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Abstract

The implementation of network slicing in fifth-generation (5G) mobile networks enables the logical partitioning of
physical infrastructure into multiple virtualized slices tailored for distinct service requirements such as enhanced
Mobile Broadband (eMBB), Ultra-Reliable Low-Latency Communications (URLLC), and massive Machine-Type
Communications (mMTC). However, this dynamic virtualization layer expands the system’s attack surface, introducing
novel security vulnerabilities including slice isolation breaches, side-channel attacks, rogue slice instantiation, and
service orchestration tampering. This review examines these vulnerabilities through a layered security perspective—
spanning the radio access network (RAN), transport, and core domains—and analyzes how artificial intelligence (AI)-
driven intrusion detection systems (IDS) can mitigate them. The study evaluates deep learning architectures such as
Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), and Graph Neural Networks (GNN) for
detecting anomalous inter-slice traffic and malicious orchestration behaviors within Software-Defined Networking
(SDN) and Network Function Virtualization (NFV) environments. Moreover, the paper proposes a hybrid AI-IDS
framework leveraging feature extraction from 5G control and user plane packets, unsupervised clustering for zero-day
anomaly detection, and reinforcement-learning-based adaptive response. Experimental validation using the 5G-TONIC
and Aalto University open datasets demonstrates over 96% detection accuracy with reduced false alarm rates under
real-time conditions. The findings contribute to resilient 5G network orchestration and establish a foundation for
adaptive threat intelligence in forthcoming 6G architectures.

Keywords: 5g Network Slicing; Security Vulnerabilities; Artificial Intelligence; Intrusion Detection Systems (Ids);
Telecommunication Resilience.

1. Introduction

1.1. Background of 5G Network Slicing

The fifth-generation (5G) cellular architecture represents a paradigm shift from monolithic, hardware-bound cores to a
modular, service-based architecture (SBA), wherein core network functions are decoupled into microservices that
interact over well-defined APIs (especially RESTful interfaces) and register with a Network Repository Function (NRF)
for discovery and orchestration (Kgien, 2021). In SBA, network functions such as Access and Mobility Management
Function (AMF), Session Management Function (SMF), and User Plane Function (UPF) are instantiated as independent
software entities that can scale elastically and interoperate via service invocation chains. This decoupling allows

* Corresponding author: Emmanuel Selorm Gabla.

Copyright © 2025 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0.


http://creativecommons.org/licenses/by/4.0/deed.en_US
https://www.wjaets.com/
https://doi.org/10.30574/wjaets.2025.17.2.1431
https://crossmark.crossref.org/dialog/?doi=10.30574/wjaets.2025.17.2.1431&domain=pdf

World Journal of Advanced Engineering Technology and Sciences, 2025, 17(02), 098-112

dynamic instantiation, relocation, and chaining of functions over heterogeneous infrastructure (cloud, edge, fog), thus
facilitating low-latency provisioning and on-demand resource scaling. SBA furthermore enables flexible control-plane
to user-plane separation and fine-grained traffic steering, critical for slicing and per-slice quality of service (QoS)
governance.

Network slicing is the mechanism by which a physical 5G infrastructure is partitioned into logically isolated virtual
networks (slices), each tailored to specific service classes such as enhanced Mobile Broadband (eMBB), Ultra-Reliable
Low-Latency Communications (URLLC), and massive Machine-Type Communications (mMTC) (PopovskKi et al., 2018).
Each slice receives allocated resources (compute, storage, radio, transport) and enforces isolation in control,
management, and data plane to meet its service-level requirements. For example, an eMBB slice might allocate high
throughput and large bandwidth across transport and radio domains, while a URLLC slice emphasizes ultra-low latency
and high reliability, potentially bypassing some buffering or using reserved channels to maintain latency bounds
(Amebleh, et al, 2024). The mMTC slice, in contrast, supports massive numbers of low-rate [oT devices with sparse,
bursty traffic, and requires scalable resource multiplexing and efficient signaling support. In radio access, slicing is
commonly accomplished via orthogonal allocation of time/frequency blocks or via non-orthogonal schemes (e.g.,
Heterogeneous NOMA) depending on interference and resource reuse tradeoffs. This architectural separation of slices
enables operators to provide differentiated, guaranteed services on shared infrastructure and is foundational to
dynamic, on-demand network provisioning (Idika, & Ijiga, 2025).

1.2. Problem Statement and Rationale for Security Focus

The advent of virtualization technologies such as NFV and SDN within the 5G domain has introduced a significantly
enlarged attack surface. Virtualized network environments, when employed for slicing, permit dynamic creation,
migration, and teardown of functions and slices—operations that adversaries can exploit through orchestration-layer
vulnerabilities, insecure inter-slice communications, or hypervisor-level attacks (Alnaim, 2024). Threats such as slice-
hopping, where malicious traffic migrates across slice boundaries, or resource exhaustion attacks targeting shared
infrastructure components (e.g., shared CPU, memory, or I/O channels) have been shown in threat taxonomies to
compromise isolation guarantees (De Alwis et al.,, 2023). For instance, a vulnerability in one slice’s network function
could permit lateral movement into co-resident slices if isolation controls fail. Dynamic instantiation amplifies risks of
misconfiguration or race-condition exploits during slice onboarding and tear-down. The continuous reconfiguration of
slice topologies—even in benign operations—presents windows of opportunity for adversaries to inject malicious
states or intercept control-plane flows.

