of the spectrum, a large academic medical center may heavily invest
in in-house MLOps and leadership positions (e.g., Chief Al Officer) to create new algorithms by leveraging all pillars to
their full extent. The framework should be considered modular: every pillar is necessary, but the specific provisions can
be ramped up or down. There are also real-world resource limitations that cannot be shrugged off - organizations need
funding (for staff such as data scientists, for training time, for IT hardware) to use this framework. Leadership frequently
has to justify these investments based on ROI or risk avoidance. Our case studies can help make that case, but broader
industry experience will strengthen it. It's also important to quantify the right metrics - perhaps the value of responsible
Al is simply “one less bad thing that doesn’t happen,” which is difficult to measure. Organizations implementing this
reference model need to establish KPIs - both quantitative and qualitative - that will determine the success of Al
deployments (e.g., usage, clinical outcomes, fairness metrics).

Collaboration and Knowledge Sharing: A viable and ethical Al landscape in health depends on institutions working
together. One idea emphasized by Monga is “reciprocal altruism” - sharing lessons learned and even data or models
between organizations can increase Al value for all. Our framework can provide a common language for health
institutions to discuss Al governance and deployment. For instance, hospitals might share governance policies or
training curricula to create best practices (many face the same challenges - so why reinvent the wheel?). If an algorithm
is found to have a problem (e.g, bias or safety issue), it would be in the collaborative spirit for that health system to
publish the finding in a shared community resource (e.g., an Al incident database or a case-report publication). We
anticipate that professional societies will play a role in promoting these frameworks; one can imagine them endorsing
“Al-ready” health systems in the future and perhaps contributing to accreditation.

In conclusion, the strategic framework we present is not meant to remain static but must adapt to technology and field
insight. That foundation - approaching the challenge differently and thinking holistically about leadership, technical
rigor, ethical oversight, user readiness, and cultural change - is likely to endure as a compass. The successful results of
initial deployments suggest that trustworthy, secure, and sustainable Al is indeed achievable. It takes purposeful work
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and cross-cutting strategy, but the reward is Al that actually makes healthcare delivery and outcomes better in ways
stakeholders can trust.

6. Conclusion

Healthcare has huge untapped potential for disruptive transformation. In this work, we provide a holistic strategy map
on how to responsibly, securely, and sustainably deploy Al/ML in healthcare. The framework contends with the complex
issues that have derailed many Al initiatives by focusing on:

e Leadership involvement

e Strong MLOps practices

¢ Good governance structures

¢ Ongoing education and learning opportunities
e Proactive change management.

Our catalogue of lessons from peer-reviewed publications and real-world implementations indicates that getting health
Al right is as much about overall organizational strategy and human factors as it is about code and data.

Using illustrative use cases (ranging from predicting hospital length-of-stay to aiding radiology diagnostics), we show
that deployment of this methodology is characterized by both increased user trust and improvements in operational or
clinical outcomes, while avoiding common failure modes. When included and empowered, clinicians and staff can
become advocates of Al rather than resisters. Risks - for example, those related to ethics, security, and workflow - can
be identified and controlled through proper governance and technical safeguards. In addition, the guideline encourages
a culture of iterative learning from the development and use of Al applications, where Al tools are subjected to ongoing
monitoring and improvement based on healthcare-context dynamics and advancements in Al technology.

The more general message of this study is that it is possible and advisable for healthcare institutions to adopt a
principled, systematic approach to integrating Al. This not only helps maximize the likelihood of positive impact
(lightening patient burden, increasing efficiency, preserving quality, and supporting the doctor-patient relationship)
but also reduces negative impacts - harms to patients or ruptures to trust. At a time when regulation of Al is growing
and public trust in the technology is being challenged, a framework for accountability, transparency, and alignment with
clinical needs is timely and essential.

We appreciate that developing such a framework takes dedication - it requires investment in governance, training
programs, and cross-organizational cooperation that may be unfamiliar ground for many organizations. But the costs
of not doing so could be greater: disjointed or unaccountable Al projects may lead to patient-safety events, bias
perpetuation, and wasted investments in technology that does not get used. This framework and its accompanying
rationale constitute our effort to share a way for healthcare leaders and workers around the world to move from a risk-
filled enterprise approach to a managed strategy that delivers sustainable value.

Going forward, we think those who responsibly and human-centrically incorporate Al will distinguish themselves in
their ability to deliver care in new ways. As Al advances and more innovations appear on the near horizon (including
generative Al and multimodal models), the principles described here help ensure those advances are put to good use
under well-guided stewardship. The framework is not a stand-alone solution; it represents the beginning, not the end,
of an evolution. It poses the question to every healthcare institution: Are we ready for AI? If not, which dimension are
we lacking?

In summary, enabling accountable, secure, and sustainable healthcare Al is a joint mission pairing technical capability
with policy leadership and moral purpose. The introduced model is a clearly defined way of achieving this union. If we
adhere to it, we can harvest the immense clinical and operational benefits of Al - improving patient outcomes,
reengineering workflows, and augmenting clinical intelligence - while ensuring the trustworthiness, safety, and fairness
that are central to healthcare. It shifts the focus of Al-enabled innovation from a leap in the dark to a better-illuminated
pathway toward a smarter but still caring healthcare environment.
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