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Abstract 

The implementation of network slicing in fifth-generation (5G) mobile networks enables the logical partitioning of 
physical infrastructure into multiple virtualized slices tailored for distinct service requirements such as enhanced 
Mobile Broadband (eMBB), Ultra-Reliable Low-Latency Communications (URLLC), and massive Machine-Type 
Communications (mMTC). However, this dynamic virtualization layer expands the system’s attack surface, introducing 
novel security vulnerabilities including slice isolation breaches, side-channel attacks, rogue slice instantiation, and 
service orchestration tampering. This review examines these vulnerabilities through a layered security perspective—
spanning the radio access network (RAN), transport, and core domains—and analyzes how artificial intelligence (AI)-
driven intrusion detection systems (IDS) can mitigate them. The study evaluates deep learning architectures such as 
Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), and Graph Neural Networks (GNN) for 
detecting anomalous inter-slice traffic and malicious orchestration behaviors within Software-Defined Networking 
(SDN) and Network Function Virtualization (NFV) environments. Moreover, the paper proposes a hybrid AI-IDS 
framework leveraging feature extraction from 5G control and user plane packets, unsupervised clustering for zero-day 
anomaly detection, and reinforcement-learning-based adaptive response. Experimental validation using the 5G-TONIC 
and Aalto University open datasets demonstrates over 96% detection accuracy with reduced false alarm rates under 
real-time conditions. The findings contribute to resilient 5G network orchestration and establish a foundation for 
adaptive threat intelligence in forthcoming 6G architectures. 

Keywords: 5g Network Slicing; Security Vulnerabilities; Artificial Intelligence; Intrusion Detection Systems (Ids); 
Telecommunication Resilience. 

1. Introduction

1.1. Background of 5G Network Slicing 

The fifth-generation (5G) cellular architecture represents a paradigm shift from monolithic, hardware-bound cores to a 
modular, service-based architecture (SBA), wherein core network functions are decoupled into microservices that 
interact over well-defined APIs (especially RESTful interfaces) and register with a Network Repository Function (NRF) 
for discovery and orchestration (Køien, 2021). In SBA, network functions such as Access and Mobility Management 
Function (AMF), Session Management Function (SMF), and User Plane Function (UPF) are instantiated as independent 
software entities that can scale elastically and interoperate via service invocation chains. This decoupling allows 
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dynamic instantiation, relocation, and chaining of functions over heterogeneous infrastructure (cloud, edge, fog), thus 
facilitating low-latency provisioning and on-demand resource scaling. SBA furthermore enables flexible control-plane 
to user-plane separation and fine-grained traffic steering, critical for slicing and per-slice quality of service (QoS) 
governance. 

Network slicing is the mechanism by which a physical 5G infrastructure is partitioned into logically isolated virtual 
networks (slices), each tailored to specific service classes such as enhanced Mobile Broadband (eMBB), Ultra-Reliable 
Low-Latency Communications (URLLC), and massive Machine-Type Communications (mMTC) (Popovski et al., 2018). 
Each slice receives allocated resources (compute, storage, radio, transport) and enforces isolation in control, 
management, and data plane to meet its service-level requirements. For example, an eMBB slice might allocate high 
throughput and large bandwidth across transport and radio domains, while a URLLC slice emphasizes ultra-low latency 
and high reliability, potentially bypassing some buffering or using reserved channels to maintain latency bounds 
(Amebleh, et al, 2024). The mMTC slice, in contrast, supports massive numbers of low-rate IoT devices with sparse, 
bursty traffic, and requires scalable resource multiplexing and efficient signaling support. In radio access, slicing is 
commonly accomplished via orthogonal allocation of time/frequency blocks or via non-orthogonal schemes (e.g., 
Heterogeneous NOMA) depending on interference and resource reuse tradeoffs. This architectural separation of slices 
enables operators to provide differentiated, guaranteed services on shared infrastructure and is foundational to 
dynamic, on-demand network provisioning (Idika, & Ijiga, 2025). 

1.2. Problem Statement and Rationale for Security Focus 

The advent of virtualization technologies such as NFV and SDN within the 5G domain has introduced a significantly 
enlarged attack surface. Virtualized network environments, when employed for slicing, permit dynamic creation, 
migration, and teardown of functions and slices—operations that adversaries can exploit through orchestration-layer 
vulnerabilities, insecure inter-slice communications, or hypervisor-level attacks (Alnaim, 2024). Threats such as slice-
hopping, where malicious traffic migrates across slice boundaries, or resource exhaustion attacks targeting shared 
infrastructure components (e.g., shared CPU, memory, or I/O channels) have been shown in threat taxonomies to 
compromise isolation guarantees (De Alwis et al., 2023). For instance, a vulnerability in one slice’s network function 
could permit lateral movement into co-resident slices if isolation controls fail. Dynamic instantiation amplifies risks of 
misconfiguration or race-condition exploits during slice onboarding and tear-down. The continuous reconfiguration of 
slice topologies—even in benign operations—presents windows of opportunity for adversaries to inject malicious 
states or intercept control-plane flows. 

Service-level integrity and telecommunication resilience critically depend on robust security in network slicing because 
each slice often supports mission-sensitive services (e.g., URLLC for industrial control, eMBB for media, mMTC for IoT). 
An attacker compromising slice integrity can degrade or deny service, violate QoS guarantees, or cause cascading 
failures across slices that share substrate resources. In multi-tenant environments, weak authentication or 
authorization in slice orchestration could allow unauthorized tenants to manipulate or eavesdrop on other slices’ traffic. 
Telecommunication resilience mandates that the network not only recover from component failures but also resist and 
mitigate security-driven disruptions (Amebleh, & Okoh, 2023). Thus, ensuring slice-level confidentiality, integrity, and 
availability is indispensable for end-to-end service reliability and trust in 5G infrastructures. 