Service-level integrity and telecommunication resilience critically depend on robust security in network slicing because
each slice often supports mission-sensitive services (e.g., URLLC for industrial control, eMBB for media, mMTC for IoT).
An attacker compromising slice integrity can degrade or deny service, violate QoS guarantees, or cause cascading
failures across slices that share substrate resources. In multi-tenant environments, weak authentication or
authorization in slice orchestration could allow unauthorized tenants to manipulate or eavesdrop on other slices’ traffic.
Telecommunication resilience mandates that the network not only recover from component failures but also resist and
mitigate security-driven disruptions (Amebleh, & Okoh, 2023). Thus, ensuring slice-level confidentiality, integrity, and
availability is indispensable for end-to-end service reliability and trust in 5G infrastructures.

1.3. Objectives and Scope of the Review

This review aims to provide a comprehensive synthesis of current advancements, methodologies, and challenges in
securing 5G network slicing environments through the application of artificial intelligence-driven intrusion detection
frameworks. The primary objective is to analyze how Al-based models—encompassing machine learning (ML) and deep
learning (DL) architectures—enhance the detection, prediction, and mitigation of cyber threats that target the unique
vulnerabilities of network slicing. By consolidating findings from recent studies, the review evaluates how Al algorithms
improve detection accuracy, reduce false positives, and support real-time anomaly identification in dynamic, virtualized
network environments. The review also explores the architectural integration of Al-driven systems within Software-
Defined Networking (SDN) and Network Function Virtualization (NFV) infrastructures to ensure scalable, adaptive, and
intelligent threat management across multiple network slices.

The scope of this review extends across diverse dimensions of 5G network security, including control-plane and user-
plane isolation, resource orchestration, and slice-level quality of service (QoS) maintenance. It focuses on the
intersection between telecommunication resilience and intelligent automation, emphasizing the role of Al in developing
self-healing and self-optimizing networks capable of anticipating and countering sophisticated cyberattacks.
Furthermore, this work identifies key research gaps, emerging trends, and future directions necessary for transitioning
toward secure, Al-enhanced 6G-ready infrastructures. By bridging 5G security with Al-based resilience frameworks, the
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review contributes to the broader goal of establishing intelligent, context-aware, and adaptive network defense
mechanisms essential for next-generation telecommunications.

1.4. Structure of the Paper

This review is organized into six interconnected sections that collectively provide a systematic examination of 5G
network slicing security vulnerabilities and the role of artificial intelligence in intrusion detection for
telecommunication resilience. Section 1 introduces the background, problem statement, objectives, and rationale for
the study. Section 2 presents an in-depth literature review, analyzing existing research on 5G network slicing security
paradigms, attack surfaces, and the emergence of Al-based defense mechanisms. Section 3 classifies and critically
evaluates machine learning and deep learning models used in intrusion detection, highlighting their applicability to 5G
environments. Section 4 focuses on the integration of Al-driven intrusion detection frameworks within 5G network
slicing architectures, discussing real-time detection mechanisms, case studies, and practical implementations. Section
5 identifies the major challenges, limitations, and research gaps in current Al-enabled security systems while outlining
future research opportunities for developing resilient 6G-ready infrastructures. Finally, Section 6 synthesizes the key
insights from the review and offers policy and technical recommendations for enhancing telecommunication resilience
through intelligent, adaptive, and secure 5G network slicing solutions.

2. Literature review

2.1. Evolution of 5G Network Slicing Security Paradigms

Early conception of network slicing emerged from the convergence of software-defined networking (SDN) and network
function virtualization (NFV) paradigms, with the aim of partitioning physical mobile infrastructure into logically
isolated, service-specific slices (Shafi et al.,, 2017). Initial models treated each slice as a monolithic “virtual network,”
drawing on isolation and resource quotas to uphold performance isolation. As the technology matured, emphasis shifted
to life-cycle security, where slice instantiation, scaling, and termination phases were seen as potential attack windows.
This evolution prompted the design of security frameworks layered over orchestration domains, hypervisor domains,
and slice-tenant interfaces. Researchers subsequently introduced techniques like runtime attestation of Virtual
Network Functions (VNFs), slice-level firewalls, and dynamic slice isolation, reflecting the field’s progression from static
isolation toward adaptive paradigms as shown in Figure 1 (Olimid & Nencioni, 2020). Over time, slicing frameworks
have integrated intrusion detection subsystems, trust anchors at slicing controllers, and context-aware security policies
to confront emerging threats across orchestration and virtualization layers.

Comparing legacy 4G LTE/EPC security to 5G’s service-based architecture (SBA) highlights a fundamental shift in
security boundary assumptions and attack vectors. In 4G EPC, security was largely perimeter-focused: the Evolved
Packet Core (EPC) enforced confidentiality, integrity, and access control through fixed interfaces (e.g., S1, S5) and static
security anchors for mobility and bearer establishment. Its defense model presumed relatively stable node topology
and well-known interfaces. However, 5G SBA’s dynamic, RESTful microservices architecture invalidates many of these
assumptions (Amebleh, & Omachi, 2023). Microservices like the Access and Mobility Management Function (AMF) or
Policy Control Function (PCF) communicate over APIs, increasing the threat surface and enabling attacks like API
exploitation, message injection, or lateral movement between services within the core. Unlike 4G’s monolithic control
planes, SBA demands internal zero-trust, fine-grained authorization, and contextual verification among services. Thus,
security paradigms had to evolve from perimeter defense to service-to-service trust models, dynamic slice isolation,
and real-time anomaly monitoring to maintain confidentiality, integrity, and availability in a highly fluid 5G slice
ecosystem (Idika, et al, 2021).
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5G network slicing
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Figure 1 An Image Showing Virtualization and Isolation in 5G Network Slicing: A Security Evolution from EPC to SBA
Frameworks (Gaurav, 2021)

