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Abstract 

The increasing complexity and data throughput of optical fiber communication systems have made them critical yet 
vulnerable components of modern digital infrastructure. With the rapid growth of high-speed networks, ensuring 
cybersecurity in these systems requires intelligent, adaptive, and real-time mitigation strategies. This review examines 
the application of machine learning (ML)-enabled anomaly detection models for identifying and mitigating cyberattacks 
in optical fiber communication environments. It highlights how supervised, unsupervised, and reinforcement learning 
algorithms—such as Support Vector Machines (SVM), Random Forests, Deep Neural Networks (DNN), and 
Autoencoders—enable real-time detection of network anomalies, signal disruptions, and malicious intrusions. 
Furthermore, the paper explores the integration of hybrid ML frameworks combining statistical signal processing with 
deep learning for enhanced detection accuracy and low false alarm rates. Special emphasis is placed on the challenges 
of model interpretability, scalability, and latency in large-scale fiber networks, alongside the role of edge computing and 
federated learning in decentralized security monitoring. The study also evaluates emerging trends such as graph-based 
anomaly detection, explainable AI (XAI), and transfer learning approaches for resilient optical network protection. By 
synthesizing current methodologies, datasets, and performance metrics, this review provides a comprehensive 
perspective on the state-of-the-art in ML-driven anomaly detection and outlines research directions for achieving 
secure, autonomous, and self-healing optical communication systems. 

Keywords: Machine Learning; Anomaly Detection; Cyberattack Mitigation; Optical Fiber Communication; Real-Time 
Security. 

1. Introduction

1.1. Background and Motivation 

Optical fiber communication systems form the backbone of modern digital infrastructure, offering unparalleled 
bandwidth, low latency, and high reliability. However, their increasing integration with software-defined networking 
(SDN) and Internet of Things (IoT) components has exposed them to sophisticated cyber threats capable of disrupting 
large-scale data transmission (Prakash, & Kasthuri, 2024). The emergence of machine learning (ML)-enabled anomaly 
detection has revolutionized how network vulnerabilities are identified and mitigated in real time. Advanced 
architectures such as convolutional autoencoders and hybrid recurrent models allow optical systems to detect 
deviations in light intensity patterns, polarization shifts, and transmission anomalies long before service disruption 
occurs (Brian, & Alexander, 2023). These models not only enhance the accuracy of anomaly detection but also reduce 
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false alarm rates critical for ensuring continuity in latency-sensitive applications such as financial transactions, 
telemedicine, and military communications. 

The motivation for this review arises from the growing convergence of AI-driven security and fiber-optic infrastructure 
management. Research has demonstrated that applying machine learning frameworks for anomaly detection in optical 
networks significantly improves early threat mitigation by learning from traffic patterns and environmental noise 
fluctuations (Amebleh & Igba, 2024). Moreover, with increasing cyberattack sophistication including distributed denial-
of-service (DDoS) and side-channel attacks quantum-resistant cryptographic protocols and predictive analytics 
frameworks have become essential (Idika, 2023). The integration of explainable AI and real-time data analytics ensures 
not only rapid detection but also actionable interpretability, creating resilient and adaptive optical network 
environments capable of sustaining secure global communications. 

1.2. Importance of Cybersecurity in Optical Fiber Communication Systems 

Cybersecurity in optical fiber communication systems is fundamental to preserving data confidentiality, availability, 
and integrity across critical infrastructures. Given their extensive use in financial institutions, healthcare networks, and 
government operations, any breach in fiber communication can lead to catastrophic service disruptions and national 
security risks (Singh, et al., 2025). With transmission capacities reaching terabits per second, optical systems are 
susceptible to sophisticated attacks such as eavesdropping, physical tapping, jamming, and signal injection, which 
exploit vulnerabilities in optical amplifiers and wavelength-division multiplexing (WDM) components. Advanced AI-
based security mechanisms now enable the real-time classification of intrusions by analyzing optical power variations, 
phase shifts, and anomalous signal noise distributions (Kumar, & Altalbe, 2024). These approaches ensure proactive 
threat mitigation while maintaining low-latency communication for cloud data centers and high-frequency trading 
platforms where even millisecond delays can cause significant losses. 