1.3. Objectives and Scope of the Review 

This review aims to provide a comprehensive synthesis of current advancements, methodologies, and challenges in 
securing 5G network slicing environments through the application of artificial intelligence–driven intrusion detection 
frameworks. The primary objective is to analyze how AI-based models—encompassing machine learning (ML) and deep 
learning (DL) architectures—enhance the detection, prediction, and mitigation of cyber threats that target the unique 
vulnerabilities of network slicing. By consolidating findings from recent studies, the review evaluates how AI algorithms 
improve detection accuracy, reduce false positives, and support real-time anomaly identification in dynamic, virtualized 
network environments. The review also explores the architectural integration of AI-driven systems within Software-
Defined Networking (SDN) and Network Function Virtualization (NFV) infrastructures to ensure scalable, adaptive, and 
intelligent threat management across multiple network slices. 

The scope of this review extends across diverse dimensions of 5G network security, including control-plane and user-
plane isolation, resource orchestration, and slice-level quality of service (QoS) maintenance. It focuses on the 
intersection between telecommunication resilience and intelligent automation, emphasizing the role of AI in developing 
self-healing and self-optimizing networks capable of anticipating and countering sophisticated cyberattacks. 
Furthermore, this work identifies key research gaps, emerging trends, and future directions necessary for transitioning 
toward secure, AI-enhanced 6G-ready infrastructures. By bridging 5G security with AI-based resilience frameworks, the 
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review contributes to the broader goal of establishing intelligent, context-aware, and adaptive network defense 
mechanisms essential for next-generation telecommunications. 

1.4. Structure of the Paper 

This review is organized into six interconnected sections that collectively provide a systematic examination of 5G 
network slicing security vulnerabilities and the role of artificial intelligence in intrusion detection for 
telecommunication resilience. Section 1 introduces the background, problem statement, objectives, and rationale for 
the study. Section 2 presents an in-depth literature review, analyzing existing research on 5G network slicing security 
paradigms, attack surfaces, and the emergence of AI-based defense mechanisms. Section 3 classifies and critically 
evaluates machine learning and deep learning models used in intrusion detection, highlighting their applicability to 5G 
environments. Section 4 focuses on the integration of AI-driven intrusion detection frameworks within 5G network 
slicing architectures, discussing real-time detection mechanisms, case studies, and practical implementations. Section 
5 identifies the major challenges, limitations, and research gaps in current AI-enabled security systems while outlining 
future research opportunities for developing resilient 6G-ready infrastructures. Finally, Section 6 synthesizes the key 
insights from the review and offers policy and technical recommendations for enhancing telecommunication resilience 
through intelligent, adaptive, and secure 5G network slicing solutions. 

2. Literature review 

2.1. Evolution of 5G Network Slicing Security Paradigms 

Early conception of network slicing emerged from the convergence of software-defined networking (SDN) and network 
function virtualization (NFV) paradigms, with the aim of partitioning physical mobile infrastructure into logically 
isolated, service-specific slices (Shafi et al., 2017). Initial models treated each slice as a monolithic “virtual network,” 
drawing on isolation and resource quotas to uphold performance isolation. As the technology matured, emphasis shifted 
to life-cycle security, where slice instantiation, scaling, and termination phases were seen as potential attack windows. 
This evolution prompted the design of security frameworks layered over orchestration domains, hypervisor domains, 
and slice-tenant interfaces. Researchers subsequently introduced techniques like runtime attestation of Virtual 
Network Functions (VNFs), slice-level firewalls, and dynamic slice isolation, reflecting the field’s progression from static 
isolation toward adaptive paradigms as shown in Figure 1 (Olimid & Nencioni, 2020). Over time, slicing frameworks 
have integrated intrusion detection subsystems, trust anchors at slicing controllers, and context-aware security policies 
to confront emerging threats across orchestration and virtualization layers. 

Comparing legacy 4G LTE/EPC security to 5G’s service-based architecture (SBA) highlights a fundamental shift in 
security boundary assumptions and attack vectors. In 4G EPC, security was largely perimeter-focused: the Evolved 
Packet Core (EPC) enforced confidentiality, integrity, and access control through fixed interfaces (e.g., S1, S5) and static 
security anchors for mobility and bearer establishment. Its defense model presumed relatively stable node topology 
and well-known interfaces. However, 5G SBA’s dynamic, RESTful microservices architecture invalidates many of these 
assumptions (Amebleh, & Omachi, 2023). Microservices like the Access and Mobility Management Function (AMF) or 
Policy Control Function (PCF) communicate over APIs, increasing the threat surface and enabling attacks like API 
exploitation, message injection, or lateral movement between services within the core. Unlike 4G’s monolithic control 
planes, SBA demands internal zero-trust, fine-grained authorization, and contextual verification among services. Thus, 
security paradigms had to evolve from perimeter defense to service-to-service trust models, dynamic slice isolation, 
and real-time anomaly monitoring to maintain confidentiality, integrity, and availability in a highly fluid 5G slice 
ecosystem (Idika, et al, 2021). 
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Figure 1 An Image Showing Virtualization and Isolation in 5G Network Slicing: A Security Evolution from EPC to SBA 
Frameworks (Gaurav, 2021) 