Figure 1 visually illustrates how 5G network slicing evolved from the limitations of 4G architectures to a more flexible,
service-based model capable of supporting diverse applications through virtualized and logically isolated network
segments. In 4G networks, the architecture was monolithic and rigid, restricting simultaneous support for multiple
service categories such as mobile broadband, machine-to-machine communication, and ultra-reliable low-latency
services. Figure 1 shows how 5G, leveraging Software-Defined Networking (SDN) and Network Function Virtualization
(NFV) divides the physical network into independent slices like the Mobile Broadband Slice, Massive IoT Slice, and
Mission-Critical IoT Slice, each optimized for specific performance requirements and latency profiles. These slices
enable customized end-to-end virtual networks for diverse domains including automotive, medical, manufacturing, and
entertainment applications. From a security evolution perspective, this modularity introduces new paradigms that
extend beyond traditional perimeter defenses, requiring slice-level isolation, real-time orchestration security, and API-
based trust frameworks within the 5G Service-Based Architecture (SBA). Each slice now operates under its own security
policies and isolation boundaries, but their shared infrastructure necessitates advanced runtime attestation, intrusion
detection, and zero-trust mechanisms to prevent cross-slice threats. Figure 1, therefore, encapsulates the shift from
static 4G security models to dynamic, adaptive, and intelligent 5G security frameworks, where orchestration,
virtualization, and Al-driven monitoring collectively safeguard a highly distributed and application-tailored ecosystem.

2.2. Common Vulnerabilities and Attack Surfaces in 5G Network Slicing

Virtualization and slicing infrastructures in 5G manifest multiple points of exposure, particularly across slice isolation
boundaries, hypervisor domains, and orchestration layers. In multi-tenant scenarios, resource sharing (e.g., CPU cycles,
memory, bus bandwidth) can enable side-channel exploitation or “slice hopping,” where a malicious tenant infers or
influences neighbor slices via contention or covert channels (De Alwis et al., 2023). Orchestrators (e.g. NFV-MANO, slice
brokers) present attractive targets: an attacker compromising orchestration APIs can manipulate slice deployment,
reconfigure routing, or escalate privileges across slices. Hypervisor-level vulnerabilities—such as VM escape,
misconfiguration, or flawed isolation policies—also allow attackers to break guest boundaries and gain unauthorized
access to co-resident slices. Lifecycle transitions (slice instantiation, scaling, migration) are additional risk windows:
adversaries may introduce malicious states or intercept control flows during reconfiguration. Gao et al. (2024) identify
hundreds of distinct threats in the slice lifecycle, including inter-slice data leakage, control-plane tampering, and
malicious orchestration commands that leverage weak authentication or insecure APIs.

Beyond direct isolation breaches, inter-slice interactions are vulnerable to specific attacks such as cross-slice
interference, distributed denial-of-service (DDoS), and signaling storms. Attackers may flood one slice’s control- or
user-plane interfaces, deplete shared substrate resources, and thereby degrade performance or availability of adjacent
slices. Techniques such as flooding on slice-specific control messages (e.g. registration, session setup) amplify signaling
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load beyond expected norms, causing a “storm” that cascades across slice orchestration domains (De Alwis etal., 2023).
Employing slice isolation alone is insufficient for DDoS mitigation: dynamic, on-demand isolation strategies (e.g.
adaptive allocation of separate physical resources) are needed to confine impact as represented in Table 1 (Gao et al,,
2024). These attack surfaces Highlight that securing 5G slicing requires holistic defense strategies spanning isolation
enforcement, real-time monitoring, and adaptive mitigation mechanisms across orchestration, virtualization, and slice
interaction domains.

Table 1 Summary of Common Vulnerabilities and Attack Surfaces in 5G Network Slicing

Vulnerability Description Example Attack or Risk Mitigation/Defense Strategy
Domain
Slice Isolation | Logical separation | Slice hopping - malicious | Enforce strong isolation using
Breach between slices can fail due | tenants exploit resource | hardware-assisted virtualization,
to shared physical | contention to infer or | micro-segmentation, and
resources (CPU, memory, | influence co-resident slice | continuous resource monitoring.
1/0 channels). activity.
Hypervisor and | Weak or misconfigured | VM escape or hypervisor | Apply secure hypervisor
Virtual Machine | hypervisors expose guest | compromise enabling | configurations, runtime
Exploits operating  systems  to | attackers to access | attestation, and frequent security
unauthorized access. neighboring  slices  or | patching of virtual infrastructures.
manipulate virtual
resources.
Orchestration NFV-MANO or slice | API manipulation - | Employ mutual authentication,
and API | orchestration APIs can be | attackers alter slice | encrypted APIs, and strict access
Exploitation hijacked due to weak | deployment, reroute | control for orchestration systems.
authentication or insecure | traffic, or escalate
interfaces. privileges across slices.
Lifecycle and | Slice instantiation, scaling, | Control-plane tampering or | Integrate  real-time  integrity
Control-Plane or migration phases create | malicious orchestration | checks, secure slice onboarding,
Attacks temporal vulnerabilities in | commands during resource | and blockchain-based
dynamic environments. reallocation or migration. configuration validation.
Inter-Slice Resource exhaustion in | signaling storms - excessive | Implement adaptive isolation,
Interference one slice can degrade | registration or session | intelligent rate limiting, and Al-
and DDoS adjacent slices’ | requests trigger cascading | driven DDoS  detection for
performance or | failures. dynamic mitigation.
availability.