The integration of intelligent cybersecurity frameworks in optical networks has evolved from static rule-based systems 
to dynamic, self-adaptive architectures capable of contextual learning and decision-making (James, et al, 2023). Deep 
reinforcement learning models, for example, enable proactive response strategies that adjust to evolving attack patterns 
by continuously refining their defensive policies through feedback loops. Moreover, AI-enhanced encryption and key 
distribution mechanisms, such as quantum-resistant cryptography and adaptive secure modulation schemes, further 
strengthen resilience against both classical and quantum-level threats (Oyekan, et al, 2023). The growing convergence 
of these intelligent systems highlights the vital role of cybersecurity in safeguarding the reliability, scalability, and 
operational continuity of modern optical fiber communication infrastructures. 

1.3. Research Scope and Objectives 

This review focuses on evaluating the integration of machine learning (ML) models in enhancing real-time anomaly 
detection for mitigating cyberattacks in optical fiber communication systems. The scope encompasses supervised, 
unsupervised, and deep learning techniques applied to detect, classify, and respond to network anomalies that threaten 
optical data integrity. It investigates how data-driven models, including convolutional neural networks (CNNs), 
autoencoders, and reinforcement learning algorithms, improve detection precision, adaptability, and scalability within 
dense optical transport networks. Furthermore, the review covers hybrid and federated learning frameworks designed 
to enable decentralized intrusion monitoring and real-time defense orchestration across geographically distributed 
fiber infrastructure. 

The primary objective is to synthesize current methodologies, benchmark their performance in intrusion detection and 
response latency, and identify the technological gaps limiting full automation in optical network security. This study 
aims to (1) examine the evolution of ML-driven cybersecurity tools tailored for optical systems, (2) assess their efficacy 
in detecting both known and zero-day attacks, and (3) propose a future roadmap integrating explainable AI and 
predictive analytics for autonomous network defense. By consolidating existing advancements and challenges, the 
review aspires to guide the development of next-generation secure, adaptive, and self-healing optical communication 
environments. 

1.4. Structure of the Paper 

The structure of this paper is organized to provide a logical and systematic review of the role of machine learning-
enabled anomaly detection models in enhancing cybersecurity within optical fiber communication systems. Section 1 
introduces the study, outlining its background, motivation, and objectives. Section 2 presents an overview of optical 
fiber communication systems and the evolving cybersecurity landscape, identifying key vulnerabilities and risk factors. 
Section 3 discusses various machine learning models, including supervised, unsupervised, and deep learning 
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approaches, highlighting their application in anomaly detection. Section 4 focuses on model implementation and 
performance evaluation, detailing datasets, metrics, and benchmarking frameworks. Section 5 explores emerging 
trends, including the use of edge computing, explainable AI, and federated learning for scalable and interpretable 
security solutions. Finally, Section 6 concludes the review by summarizing key insights and proposing future research 
directions for developing autonomous, intelligent, and resilient optical communication networks capable of mitigating 
cyber threats in real time. 

2. Optical fiber communication systems and cybersecurity landscape 

2.1. Architecture and Components of Optical Fiber Networks 

Optical fiber networks form the core of global high-speed communication systems, providing scalable and low-latency 
data transmission capabilities that underpin the modern digital economy. These networks typically consist of three 
main architectural layers: the core, metro, and access networks, each designed to optimize data routing and 
transmission efficiency as shown in Figure 1 (Zhang, et al., 2021). Core networks employ Dense Wavelength Division 
Multiplexing (DWDM) and Optical Transport Network (OTN) protocols to aggregate high-capacity traffic, while metro 
networks bridge regional nodes through dynamic bandwidth allocation. The access layer, incorporating Passive Optical 
Networks (PONs) and Fiber-to-the-Home (FTTH) systems, ensures end-user connectivity with minimal signal loss. The 
fundamental components—transmitters, receivers, amplifiers, multiplexers, and optical switches—work in concert to 
achieve terabit-per-second throughput. Modern architectures increasingly integrate software-defined optical 
networking (SDON), allowing for adaptive control and resource optimization through centralized network intelligence 
(Sejan, et al, 2022). 

The evolution of intelligent optical systems has been accelerated by artificial intelligence and machine learning 
applications, which facilitate fault prediction, energy-efficient routing, and anomaly detection. AI-driven modulation 
optimization and power balancing enhance signal-to-noise ratios and minimize nonlinear distortions that typically 
degrade performance (Amebleh & Omachi, 2023). Moreover, the adoption of hybrid optical-electrical control planes 
enables real-time reconfiguration in response to network congestion or cyber threats. These adaptive frameworks not 
only improve resilience but also enhance operational efficiency by enabling self-optimization and self-healing 
capabilities. As optical networks expand to support data-intensive services like cloud computing and 5G backhaul, 
intelligent architectural designs that combine flexibility, scalability, and security have become indispensable for 
ensuring the reliability of next-generation communication infrastructures (Fagbohungbe, et al., 2025). 