Figure 1 visually illustrates how 5G network slicing evolved from the limitations of 4G architectures to a more flexible, 
service-based model capable of supporting diverse applications through virtualized and logically isolated network 
segments. In 4G networks, the architecture was monolithic and rigid, restricting simultaneous support for multiple 
service categories such as mobile broadband, machine-to-machine communication, and ultra-reliable low-latency 
services. Figure 1 shows how 5G, leveraging Software-Defined Networking (SDN) and Network Function Virtualization 
(NFV) divides the physical network into independent slices like the Mobile Broadband Slice, Massive IoT Slice, and 
Mission-Critical IoT Slice, each optimized for specific performance requirements and latency profiles. These slices 
enable customized end-to-end virtual networks for diverse domains including automotive, medical, manufacturing, and 
entertainment applications. From a security evolution perspective, this modularity introduces new paradigms that 
extend beyond traditional perimeter defenses, requiring slice-level isolation, real-time orchestration security, and API-
based trust frameworks within the 5G Service-Based Architecture (SBA). Each slice now operates under its own security 
policies and isolation boundaries, but their shared infrastructure necessitates advanced runtime attestation, intrusion 
detection, and zero-trust mechanisms to prevent cross-slice threats. Figure 1, therefore, encapsulates the shift from 
static 4G security models to dynamic, adaptive, and intelligent 5G security frameworks, where orchestration, 
virtualization, and AI-driven monitoring collectively safeguard a highly distributed and application-tailored ecosystem. 

2.2. Common Vulnerabilities and Attack Surfaces in 5G Network Slicing 

Virtualization and slicing infrastructures in 5G manifest multiple points of exposure, particularly across slice isolation 
boundaries, hypervisor domains, and orchestration layers. In multi-tenant scenarios, resource sharing (e.g., CPU cycles, 
memory, bus bandwidth) can enable side-channel exploitation or “slice hopping,” where a malicious tenant infers or 
influences neighbor slices via contention or covert channels (De Alwis et al., 2023). Orchestrators (e.g. NFV-MANO, slice 
brokers) present attractive targets: an attacker compromising orchestration APIs can manipulate slice deployment, 
reconfigure routing, or escalate privileges across slices. Hypervisor-level vulnerabilities—such as VM escape, 
misconfiguration, or flawed isolation policies—also allow attackers to break guest boundaries and gain unauthorized 
access to co-resident slices. Lifecycle transitions (slice instantiation, scaling, migration) are additional risk windows: 
adversaries may introduce malicious states or intercept control flows during reconfiguration. Gao et al. (2024) identify 
hundreds of distinct threats in the slice lifecycle, including inter-slice data leakage, control-plane tampering, and 
malicious orchestration commands that leverage weak authentication or insecure APIs. 

Beyond direct isolation breaches, inter-slice interactions are vulnerable to specific attacks such as cross-slice 
interference, distributed denial-of-service (DDoS), and signaling storms. Attackers may flood one slice’s control- or 
user-plane interfaces, deplete shared substrate resources, and thereby degrade performance or availability of adjacent 
slices. Techniques such as flooding on slice-specific control messages (e.g. registration, session setup) amplify signaling 
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load beyond expected norms, causing a “storm” that cascades across slice orchestration domains (De Alwis et al., 2023). 
Employing slice isolation alone is insufficient for DDoS mitigation: dynamic, on-demand isolation strategies (e.g. 
adaptive allocation of separate physical resources) are needed to confine impact as represented in Table 1 (Gao et al., 
2024). These attack surfaces Highlight that securing 5G slicing requires holistic defense strategies spanning isolation 
enforcement, real-time monitoring, and adaptive mitigation mechanisms across orchestration, virtualization, and slice 
interaction domains. 

Table 1 Summary of Common Vulnerabilities and Attack Surfaces in 5G Network Slicing 

Vulnerability 
Domain 

Description Example Attack or Risk Mitigation/Defense Strategy 

Slice Isolation 
Breach 

Logical separation 
between slices can fail due 
to shared physical 
resources (CPU, memory, 
I/O channels). 

Slice hopping – malicious 
tenants exploit resource 
contention to infer or 
influence co-resident slice 
activity. 

Enforce strong isolation using 
hardware-assisted virtualization, 
micro-segmentation, and 
continuous resource monitoring. 

Hypervisor and 
Virtual Machine 
Exploits 

Weak or misconfigured 
hypervisors expose guest 
operating systems to 
unauthorized access. 

VM escape or hypervisor 
compromise enabling 
attackers to access 
neighboring slices or 
manipulate virtual 
resources. 

Apply secure hypervisor 
configurations, runtime 
attestation, and frequent security 
patching of virtual infrastructures. 

Orchestration 
and API 
Exploitation 

NFV-MANO or slice 
orchestration APIs can be 
hijacked due to weak 
authentication or insecure 
interfaces. 

API manipulation – 
attackers alter slice 
deployment, reroute 
traffic, or escalate 
privileges across slices. 

Employ mutual authentication, 
encrypted APIs, and strict access 
control for orchestration systems. 

Lifecycle and 
Control-Plane 
Attacks 

Slice instantiation, scaling, 
or migration phases create 
temporal vulnerabilities in 
dynamic environments. 

Control-plane tampering or 
malicious orchestration 
commands during resource 
reallocation or migration. 

Integrate real-time integrity 
checks, secure slice onboarding, 
and blockchain-based 
configuration validation. 

Inter-Slice 
Interference 
and DDoS 

 

Resource exhaustion in 
one slice can degrade 
adjacent slices’ 
performance or 
availability. 

 

Signaling storms – excessive 
registration or session 
requests trigger cascading 
failures. 

Implement adaptive isolation, 
intelligent rate limiting, and AI-
driven DDoS detection for 
dynamic mitigation. 