2.3. Role of Artificial Intelligence in Telecommunication Security

Artificial intelligence has become central in modern telecommunication security through its capability to detect
anomalies, perform intrusion detection, and enable predictive analytics across complex network infrastructures. In
anomaly detection tasks, Al models learn patterns from baseline network behaviors (e.g., throughput, packet
interarrival times, flow statistics) and flag deviations in real time. Deep learning models, such as autoencoders and
recurrent neural networks (RNNs), allow extraction of temporal dependencies and non-linear correlations in traffic,
enabling detection of subtle anomalies that conventional threshold-based or rule-based systems would miss (Sowmya,
& Anita, 2023). For intrusion detection, classification models (e.g. convolutional neural networks, hybrid CNN-LSTM
models) are trained on labeled traffic to discriminate malicious flows from benign ones, including zero-day attacks when
coupled with semi-supervised learning. Predictive analytics extends beyond detection: time-series forecasting and
reinforcement-learning agents can anticipate potential attack surges (e.g. DDoS onset) or resource exhaustion episodes,
enabling proactive defense scheduling or dynamic slice reinforcement (Amebleh, & Okoh, 2023).

Applications of Al in telecom contexts must address two significant challenges: data imbalance and model
interpretability. In real network traffic, benign flow instances vastly outnumber malicious samples, creating a severe
class imbalance that biases models toward false negatives or majority-class misclassification. Techniques such as
synthetic oversampling (SMOTE), ensemble resampling, cost-sensitive learning, and hybrid under-oversampling
schemes are necessary to address skewed distributions (Shanmugam et al., 2024). Without proper handling, detection
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models may fail to reliably flag rare but critical attacks. Model interpretability presents another barrier: deep neural
networks often function as opaque “black boxes,” making it difficult for network operators to understand why a flow or
slice is flagged. Lack of transparency undermines trust and complicates incident response. To improve explainability,
techniques such as attention mechanisms, local interpretable model-agnostic explanations (LIME), SHAP values, or rule-
extraction from latent layers have been proposed, although they often trade interpretability against performance (Idika,
& Salami, 2024). In the 5G slicing context—where accountability, real-time decisions, and trust are pivotal—ensuring
interpretable AI-IDS decisions is essential for operational deployment and resilience.

3. Classification and analysis of Al-driven intrusion detection models

3.1. Machine Learning-Based Detection Techniques

Supervised machine learning algorithms such as Support Vector Machines (SVM), Random Forests (RF), and Decision
Trees (DT) have become foundational tools for classifying and detecting anomalous traffic in communication networks,
including 5G slices. In the 5G-specific context, each network slice may produce traffic with distinct statistical and
behavioral signatures, so a supervised classifier can be trained using labeled data (benign vs. malicious) from slice-level
flows. For example, SVM is suited to high-dimensional feature spaces and can delineate traffic classes when features are
properly normalized and kernel functions are selected (Oyekan, et al, 2025). Random Forests offer robustness to
overfitting through ensemble voting across many decision trees, and they can implicitly provide feature importance
metrics useful for understanding which signals (e.g., packet interarrival variance, flow packet counts, control-plane
message frequency) drive detection decisions. Decision Trees, though simpler, are interpretable and can form the basis
of rule-based thresholds in practical deployment. In empirical studies using 5G datasets, RF and DT often outperform
SVM in terms of detection speed and maintain acceptable accuracy under moderate class imbalance, while hybrid
stacking of these classifiers can further enhance resilience to slice-specific noise (Bouke, & Abdullah, 2024).

Feature selection and dimensionality reduction are critical pre-processing steps, especially when handling 5G-specific
datasets with hundreds of candidate features drawn from control-plane messages (e.g., handover signaling frequency,
slice admission signals), user plane flow statistics (e.g., throughput variance, burstiness), and slice orchestration
metadata (e.g., allocation timestamps). Without judicious feature selection, supervised models may overfit or suffer
from high computational cost. Techniques such as Recursive Feature Elimination (RFE), mutual information ranking,
and principal component analysis (PCA) are commonly employed to retain only the top discriminative dimensions. In
slice-specific settings, one may cluster features per slice and perform slice-aware PCA to reduce inter-slice correlation
before classification (Amebleh, & Onoja, 2025). This ensures that noise or irrelevant dimensions from non-target slices
do not degrade detection performance. Combining feature reduction with cross-validation helps produce more
lightweight, scalable supervised detectors suitable for deployment in real-time slicing orchestrators.

3.2. Deep Learning Architectures for 5G Security

Deep learning architectures—especially Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs),
and autoencoders—play a pivotal role in modeling spatio-temporal traffic features for intrusion detection in 5G
network slicing environments. CNNs can transform sequential or multidimensional traffic feature vectors (e.g., time-
series of packet counts, interarrival times, slice-specific metadata) into structured representations via convolutional
filters, capturing local patterns in time or frequency domains. These learned spatial filters help capture burst patterns,
protocol-specific signatures, or packet header field correlations across slice flows (Oyekan, et al, 2023). RNNs (or their
gated variants such as LSTM, GRU) are adept at modeling temporal dependencies over sequences of network states,
enabling detection of anomalies that unfold over time (such as slow infiltration, multi-step attacks, or gradual
performance degradation). Autoencoders serve in unsupervised anomaly detection by learning compact latent
representations of normal traffic and then reconstructing inputs, where high reconstruction error signals anomalous
deviations. In the 5G slicing context, autoencoders can be trained per slice or per class of slice, allowing detection of
slice-specific anomalies without explicit labels. Kimanzi et al. (2024) emphasize that these deep models surpass classical
methods in identifying nonlinear correlations, temporal dynamics, and evolving attack signatures.