 

Figure 1 A picture Showing Structural Composition of a Fiber Optic Cable in Optical Network Architecture (Blog, 2024). 
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Figure 1 shows the main components of a fiber optic cable: the glass core, glass cladding, glass buffer, and outer jacket. 
The glass core carries light signals, while the cladding ensures total internal reflection for efficient transmission. The 
buffer layer protects the fiber from stress and microbending, and the outer jacket shields it from moisture and damage. 
These components form the foundation of optical network architecture, ensuring high-speed, low-loss, and reliable data 
transfer across core, metro, and access layers. Their precision enables advanced technologies like DWDM and SDON to 
support intelligent, scalable, and resilient communication systems. 

2.2. Common Cyber Threats and Vulnerabilities in Optical Communication 

Optical communication systems, though inherently secure due to light-based transmission, face an increasing array of 
cyber threats as they become more software-defined and interconnected. Common attack vectors include 
eavesdropping, jamming, denial-of-service (DoS), and physical layer tapping, which exploit vulnerabilities in optical 
amplifiers, transceivers, and control-plane protocols (Pedro, et al, 2022). Eavesdropping attacks typically occur when 
adversaries intercept light signals through microbending or evanescent coupling, leading to unauthorized data 
extraction without significant signal degradation. Similarly, jamming attacks disrupt communication by injecting high-
intensity optical signals that overwhelm legitimate data channels, degrading signal-to-noise ratios and causing service 
outages. The transition toward Software-Defined Optical Networks (SDONs) has further expanded the attack surface, 
exposing control layers to malware and configuration manipulation, particularly in multi-domain infrastructures. 

Machine learning-based intrusion detection frameworks are increasingly employed to counteract these vulnerabilities, 
providing adaptive anomaly recognition and mitigation capabilities. Recent studies have demonstrated how hybrid 
deep neural architectures can classify real-time signal distortions linked to cyber intrusions with higher precision than 
traditional threshold-based methods (Oyekan, et al, 2024). Additionally, optical-layer threat intelligence systems 
leverage predictive analytics to forecast jamming attempts and unauthorized spectrum access, thereby enhancing 
network resilience (Idika & Salami, 2024). However, the complexity of optical-layer attacks, coupled with the challenge 
of differentiating between environmental noise and intentional disruptions, necessitates continuous innovation in 
adaptive defense algorithms as presented in Table 1. The integration of intelligent monitoring tools within control and 
data planes remains critical to mitigating these evolving threats in high-capacity optical communication environments. 

Table 1 Summary of Common Cyber Threats and Vulnerabilities in Optical Communication 

Type of Threat Attack Mechanism 
Impact on Optical 
Network 

Mitigation / Defense 
Strategy 

Eavesdropping 

Interception of light signals 
via microbending or 
evanescent coupling to 
extract data without 
noticeable signal loss. 

Breach of data 
confidentiality; 
unauthorized access to 
sensitive transmitted 
information. 

Use of advanced encryption, 
optical-layer monitoring, and 
secure channel modulation. 

Jamming Attack 
Injection of high-intensity 
optical signals to overwhelm 
legitimate channels. 

Signal degradation, reduced 
signal-to-noise ratio (SNR), 
and potential service 
outage. 

Machine-learning-based 
detection of abnormal optical 
power patterns and adaptive 
wavelength rerouting. 

Denial-of-Service 
(DoS) 

Saturation of optical control 
or data planes through 
excessive requests or 
malicious traffic bursts. 

Network congestion, 
latency spikes, and 
temporary loss of service 
availability. 

AI-driven traffic filtering and 
predictive anomaly detection 
models for early mitigation. 

Physical Layer 
Tapping & Malware 
Injection in SDON 

Unauthorized physical access 
or exploitation of software-
defined controllers to alter 
configurations. 

Data manipulation, 
configuration corruption, 
and expanded attack 
surface in multi-domain 
systems. 

Integration of intelligent 
monitoring tools, control-
plane authentication, and 
predictive analytics 
frameworks. 