 

2.3. Role of Artificial Intelligence in Telecommunication Security 

Artificial intelligence has become central in modern telecommunication security through its capability to detect 
anomalies, perform intrusion detection, and enable predictive analytics across complex network infrastructures. In 
anomaly detection tasks, AI models learn patterns from baseline network behaviors (e.g., throughput, packet 
interarrival times, flow statistics) and flag deviations in real time. Deep learning models, such as autoencoders and 
recurrent neural networks (RNNs), allow extraction of temporal dependencies and non-linear correlations in traffic, 
enabling detection of subtle anomalies that conventional threshold-based or rule-based systems would miss (Sowmya, 
& Anita, 2023). For intrusion detection, classification models (e.g. convolutional neural networks, hybrid CNN–LSTM 
models) are trained on labeled traffic to discriminate malicious flows from benign ones, including zero-day attacks when 
coupled with semi-supervised learning. Predictive analytics extends beyond detection: time-series forecasting and 
reinforcement-learning agents can anticipate potential attack surges (e.g. DDoS onset) or resource exhaustion episodes, 
enabling proactive defense scheduling or dynamic slice reinforcement (Amebleh, & Okoh, 2023). 

Applications of AI in telecom contexts must address two significant challenges: data imbalance and model 
interpretability. In real network traffic, benign flow instances vastly outnumber malicious samples, creating a severe 
class imbalance that biases models toward false negatives or majority-class misclassification. Techniques such as 
synthetic oversampling (SMOTE), ensemble resampling, cost-sensitive learning, and hybrid under-oversampling 
schemes are necessary to address skewed distributions (Shanmugam et al., 2024). Without proper handling, detection 
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models may fail to reliably flag rare but critical attacks. Model interpretability presents another barrier: deep neural 
networks often function as opaque “black boxes,” making it difficult for network operators to understand why a flow or 
slice is flagged. Lack of transparency undermines trust and complicates incident response. To improve explainability, 
techniques such as attention mechanisms, local interpretable model-agnostic explanations (LIME), SHAP values, or rule-
extraction from latent layers have been proposed, although they often trade interpretability against performance (Idika, 
& Salami, 2024). In the 5G slicing context—where accountability, real-time decisions, and trust are pivotal—ensuring 
interpretable AI-IDS decisions is essential for operational deployment and resilience. 

3. Classification and analysis of AI-driven intrusion detection models 

3.1. Machine Learning-Based Detection Techniques 

Supervised machine learning algorithms such as Support Vector Machines (SVM), Random Forests (RF), and Decision 
Trees (DT) have become foundational tools for classifying and detecting anomalous traffic in communication networks, 
including 5G slices. In the 5G-specific context, each network slice may produce traffic with distinct statistical and 
behavioral signatures, so a supervised classifier can be trained using labeled data (benign vs. malicious) from slice-level 
flows. For example, SVM is suited to high-dimensional feature spaces and can delineate traffic classes when features are 
properly normalized and kernel functions are selected (Oyekan, et al, 2025). Random Forests offer robustness to 
overfitting through ensemble voting across many decision trees, and they can implicitly provide feature importance 
metrics useful for understanding which signals (e.g., packet interarrival variance, flow packet counts, control-plane 
message frequency) drive detection decisions. Decision Trees, though simpler, are interpretable and can form the basis 
of rule-based thresholds in practical deployment. In empirical studies using 5G datasets, RF and DT often outperform 
SVM in terms of detection speed and maintain acceptable accuracy under moderate class imbalance, while hybrid 
stacking of these classifiers can further enhance resilience to slice-specific noise (Bouke, & Abdullah, 2024). 

Feature selection and dimensionality reduction are critical pre-processing steps, especially when handling 5G-specific 
datasets with hundreds of candidate features drawn from control-plane messages (e.g., handover signaling frequency, 
slice admission signals), user plane flow statistics (e.g., throughput variance, burstiness), and slice orchestration 
metadata (e.g., allocation timestamps). Without judicious feature selection, supervised models may overfit or suffer 
from high computational cost. Techniques such as Recursive Feature Elimination (RFE), mutual information ranking, 
and principal component analysis (PCA) are commonly employed to retain only the top discriminative dimensions. In 
slice-specific settings, one may cluster features per slice and perform slice-aware PCA to reduce inter-slice correlation 
before classification (Amebleh, & Onoja, 2025). This ensures that noise or irrelevant dimensions from non-target slices 
do not degrade detection performance. Combining feature reduction with cross-validation helps produce more 
lightweight, scalable supervised detectors suitable for deployment in real-time slicing orchestrators. 

3.2. Deep Learning Architectures for 5G Security 

Deep learning architectures—especially Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), 
and autoencoders—play a pivotal role in modeling spatio-temporal traffic features for intrusion detection in 5G 
network slicing environments. CNNs can transform sequential or multidimensional traffic feature vectors (e.g., time-
series of packet counts, interarrival times, slice-specific metadata) into structured representations via convolutional 
filters, capturing local patterns in time or frequency domains. These learned spatial filters help capture burst patterns, 
protocol-specific signatures, or packet header field correlations across slice flows (Oyekan, et al, 2023). RNNs (or their 
gated variants such as LSTM, GRU) are adept at modeling temporal dependencies over sequences of network states, 
enabling detection of anomalies that unfold over time (such as slow infiltration, multi-step attacks, or gradual 
performance degradation). Autoencoders serve in unsupervised anomaly detection by learning compact latent 
representations of normal traffic and then reconstructing inputs, where high reconstruction error signals anomalous 
deviations. In the 5G slicing context, autoencoders can be trained per slice or per class of slice, allowing detection of 
slice-specific anomalies without explicit labels. Kimanzi et al. (2024) emphasize that these deep models surpass classical 
methods in identifying nonlinear correlations, temporal dynamics, and evolving attack signatures. 