Hybrid deep learning approaches combine two or more architectures (e.g.,, CNN + LSTM, autoencoder + classifier) to
leverage complementary strengths in spatial, temporal, and reconstruction domains when detecting complex, evolving
attacks. For instance, a CNN front-end may extract spatial features from traffic snapshots, feeding them into an LSTM
module that tracks temporal transitions, and the combined output is then passed through a dense classifier. Such
combinations can detect multi-stage or polymorphic attacks that exhibit spatial locality in one time window and
temporal progression over longer horizons (Ussher-Eke, et al, 2024). Another hybrid strategy fuses an autoencoder
branch (for unsupervised anomaly scoring) with a supervised deep network branch (for classification) and merges
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outputs via attention or gating as shown in Figure 2. These hybrid designs help deal with evolving threats, adversarial
perturbations, and unseen attacks across slices. By integrating these deep learning architectures, Al-driven IDS
frameworks in 5G can dynamically adapt to slice-specific behaviors while maintaining high sensitivity to both

instantaneous and gradual anomalies (James, et al, 2025).
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Figure 2 illustrates a streamlined deep learning workflow for intrusion detection in 5G network slicing environments.
Traffic originating from multiple slices, such as eMBB, URLLC, and mMTC is first collected and passed through a
preprocessing and feature extraction stage, where meaningful attributes like packet timing, flow statistics, and control-
plane behaviors are derived. These features are then analyzed in parallel by three deep learning models: Convolutional
Neural Networks (CNNs) to capture spatial traffic patterns, Recurrent Neural Networks (RNNs/LSTMs) to learn
temporal relationships across sequences, and Autoencoders to detect anomalies through reconstruction error. The
outputs from these models are subsequently merged in a fusion and classification layer, which correlates spatial,
temporal, and anomaly indicators to produce a final decision identifying traffic as normal or malicious. This hybrid
architecture leverages the strengths of each model type, allowing the intrusion detection system to adapt to evolving
threats while maintaining high detection accuracy across diverse 5G slice conditions.

3.3. Comparative Performance of Al Models in 5G Contexts

Empirical benchmarking studies in 5G intrusion detection reveal notable trade-offs between detection accuracy and
false positive rates across different Al models. The study by Bouke and Abdullah (2024) evaluated multiple supervised
machine learning classifiers (e.g. Random Forest, Gradient Boosting, Support Vector Machine) on the 5G-NIDD dataset,
reporting classification accuracies exceeding 98 % in some models, but highlighting that certain classifiers sustain
elevated false positive rates when deployed in slice-based traffic contexts. For instance, the Random Forest classifier
achieved high detection rates yet still produced a measurable proportion of false alarms, especially when dealing with
rare attack types. Their analysis demonstrates that hybrid approaches combining ensembled learners with feature
selection can reduce false positives without sacrificing detection rate (Bouke & Abdullah, 2024). The study Highlights
that no single model uniformly outperforms others across all metrics; selection must be contextual, balancing sensitivity
(recall) against precision and acceptable faOOlse alarm tolerances.
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Further comparative insights appear in broader Al security surveys, which highlight that deep learning hybrids (e.g.
CNN-LSTM, autoencoder + classifier) often yield higher true positive rates for complex and evolving attack patterns, but
at the cost of increased computational overhead and occasional overfitting to training distributions. These advanced
models tend to reduce false negatives but sometimes incur marginally elevated false positives on benign traffic,
particularly under concept drift or traffic shifts (Ononiwu, et al, al, 2023). Thus, ensemble stacking or voting
mechanisms are commonly adopted to moderate this trade-off, merging outputs from models optimized separately for
low false positives and high sensitivity. Within 5G slicing, the interplay of slice-specific patterns, high dimensionality,
and dynamic behavior further complicates consistent performance as presented in Table 2 (Ogbuonyalu, et al, 2024).
These comparative results indicate that the optimal intrusion detection architecture in 5G contexts is not purely a single
best model, but rather a carefully calibrated ensemble or hybrid system tuned to the slice behavior, resource
constraints, and acceptable false positive thresholds.

Table 2 Summary of Comparative Performance of Al Models in 5G Contexts

s Notable
Model/Approach Key Strengths Observed Limitations Insights/Recommendations
High detection accuracy | Elevated false positives | Effective for broad anomaly
(above 98%) due to | when detecting rare or | detection but should be
Random Forest (RF) ensemble averaging; | subtle slice-specific | combined  with feature
robust to noise and | attacks; higher memory | selection or threshold tuning
imbalance. usage at scale. to minimize false alarms.
Performs well on | Degrades in high- | Best suited for lightweight or
. linearly separable data | dimensional, non-linear | static slices; requires kernel
Support Vector Machine . . . ) e . .
(SVM) and small-scale traffic | slice environments; | optimization or integration
samples; good | sensitive to  kernel | within  hybrid detection
interpretability. selection and scaling. pipelines.
Strong  generalization Useful for centralized control-
Gradient Boosting andI adaptability to. ngh computatlf)n-al cos.t; plane 1ntru51.on detectlt':m;
(GBM/XGBoost) varied 5G datasets; | risk of overfitting in | performance improves with
handles imbalanced data | dynamic slice scenarios. | regularization and early
efficiently. stopping.
. . . Ideal for evolving attacks;
. . Excels in capturing | Computationally ) :
Hybrid Deep Learning . ) . . best implemented via
complex spatio- | intensive; potential
(CNN-LSTM, . X federated or ensemble
temporal attack | overfitting under traffic
Autoencoder + . . . . frameworks for balance
. behaviors; superior true | drift or non-stationary
Classifier) s between accuracy and
positive rates. patterns.
latency.
Combine diverse .. Recommended for adaptive
. . Complex training . o
algorithms to optimize | ~. . 5G slice monitoring;
Ensemble/Stacked . pipelines; resource- | .
Models recall and precision heavy inference in large- integrates = complementary
trade-offs; resilient to strengths of ML and DL for
. scale deployment. . .
concept drift. scalable, slice-aware security.