 

2.3. Security Requirements and Risk Assessment Frameworks 

Ensuring robust security in optical fiber communication systems requires a multidimensional approach encompassing 
confidentiality, integrity, availability, and authenticity (Maqousi, & Basu, 2025). Unlike traditional IP networks, optical 
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systems operate at physical and photonic layers where attacks can compromise data transmission without triggering 
higher-level alarms. Therefore, risk assessment frameworks must integrate both physical-layer monitoring and 
software-defined control-layer analytics. The zero-trust model has emerged as a viable approach in modern optical 
infrastructures, requiring continuous verification and segmentation to prevent lateral movement of threats (Dong, et 
al., 2021). This model emphasizes continuous authentication of devices, optical amplifiers, and controllers through 
anomaly-based verification mechanisms that minimize the likelihood of insider and advanced persistent threats. 
Systematic risk analysis methods, such as failure mode and effect analysis (FMEA) combined with probabilistic risk 
assessment (PRA), are also employed to evaluate vulnerabilities and their potential network-wide impacts. 

Recent frameworks have incorporated artificial intelligence to enhance the predictive accuracy of risk modeling and 
automate incident response. For example, Bayesian inference models integrated with adversarial learning have been 
used to predict optical signal corruption and routing-based intrusions before service degradation occurs (Ijiga, et al, 
2024). Similarly, cyber risk quantification methods developed for adaptive wavelength-routed networks now leverage 
reinforcement learning to dynamically estimate attack probabilities and allocate mitigation resources in real time. 
These AI-driven methodologies ensure a proactive security posture, reducing detection latency and false positives while 
maintaining operational efficiency. Collectively, such hybrid approaches advance optical network protection by aligning 
real-time threat intelligence with compliance-driven cybersecurity governance, forming the foundation of resilient and 
trustworthy optical communication ecosystems (James, 2022). 

3. Machine learning models for anomaly detection 

3.1. Supervised learning techniques (svm, random forest, decision trees) 

Supervised learning techniques form the cornerstone of machine learning-driven anomaly detection in optical 
communication systems. Algorithms such as Support Vector Machines (SVM), Decision Trees (DT), and Random Forests 
(RF) have demonstrated exceptional efficiency in detecting and classifying cyber threats based on labeled datasets 
derived from optical signal patterns and network telemetry (Dixit, et al, 2021). SVMs are particularly effective for high-
dimensional feature spaces, enabling precise boundary separation between normal and anomalous optical behaviors 
through kernel optimization. In contrast, Decision Trees provide interpretability and transparency, allowing security 
analysts to trace decision paths for specific anomalies such as signal jamming or packet injection. Ensemble-based 
methods like Random Forests improve robustness by combining multiple tree outputs, reducing overfitting while 
maintaining high detection accuracy across fluctuating optical noise environments as shown in Figure 2 (Brian, & 
Alexander, 2023). These algorithms are integral to systems where minimal latency and maximum classification 
precision are paramount for real-time cyberattack mitigation. 

Recent research highlights that integrating adaptive supervised learning frameworks enhances the scalability and 
responsiveness of optical anomaly detection systems. For instance, reinforcement-assisted Decision Tree hybrids have 
been used to dynamically adjust classification thresholds in response to evolving attack patterns (Amebleh & Omachi, 
2022). Similarly, multi-layer Random Forest models embedded with temporal feature selection modules have improved 
detection accuracy in Wavelength Division Multiplexing (WDM) networks where signal distortion and polarization 
mode dispersion introduce non-linear data variability. These advanced models are further optimized using real-time 
feedback mechanisms that continuously update training datasets, enabling adaptive learning without compromising 
inference speed. Consequently, supervised learning techniques continue to be foundational in developing intelligent, 
high-performance security frameworks for next-generation optical communication infrastructures (Ijiga, et al, 2025). 
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Figure 2 A Block Diagram Showing Supervised Learning Framework for Optical Network Anomaly Detection. 

Figure 2 illustrates how supervised learning algorithms—Support Vector Machines (SVM), Decision Trees (DT), and 
Random Forests (RF)—contribute to intelligent anomaly detection in optical communication systems. The central node 
represents supervised learning as the foundation for identifying cyber threats using labeled datasets derived from 
optical signal telemetry. The SVM branch emphasizes optimal boundary separation between normal and anomalous 
behaviors in high-dimensional data spaces, while the Decision Tree branch highlights interpretable rule-based 
classification for tracing specific attacks such as jamming or packet injection. The Random Forest branch demonstrates 
how ensemble learning enhances robustness and accuracy by aggregating multiple tree decisions. These algorithms 
collectively feed into an adaptive anomaly detection system that dynamically updates models, supports real-time 
analysis, and mitigates evolving threats within Wavelength Division Multiplexing (WDM) and Software-Defined Optical 
Network (SDON) infrastructures, ensuring high reliability and minimal latency in cybersecurity operations. 