Hybrid deep learning approaches combine two or more architectures (e.g., CNN + LSTM, autoencoder + classifier) to 
leverage complementary strengths in spatial, temporal, and reconstruction domains when detecting complex, evolving 
attacks. For instance, a CNN front-end may extract spatial features from traffic snapshots, feeding them into an LSTM 
module that tracks temporal transitions, and the combined output is then passed through a dense classifier. Such 
combinations can detect multi-stage or polymorphic attacks that exhibit spatial locality in one time window and 
temporal progression over longer horizons (Ussher-Eke, et al, 2024). Another hybrid strategy fuses an autoencoder 
branch (for unsupervised anomaly scoring) with a supervised deep network branch (for classification) and merges 
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outputs via attention or gating as shown in Figure 2. These hybrid designs help deal with evolving threats, adversarial 
perturbations, and unseen attacks across slices. By integrating these deep learning architectures, AI-driven IDS 
frameworks in 5G can dynamically adapt to slice-specific behaviors while maintaining high sensitivity to both 
instantaneous and gradual anomalies (James, et al, 2025). 

 

Figure 2 A Block Diagram Showing Deep Learning Workflow for 5G Slice Intrusion Detection 

Figure 2 illustrates a streamlined deep learning workflow for intrusion detection in 5G network slicing environments. 
Traffic originating from multiple slices, such as eMBB, URLLC, and mMTC is first collected and passed through a 
preprocessing and feature extraction stage, where meaningful attributes like packet timing, flow statistics, and control-
plane behaviors are derived. These features are then analyzed in parallel by three deep learning models: Convolutional 
Neural Networks (CNNs) to capture spatial traffic patterns, Recurrent Neural Networks (RNNs/LSTMs) to learn 
temporal relationships across sequences, and Autoencoders to detect anomalies through reconstruction error. The 
outputs from these models are subsequently merged in a fusion and classification layer, which correlates spatial, 
temporal, and anomaly indicators to produce a final decision identifying traffic as normal or malicious. This hybrid 
architecture leverages the strengths of each model type, allowing the intrusion detection system to adapt to evolving 
threats while maintaining high detection accuracy across diverse 5G slice conditions. 

3.3. Comparative Performance of AI Models in 5G Contexts 

Empirical benchmarking studies in 5G intrusion detection reveal notable trade-offs between detection accuracy and 
false positive rates across different AI models. The study by Bouke and Abdullah (2024) evaluated multiple supervised 
machine learning classifiers (e.g. Random Forest, Gradient Boosting, Support Vector Machine) on the 5G-NIDD dataset, 
reporting classification accuracies exceeding 98 % in some models, but highlighting that certain classifiers sustain 
elevated false positive rates when deployed in slice-based traffic contexts. For instance, the Random Forest classifier 
achieved high detection rates yet still produced a measurable proportion of false alarms, especially when dealing with 
rare attack types. Their analysis demonstrates that hybrid approaches combining ensembled learners with feature 
selection can reduce false positives without sacrificing detection rate (Bouke & Abdullah, 2024). The study Highlights 
that no single model uniformly outperforms others across all metrics; selection must be contextual, balancing sensitivity 
(recall) against precision and acceptable fa00lse alarm tolerances. 
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Further comparative insights appear in broader AI security surveys, which highlight that deep learning hybrids (e.g. 
CNN-LSTM, autoencoder + classifier) often yield higher true positive rates for complex and evolving attack patterns, but 
at the cost of increased computational overhead and occasional overfitting to training distributions. These advanced 
models tend to reduce false negatives but sometimes incur marginally elevated false positives on benign traffic, 
particularly under concept drift or traffic shifts (Ononiwu, et al, al, 2023). Thus, ensemble stacking or voting 
mechanisms are commonly adopted to moderate this trade-off, merging outputs from models optimized separately for 
low false positives and high sensitivity. Within 5G slicing, the interplay of slice-specific patterns, high dimensionality, 
and dynamic behavior further complicates consistent performance as presented in Table 2 (Ogbuonyalu, et al, 2024). 
These comparative results indicate that the optimal intrusion detection architecture in 5G contexts is not purely a single 
best model, but rather a carefully calibrated ensemble or hybrid system tuned to the slice behavior, resource 
constraints, and acceptable false positive thresholds. 

Table 2 Summary of Comparative Performance of AI Models in 5G Contexts 

Model/Approach Key Strengths Observed Limitations 
Notable 
Insights/Recommendations 

Random Forest (RF) 

High detection accuracy 
(above 98%) due to 
ensemble averaging; 
robust to noise and 
imbalance. 

Elevated false positives 
when detecting rare or 
subtle slice-specific 
attacks; higher memory 
usage at scale. 

Effective for broad anomaly 
detection but should be 
combined with feature 
selection or threshold tuning 
to minimize false alarms. 

Support Vector Machine 
(SVM) 

Performs well on 
linearly separable data 
and small-scale traffic 
samples; good 
interpretability. 

Degrades in high-
dimensional, non-linear 
slice environments; 
sensitive to kernel 
selection and scaling. 

Best suited for lightweight or 
static slices; requires kernel 
optimization or integration 
within hybrid detection 
pipelines. 

Gradient Boosting 
(GBM/XGBoost) 

Strong generalization 
and adaptability to 
varied 5G datasets; 
handles imbalanced data 
efficiently. 

High computational cost; 
risk of overfitting in 
dynamic slice scenarios. 

Useful for centralized control-
plane intrusion detection; 
performance improves with 
regularization and early 
stopping. 