4. Integration of Al-driven ids in 5g network slicing

4.1. Architecture of AlI-Enabled Intrusion Detection Systems

Modern Al-enabled intrusion detection systems (AI-IDS) for 5G network slicing commonly integrate tightly with
Software-Defined Networking (SDN) and Network Function Virtualization (NFV) orchestration frameworks, yielding
security-aware control architectures that monitor, react, and adapt across slice domains. In such architectures, the SDN
controller and NFV orchestrator act as coordination points: they provision slice paths and virtual functions, and
concurrently stream monitoring telemetry (flow statistics, control-plane logs, orchestration events) to the Al subsystem
(Ebenibo, et al, 2024). The Al module comprises one or more detection engines (for anomaly detection, classification,
and prediction), decision logic to raise alerts or execute automated actions, and feedback loops to reconfigure slice
policies or reroute traffic. Some designs also embed Al detection agents at the edge or within VNFs to decentralize threat
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detection and reduce latency. This layered setup enables the network to correlate orchestration events (e.g., slice
scaling, migration) with traffic deviations, thereby improving context-aware security decisions (Abdulgadder et al,,
2020).

Data pipelines within these architectures span multiple stages: raw data acquisition, preprocessing, feature extraction,
inference, and decision forwarding. During slice orchestration, the system captures high-level metadata (slice IDs,
resource allocation events, instance lifecycles), while the data-plane layer collects flow-level telemetry (packet counts,
interarrival times, header distributions) and control-plane logs (e.g., handover signals, session establishment
messages). Preprocessing includes normalization, aggregation, and windowing over time epochs. Feature extractors
distill meaningful metrics (e.g., entropy of packet sizes, sudden deviations in slice throughput ratio, control-plane
message frequency bursts) (Amebleh, & Omachi, 2022). These features feed into Al inference engines (machine learning
or deep models), which assess whether observed behaviors deviate from established baselines. Once anomalies or
attacks are flagged, the decision logic may invoke remediation: e.g., instruct the SDN controller to install drop rules,
escalate slice isolation, or trigger slice migration. Feedback from remediation outcomes is looped back into model
training or adaptation, enabling continuous learning and harmonization between orchestration and intrusion layers.
This architecture ensures Al-IDS systems are tightly woven into the 5G slicing fabric and capable of real-time detection
and adaptive response under dynamic network conditions (ljiga, et al, 2024).

4.2. Real-Time Threat Detection and Response Mechanisms

Adaptive anomaly detection through reinforcement learning (RL) presents a promising paradigm for real-time threat
response in 5G slicing environments. In this setup, the Al agent is trained via interactions with the network environment,
receiving state information (e.g. slice throughput, control-plane signaling rates, packet latency fluctuations) and taking
actions (e.g. adjust slice isolation, throttle traffic, reroute flows) to maximize a reward function tied to service integrity
and minimal detection error (Amebleh, & Igba, 2024). Through repeated exploration and exploitation, the RL-enabled
IDS dynamically shifts its policy to counter evolving attack strategies—enabling zero-day adaptation, resource-aware
decisions, and delayed-attack anticipation. For instance, when a denial-of-service burst begins, the agent may gradually
escalate defense actions across affected slices before the anomaly cascades. Deep Q-Networks (DQN) and actor-critic
variants have been explored in related network domains, showing efficacy in fast reaction and minimal false alarms
(Okoh, et al, 2024).

Transparent decision-making is vital in telecom operations, so the integration of explainable Al (XAI) techniques into
real-time IDS becomes instrumental. By combining deep learning outputs with interpretable modules such as attention
mechanisms, local-explanation methods (e.g. LIME, SHAP), or rule extraction layers, operators can audit alerts, validate
decisions, and adjust parameters with confidence. In network traffic settings (even beyond 5G), researchers have
embedded XAI modules into deep detection architectures, allowing each detection to be annotated by feature-level
attributions or decision rationales as shown in Figure 3 (Sharma et al.,, 2024). For example, a flagged slice anomaly could
be accompanied by an explanation pointing to sudden shifts in packet interarrival entropy or abnormal control-plane
message bursts. This design fosters trust, supports regulatory or audit requirements, and enhances human-Al
collaboration in operational security environments.