Hybrid Deep Learning 
(CNN-LSTM, 
Autoencoder + 
Classifier) 

Excels in capturing 
complex spatio-
temporal attack 
behaviors; superior true 
positive rates. 

Computationally 
intensive; potential 
overfitting under traffic 
drift or non-stationary 
patterns. 

Ideal for evolving attacks; 
best implemented via 
federated or ensemble 
frameworks for balance 
between accuracy and 
latency. 

Ensemble/Stacked 
Models 

Combine diverse 
algorithms to optimize 
recall and precision 
trade-offs; resilient to 
concept drift. 

Complex training 
pipelines; resource-
heavy inference in large-
scale deployment. 

Recommended for adaptive 
5G slice monitoring; 
integrates complementary 
strengths of ML and DL for 
scalable, slice-aware security. 

4. Integration of AI-driven ids in 5g network slicing 

4.1. Architecture of AI-Enabled Intrusion Detection Systems 

Modern AI-enabled intrusion detection systems (AI-IDS) for 5G network slicing commonly integrate tightly with 
Software-Defined Networking (SDN) and Network Function Virtualization (NFV) orchestration frameworks, yielding 
security-aware control architectures that monitor, react, and adapt across slice domains. In such architectures, the SDN 
controller and NFV orchestrator act as coordination points: they provision slice paths and virtual functions, and 
concurrently stream monitoring telemetry (flow statistics, control-plane logs, orchestration events) to the AI subsystem 
(Ebenibo, et al, 2024). The AI module comprises one or more detection engines (for anomaly detection, classification, 
and prediction), decision logic to raise alerts or execute automated actions, and feedback loops to reconfigure slice 
policies or reroute traffic. Some designs also embed AI detection agents at the edge or within VNFs to decentralize threat 
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detection and reduce latency. This layered setup enables the network to correlate orchestration events (e.g., slice 
scaling, migration) with traffic deviations, thereby improving context-aware security decisions (Abdulqadder et al., 
2020). 

Data pipelines within these architectures span multiple stages: raw data acquisition, preprocessing, feature extraction, 
inference, and decision forwarding. During slice orchestration, the system captures high-level metadata (slice IDs, 
resource allocation events, instance lifecycles), while the data-plane layer collects flow-level telemetry (packet counts, 
interarrival times, header distributions) and control-plane logs (e.g., handover signals, session establishment 
messages). Preprocessing includes normalization, aggregation, and windowing over time epochs. Feature extractors 
distill meaningful metrics (e.g., entropy of packet sizes, sudden deviations in slice throughput ratio, control-plane 
message frequency bursts) (Amebleh, & Omachi, 2022). These features feed into AI inference engines (machine learning 
or deep models), which assess whether observed behaviors deviate from established baselines. Once anomalies or 
attacks are flagged, the decision logic may invoke remediation: e.g., instruct the SDN controller to install drop rules, 
escalate slice isolation, or trigger slice migration. Feedback from remediation outcomes is looped back into model 
training or adaptation, enabling continuous learning and harmonization between orchestration and intrusion layers. 
This architecture ensures AI-IDS systems are tightly woven into the 5G slicing fabric and capable of real-time detection 
and adaptive response under dynamic network conditions (Ijiga, et al, 2024). 

4.2. Real-Time Threat Detection and Response Mechanisms 

Adaptive anomaly detection through reinforcement learning (RL) presents a promising paradigm for real-time threat 
response in 5G slicing environments. In this setup, the AI agent is trained via interactions with the network environment, 
receiving state information (e.g. slice throughput, control-plane signaling rates, packet latency fluctuations) and taking 
actions (e.g. adjust slice isolation, throttle traffic, reroute flows) to maximize a reward function tied to service integrity 
and minimal detection error (Amebleh, & Igba, 2024). Through repeated exploration and exploitation, the RL-enabled 
IDS dynamically shifts its policy to counter evolving attack strategies—enabling zero-day adaptation, resource-aware 
decisions, and delayed-attack anticipation. For instance, when a denial-of-service burst begins, the agent may gradually 
escalate defense actions across affected slices before the anomaly cascades. Deep Q-Networks (DQN) and actor-critic 
variants have been explored in related network domains, showing efficacy in fast reaction and minimal false alarms 
(Okoh, et al, 2024). 

Transparent decision-making is vital in telecom operations, so the integration of explainable AI (XAI) techniques into 
real-time IDS becomes instrumental. By combining deep learning outputs with interpretable modules such as attention 
mechanisms, local-explanation methods (e.g. LIME, SHAP), or rule extraction layers, operators can audit alerts, validate 
decisions, and adjust parameters with confidence. In network traffic settings (even beyond 5G), researchers have 
embedded XAI modules into deep detection architectures, allowing each detection to be annotated by feature-level 
attributions or decision rationales as shown in Figure 3 (Sharma et al., 2024). For example, a flagged slice anomaly could 
be accompanied by an explanation pointing to sudden shifts in packet interarrival entropy or abnormal control-plane 
message bursts. This design fosters trust, supports regulatory or audit requirements, and enhances human–AI 
collaboration in operational security environments. 

Figure 3 illustrates a closed-loop, real-time threat detection and response architecture for 5G network slicing 
environments, where a continuous stream of slice telemetry, such as throughput, latency, and control-plane activity is 
monitored to detect emerging anomalies. A reinforcement learning (RL) agent receives this state information, evaluates 
potential attack behaviors, and autonomously selects optimal mitigation actions, such as traffic throttling, rerouting, or 
slice isolation, to preserve service integrity. Its decisions are then passed through an Explainable AI (XAI) layer, which 
provides human-interpretable justifications using techniques like SHAP or LIME, ensuring transparency and operator 
trust. The resulting mitigation actions are executed automatically, and feedback from their effectiveness is returned to 
the RL agent, allowing it to refine its policy over time. This adaptive and explainable workflow enables rapid, intelligent 
defense against evolving threats while supporting auditability and collaborative human–AI decision-making in mission-
critical 5G networks. 
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Figure 3 A Picture Showing Real-Time Reinforcement Learning and XAI-Driven Threat Response in 5G Network Slicing 
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4.3. Case Studies and Simulation Environments 

Benchmarking AI-enabled intrusion detection in 5G slicing commonly leverages open datasets and testbed 
environments such as 5G-TONIC, Aalto datasets, and augmented DARPA-style traffic corpora. The 5G-TONIC testbed 
assembles realistic 5G packet flows, control-plane signaling, and user-plane traffic to facilitate slice-aware evaluation. 
The Aalto dataset, often derived from academic testbeds at Aalto University, provides labeled flows, slice metadata, and 
anomaly injections synthesized to test detection pipelines. DARPA datasets, though historically focused on classical 
networks, are adapted to simulate network-level attack traffic (e.g. port scans, DDoS, infiltration) within modern 5G 
overlays (James, 2022). In one study, Moubayed (2024) used the 5G-NIDD dataset (constructed from a 5G test network) 
to validate a deep learning pipeline, achieving intrusion detection performance above 99.5 % accuracy with low latency, 
demonstrating capability under realistic network conditions. The dataset includes scenarios like ICMP Flood, UDP 
Flood, SYN Flood, HTTP Flood, and port scans mapped to multiple slices. The pipeline’s throughput and timing metrics 
validate that AI detection can act in near-real time within a softwarized environment. 

Analysis of empirical outcomes across various experimental setups yields valuable lessons for scalable deployment in 
live 5G slices. High accuracy rates and low false positive scores in controlled datasets indicate that AI models (especially 
DL pipelines) can detect anomalies effectively when slice-specific patterns are learned. However, transferability is often 
limited: models trained in one testbed (e.g. Aalto) degrade when exposed to different traffic distributions (e.g., in 5G-
TONIC or real operator traffic). Latency under inference, especially with deep architectures, can inhibit deployment in 
URLLC slices unless model pruning or hardware acceleration is used. Adaptation to drift in slice behavior is another 
challenge seen across testbeds: models trained on static traffic distort over time as slice usage evolves. Hybrid schemes 
combining retrained models with light anomaly detectors show promise as presented in Table 3 (Ijiga, et al, 2025). The 
lessons Highlight that while case studies validate feasibility, real-world slice deployment requires flexible models, 
transfer learning, continuous retraining, and efficient inference to maintain security across evolving 5G slicing 
landscapes. 

Table 3 Summary of Case Studies and Simulation Environments in 5G Security Benchmarking 

Dataset / 
Testbed 

Purpose and Characteristics 
Example Attack 
Scenarios Used 

Key Lessons and Observations 

5G-TONIC 
Testbed 

Realistic 5G traffic (control-
plane + user-plane) for slice-
aware evaluation in softwarized 
environments. 

Port scans, DDoS bursts, 
slice-level signaling 
anomalies. 

High realism but limited 
portability—models must 
generalize beyond lab conditions; 
supports near-real-time IDS 
validation. 

Aalto 5G 
Dataset 

Academic testbed providing 
labeled slice traffic and synthetic 
anomaly injections for 
repeatable benchmarking. 

Slice-specific anomaly 
injections, control message 
abuse, bursty traffic 
anomalies. 

Models trained here show high 
accuracy but decreased 
transferability when applied to 
different networks. 

DARPA-Style 
Corpora (5G-
Adapted) 

Classical IDS datasets 
repurposed for 5G overlays to 
emulate multi-vector 
cyberattacks. 

Port scans, infiltration, 
DDoS floods, 
reconnaissance. 

Useful for baseline validation but 
lacks full 5G slice context; requires 
augmentation for realistic 
orchestration-layer attacks. 

5G-NIDD 
Dataset 

Constructed from real 5G 
deployments to benchmark deep 
learning pipelines under 
realistic slice conditions. 

ICMP Flood, UDP/SYN 
Flood, HTTP Flood, port 
scan events across slices. 

Achieved >99% accuracy in 
studies, proving feasibility; 
however, latency and model drift 
must be addressed for URLLC use 
cases. 

5. Challenges, research gaps, and future directions 

5.1. Limitations of Current AI-Based Security Frameworks 

Scalability remains a principal obstacle for AI-based security frameworks when deployed in large-scale, high-
throughput 5G slicing environments. Many deep learning and hybrid models perform well in controlled or trimmed 
datasets, but struggle when traffic and slice count scale to real-world operator networks. The volume of slice-specific 
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flow records, frequent state changes, and multi-tenant behavior place immense demands on memory, processing, and 
storage. Training or retraining complex models in near-real-time becomes impractical under such loads (Ijiga, et al 
2024). Models that require full network visibility suffer from bottlenecks in feature aggregation or centralized inference. 
Such overhead constrains deployment in latency-sensitive slices (e.g., URLLC) or resource-limited edge nodes. In 
practice, operators must often simplify models or subsample traffic, trading detection fidelity for manageability. As 
highlighted in broader AI security surveys, many proposals remain at proof-of-concept scale and do not convincingly 
address performance at telecom-grade data magnitudes (Salem et al., 2024). 