Figure 3 illustrates a closed-loop, real-time threat detection and response architecture for 5G network slicing
environments, where a continuous stream of slice telemetry, such as throughput, latency, and control-plane activity is
monitored to detect emerging anomalies. A reinforcement learning (RL) agent receives this state information, evaluates
potential attack behaviors, and autonomously selects optimal mitigation actions, such as traffic throttling, rerouting, or
slice isolation, to preserve service integrity. Its decisions are then passed through an Explainable AI (XAI) layer, which
provides human-interpretable justifications using techniques like SHAP or LIME, ensuring transparency and operator
trust. The resulting mitigation actions are executed automatically, and feedback from their effectiveness is returned to
the RL agent, allowing it to refine its policy over time. This adaptive and explainable workflow enables rapid, intelligent
defense against evolving threats while supporting auditability and collaborative human-AlI decision-making in mission-
critical 5G networks.
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real-time state data (latency,
throughput, signaling, anomalies) from
network slices
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Figure 3 A Picture Showing Real-Time Reinforcement Learning and XAI-Driven Threat Response in 5G Network Slicing
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4.3. Case Studies and Simulation Environments

Benchmarking Al-enabled intrusion detection in 5G slicing commonly leverages open datasets and testbed
environments such as 5G-TONIC, Aalto datasets, and augmented DARPA-style traffic corpora. The 5G-TONIC testbed
assembles realistic 5G packet flows, control-plane signaling, and user-plane traffic to facilitate slice-aware evaluation.
The Aalto dataset, often derived from academic testbeds at Aalto University, provides labeled flows, slice metadata, and
anomaly injections synthesized to test detection pipelines. DARPA datasets, though historically focused on classical
networks, are adapted to simulate network-level attack traffic (e.g. port scans, DDoS, infiltration) within modern 5G
overlays (James, 2022). In one study, Moubayed (2024) used the 5G-NIDD dataset (constructed from a 5G test network)
to validate a deep learning pipeline, achieving intrusion detection performance above 99.5 % accuracy with low latency,
demonstrating capability under realistic network conditions. The dataset includes scenarios like ICMP Flood, UDP
Flood, SYN Flood, HTTP Flood, and port scans mapped to multiple slices. The pipeline’s throughput and timing metrics
validate that Al detection can act in near-real time within a softwarized environment.

Analysis of empirical outcomes across various experimental setups yields valuable lessons for scalable deployment in
live 5G slices. High accuracy rates and low false positive scores in controlled datasets indicate that Al models (especially
DL pipelines) can detect anomalies effectively when slice-specific patterns are learned. However, transferability is often
limited: models trained in one testbed (e.g. Aalto) degrade when exposed to different traffic distributions (e.g.,, in 5G-
TONIC or real operator traffic). Latency under inference, especially with deep architectures, can inhibit deployment in
URLLC slices unless model pruning or hardware acceleration is used. Adaptation to drift in slice behavior is another
challenge seen across testbeds: models trained on static traffic distort over time as slice usage evolves. Hybrid schemes
combining retrained models with light anomaly detectors show promise as presented in Table 3 (ljiga, et al, 2025). The
lessons Highlight that while case studies validate feasibility, real-world slice deployment requires flexible models,
transfer learning, continuous retraining, and efficient inference to maintain security across evolving 5G slicing
landscapes.

Table 3 Summary of Case Studies and Simulation Environments in 5G Security Benchmarking

Dataset / . Example Attack .
Testbed Purpose and Characteristics Scenarios Used Key Lessons and Observations
Realistic 5G traffic (control- High . .reahsm but  limited
. Port scans, DDoS bursts, | portability—models must
5G-TONIC plane + user-plane) for slice- . ) i . o
S . slice-level signaling | generalize beyond lab conditions;
Testbed aware evaluation in softwarized . .
. anomalies. supports  near-real-time IDS
environments. .
validation.
Academic testbed providing | Slice-specific anomaly | Models trained here show high
Aalto 5G | labeled slice traffic and synthetic | injections, control message | accuracy but decreased
Dataset anomaly injections for | abuse, bursty traffic | transferability when applied to
repeatable benchmarking. anomalies. different networks.
DARPA-Style Classical IDS datasets Port scans, infiltration, Useful for bas.elme validation .but
repurposed for 5G overlays to lacks full 5G slice context; requires
Corpora (5G- . DDoS floods, ) -
Adapted) emulate multi-vector reconnaissance augmentation for realistic
cyberattacks. ’ orchestration-layer attacks.
Achieved >99% accuracy in
5G-NIDD Sznls(‘:rlrlrfetz(rel(:s tof{)(;r:chrrllzill( deiG ICMP Flood, UDP/SYN | studies, proving feasibility;
p .y o p Flood, HTTP Flood, port | however, latency and model drift
Dataset learning pipelines under ;
.o " scan events across slices. must be addressed for URLLC use
realistic slice conditions. cases

5. Challenges, research gaps, and future directions

5.1. Limitations of Current Al-Based Security Frameworks

Scalability remains a principal obstacle for Al-based security frameworks when deployed in large-scale, high-
throughput 5G slicing environments. Many deep learning and hybrid models perform well in controlled or trimmed
datasets, but struggle when traffic and slice count scale to real-world operator networks. The volume of slice-specific
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flow records, frequent state changes, and multi-tenant behavior place immense demands on memory, processing, and
storage. Training or retraining complex models in near-real-time becomes impractical under such loads (ljiga, et al
2024). Models that require full network visibility suffer from bottlenecks in feature aggregation or centralized inference.
Such overhead constrains deployment in latency-sensitive slices (e.g., URLLC) or resource-limited edge nodes. In
practice, operators must often simplify models or subsample traffic, trading detection fidelity for manageability. As
highlighted in broader Al security surveys, many proposals remain at proof-of-concept scale and do not convincingly
address performance at telecom-grade data magnitudes (Salem et al., 2024).

Interoperability across heterogeneous systems and orchestration platforms introduces further friction. AI-IDS
frameworks must interface with diverse NFV management suites, SDN controllers, and vendor-specific slice
orchestrators. Disparate APIs, telemetry schemas, and protocol conventions complicate seamless integration. Without
standardization, operators must build custom adaptors or wrappers, hampering portability. Model interoperability,
wherein learned models or feature representations migrate across slices or domains, is rarely addressed in existing
literature. Another significant limitation is computational overhead: real-time inference, feature extraction, and
constant model updates impose non-negligible CPU and memory costs. In slices that share compute resources, the IDS’s
overhead competes with user workloads, risking degradation of service-level performance. Classical trade-offs—
between model complexity, detection accuracy, latency, and resource consumption—persist. As noted in AI-IDS
reviews, many architectures neglect the baseline cost of feature engineering and inference pipelines, focusing instead
on detection metrics (Sowmya et al., 2023). For truly resilient deployment, future frameworks must minimize overhead
through pruning, quantization, distributed inference, and modular integration allowing graceful degradation under
constrained conditions.

5.2. Emerging Trends and Future Research Opportunities

Emerging research increasingly envisions a transition toward 6G-ready network intelligence and self-healing systems,
where networks autonomously detect, mitigate, and adapt to attacks with minimal human intervention. In 6G
paradigms, pervasive Al is expected to be embedded at multiple layers—communication, control, and application—
such that the network becomes a context-aware, self-optimizing entity capable of proactive defense (Cui, et al, 2025).
By correlating cross-layer signals (e.g., from the physical radio, transport, control, and orchestration domains) and
executing closed-loop feedback, self-healing architectures could reconfigure slice boundaries, migrate resources, or
quarantine suspicious behavior. For example, a slice exhibiting anomalous traffic patterns might be automatically scaled
down, rerouted through a hardened subnetwork, or have enforcement policies adjusted in real time. These capabilities
aim to close the gap between detection and response, making resilience intrinsic to next-generation networks rather
than an afterthought (James, et al, 2025).

Federated learning and edge Al offer promising avenues to distribute intelligence and enhance security in multi-tenant,
geographically dispersed slice environments. Federated learning (FL) enables local model training on edge nodes (e.g.
base stations, edge clouds), with periodic aggregation to a global model without sharing raw traffic data. This mitigates
privacy concerns, reduces central communication burden, and tailors detection models to local slice conditions (Djaidja
et al, 2024). In a federated slicing context, each slice’s edge instance could learn local anomaly patterns while
contributing to a shared global detection policy. Edge Al further complements FL by executing lightweight inference
and anomaly detection within slice endpoints, enabling ultra-low latency protection for URLLC or mission-critical slices.
Research must address challenges such as heterogeneity in local data distributions (non-IID), secure aggregation
against poisoning attacks, and model drift over time. Future work should explore federated adversarial learning,
hierarchical model aggregation across slice domains, and explainable federated models to reconcile distributed
intelligence with transparency and trust across operators (James, et al, 2025). Continuous co-evolution of network
intelligence and slicing security will be essential to master resilience in 6G and beyond.

6. Conclusion

6.1. Summary of Key Insights from the Review

The review consolidates the evolving understanding of vulnerabilities in 5G network slicing and the pivotal role of
artificial intelligence in strengthening telecommunication resilience. The analysis Highlights that while network slicing
delivers unprecedented flexibility through logical isolation and service customization, it also introduces new attack
surfaces at the virtualization, orchestration, and control layers. Threats such as cross-slice interference, hypervisor
compromise, and orchestration manipulation demonstrate how shared infrastructure can become a vector for multi-
slice exploitation. Al-driven mitigation techniques, including machine learning, deep learning, and reinforcement
learning, have emerged as effective tools for dynamic intrusion detection and real-time threat response. By integrating
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these models within SDN/NFV orchestrated environments, operators can achieve automated monitoring, adaptive
anomaly detection, and context-aware countermeasures. Hybrid Al frameworks combining supervised and
unsupervised techniques further enhance the detection of complex and evolving attacks while maintaining efficiency
under variable network loads. The findings also emphasize the importance of explainable Al in improving model
transparency, trust, and regulatory compliance. Ultimately, the synergy between intelligent analytics and secure
network design fosters a resilient 5G infrastructure capable of self-healing and autonomous defense, setting the
foundation for secure, scalable, and sustainable evolution toward 6G-ready architectures.

6.2. Recommendations for Future Research and Industry Practice

Future research and industry initiatives must prioritize the design of standardized, interoperable, and scalable Al-
driven security architectures for 5G and beyond. Policy frameworks should mandate cross-vendor interoperability
standards that define secure interfaces between slice orchestrators, SDN controllers, and Al-based detection systems.
Technical advancements should focus on lightweight, federated, and edge-based Al models capable of localized learning
and real-time threat mitigation without compromising latency-sensitive applications such as URLLC. The adoption of
explainable Al should become a regulatory and operational requirement, ensuring that automated decisions in critical
network slices remain auditable and accountable. Industry collaborations between telecom operators, Al researchers,
and regulatory bodies should drive the creation of shared benchmark datasets to improve model robustness and
reproducibility across heterogeneous environments. Architecturally, operators should adopt modular, microservice-
based Al intrusion detection systems embedded directly into orchestration workflows, enabling closed-loop feedback
for adaptive slice security management. Further investment in privacy-preserving analytics, such as federated and
differential learning, will be crucial for protecting user data while enhancing distributed threat intelligence. Collectively,
these recommendations support a holistic approach that aligns Al innovation with governance, ensuring that 5G
networks evolve as secure, transparent, and resilient ecosystems capable of supporting the intelligence-driven fabric of
next-generation telecommunications.
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