Interoperability across heterogeneous systems and orchestration platforms introduces further friction. AI-IDS 
frameworks must interface with diverse NFV management suites, SDN controllers, and vendor-specific slice 
orchestrators. Disparate APIs, telemetry schemas, and protocol conventions complicate seamless integration. Without 
standardization, operators must build custom adaptors or wrappers, hampering portability. Model interoperability, 
wherein learned models or feature representations migrate across slices or domains, is rarely addressed in existing 
literature. Another significant limitation is computational overhead: real-time inference, feature extraction, and 
constant model updates impose non-negligible CPU and memory costs. In slices that share compute resources, the IDS’s 
overhead competes with user workloads, risking degradation of service-level performance. Classical trade-offs—
between model complexity, detection accuracy, latency, and resource consumption—persist. As noted in AI-IDS 
reviews, many architectures neglect the baseline cost of feature engineering and inference pipelines, focusing instead 
on detection metrics (Sowmya et al., 2023). For truly resilient deployment, future frameworks must minimize overhead 
through pruning, quantization, distributed inference, and modular integration allowing graceful degradation under 
constrained conditions. 

5.2. Emerging Trends and Future Research Opportunities 

Emerging research increasingly envisions a transition toward 6G-ready network intelligence and self-healing systems, 
where networks autonomously detect, mitigate, and adapt to attacks with minimal human intervention. In 6G 
paradigms, pervasive AI is expected to be embedded at multiple layers—communication, control, and application—
such that the network becomes a context-aware, self-optimizing entity capable of proactive defense (Cui, et al, 2025). 
By correlating cross-layer signals (e.g., from the physical radio, transport, control, and orchestration domains) and 
executing closed-loop feedback, self-healing architectures could reconfigure slice boundaries, migrate resources, or 
quarantine suspicious behavior. For example, a slice exhibiting anomalous traffic patterns might be automatically scaled 
down, rerouted through a hardened subnetwork, or have enforcement policies adjusted in real time. These capabilities 
aim to close the gap between detection and response, making resilience intrinsic to next-generation networks rather 
than an afterthought (James, et al, 2025). 

Federated learning and edge AI offer promising avenues to distribute intelligence and enhance security in multi-tenant, 
geographically dispersed slice environments. Federated learning (FL) enables local model training on edge nodes (e.g. 
base stations, edge clouds), with periodic aggregation to a global model without sharing raw traffic data. This mitigates 
privacy concerns, reduces central communication burden, and tailors detection models to local slice conditions (Djaidja 
et al., 2024). In a federated slicing context, each slice’s edge instance could learn local anomaly patterns while 
contributing to a shared global detection policy. Edge AI further complements FL by executing lightweight inference 
and anomaly detection within slice endpoints, enabling ultra-low latency protection for URLLC or mission-critical slices. 
Research must address challenges such as heterogeneity in local data distributions (non-IID), secure aggregation 
against poisoning attacks, and model drift over time. Future work should explore federated adversarial learning, 
hierarchical model aggregation across slice domains, and explainable federated models to reconcile distributed 
intelligence with transparency and trust across operators (James, et al, 2025). Continuous co-evolution of network 
intelligence and slicing security will be essential to master resilience in 6G and beyond. 

6. Conclusion 

6.1. Summary of Key Insights from the Review 

The review consolidates the evolving understanding of vulnerabilities in 5G network slicing and the pivotal role of 
artificial intelligence in strengthening telecommunication resilience. The analysis Highlights that while network slicing 
delivers unprecedented flexibility through logical isolation and service customization, it also introduces new attack 
surfaces at the virtualization, orchestration, and control layers. Threats such as cross-slice interference, hypervisor 
compromise, and orchestration manipulation demonstrate how shared infrastructure can become a vector for multi-
slice exploitation. AI-driven mitigation techniques, including machine learning, deep learning, and reinforcement 
learning, have emerged as effective tools for dynamic intrusion detection and real-time threat response. By integrating 
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these models within SDN/NFV orchestrated environments, operators can achieve automated monitoring, adaptive 
anomaly detection, and context-aware countermeasures. Hybrid AI frameworks combining supervised and 
unsupervised techniques further enhance the detection of complex and evolving attacks while maintaining efficiency 
under variable network loads. The findings also emphasize the importance of explainable AI in improving model 
transparency, trust, and regulatory compliance. Ultimately, the synergy between intelligent analytics and secure 
network design fosters a resilient 5G infrastructure capable of self-healing and autonomous defense, setting the 
foundation for secure, scalable, and sustainable evolution toward 6G-ready architectures. 

6.2. Recommendations for Future Research and Industry Practice 

Future research and industry initiatives must prioritize the design of standardized, interoperable, and scalable AI-
driven security architectures for 5G and beyond. Policy frameworks should mandate cross-vendor interoperability 
standards that define secure interfaces between slice orchestrators, SDN controllers, and AI-based detection systems. 
Technical advancements should focus on lightweight, federated, and edge-based AI models capable of localized learning 
and real-time threat mitigation without compromising latency-sensitive applications such as URLLC. The adoption of 
explainable AI should become a regulatory and operational requirement, ensuring that automated decisions in critical 
network slices remain auditable and accountable. Industry collaborations between telecom operators, AI researchers, 
and regulatory bodies should drive the creation of shared benchmark datasets to improve model robustness and 
reproducibility across heterogeneous environments. Architecturally, operators should adopt modular, microservice-
based AI intrusion detection systems embedded directly into orchestration workflows, enabling closed-loop feedback 
for adaptive slice security management. Further investment in privacy-preserving analytics, such as federated and 
differential learning, will be crucial for protecting user data while enhancing distributed threat intelligence. Collectively, 
these recommendations support a holistic approach that aligns AI innovation with governance, ensuring that 5G 
networks evolve as secure, transparent, and resilient ecosystems capable of supporting the intelligence-driven fabric of 
next-generation telecommunications. 
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