3.2. Unsupervised and Semi-Supervised Learning Models (K-Means, Autoencoders, Isolation Forest) 

Unsupervised and semi-supervised learning models have become indispensable in identifying anomalies within optical 
communication systems, particularly when labeled datasets are scarce or incomplete. Techniques such as K-Means 
clustering, Autoencoders, and Isolation Forests enable systems to discover latent structures and detect irregular 
behaviors without explicit supervision (Prakash, & Kasthuri, 2024). K-Means partitions multidimensional optical 
telemetry data—such as signal strength variations, phase noise, and bit error rates—into clusters, allowing deviations 
from normal operational patterns to be detected as outliers. This clustering capability is especially beneficial in multi-
channel Wavelength Division Multiplexing (WDM) networks, where distinguishing between benign fluctuations and 
malicious distortions is complex. Autoencoders, on the other hand, learn compact latent representations of network 
states, reconstructing inputs and flagging deviations with high reconstruction error as anomalies. Their deep 
architectures enable nuanced feature extraction from raw optical data streams, improving accuracy in detecting low-
intensity intrusions that evade traditional monitoring systems (Oyekan, et al, 2025). 

Semi-supervised approaches extend these models by leveraging limited labeled samples to refine anomaly classification 
boundaries. Isolation Forests, which rely on recursive partitioning of feature spaces, are particularly effective for 
detecting rare cyber events, such as covert channel exploitation or power-level manipulation in optical amplifiers 
(Amebleh & Okoh, 2023). The hybridization of K-Means and Isolation Forests facilitates both clustering-based pre-
screening and probabilistic isolation of anomalous points, optimizing detection precision while reducing false positives. 
In optical transport networks, where real-time security monitoring is critical, these hybrid unsupervised models 
outperform signature-based systems by adapting to evolving attack vectors and data drift as presented in Table 2. 
Furthermore, combining autoencoders with dynamic threshold tuning enables continuous learning from operational 
feedback, ensuring adaptive resilience against novel intrusion patterns. Collectively, these unsupervised and semi-
supervised models establish the foundation for autonomous anomaly detection frameworks that safeguard high-
capacity optical communication infrastructures with minimal human intervention (Gayawan, & Fagbohungbe, 2023). 
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Table 2 Summary of Unsupervised and Semi-Supervised Learning Models (K-Means, Autoencoders, Isolation Forest). 

Model / Technique Core Functionality 
Application in Optical 
Communication Systems 

Advantages / Key 
Outcomes 

K-Means Clustering 

Groups data into clusters based 
on similarity, identifying 
outliers that deviate from 
cluster centroids. 

Used to detect abnormal 
variations in optical telemetry 
data such as power levels, 
phase noise, and bit error rates 
in WDM networks. 

Simplifies anomaly 
visualization, detects 
subtle deviations, and 
efficiently handles large-
scale optical datasets. 

Autoencoders 

Employ neural networks to 
learn compressed latent 
representations and 
reconstruct input data, flagging 
high reconstruction errors as 
anomalies. 

Capture hidden optical signal 
behaviors and detect low-
intensity intrusions that evade 
threshold-based methods. 

Enhance detection 
sensitivity, extract 
complex patterns, and 
support continuous 
learning from raw data 
streams. 

Isolation Forest 

Utilizes recursive partitioning 
to isolate anomalous data 
points based on path length 
within decision trees. 

Identifies rare cyber incidents 
such as covert wavelength 
manipulation and power-level 
tampering in amplifiers. 

Effective for sparse 
anomalies, reduces false 
positives, and adapts to 
data drift in real-time 
environments. 

Hybrid Models (K-
Means + Isolation 
Forest + 
Autoencoders) 

Combines clustering, 
reconstruction, and 
probabilistic isolation for 
multi-level detection. 

Provides pre-screening, 
refined classification, and 
adaptive learning in optical 
transport networks. 

Improves accuracy, 
resilience, and real-time 
anomaly detection with 
minimal human oversight. 

 

3.3. Deep Learning and Reinforcement Learning Approaches for Real-Time Detection 

Deep learning and reinforcement learning techniques have transformed real-time anomaly detection in optical fiber 
communication systems by introducing adaptive intelligence and contextual awareness into cybersecurity frameworks. 
Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks, for instance, have proven 
highly effective in modeling the temporal and spectral dependencies inherent in optical signal transmission (Behera, et 
al, 2023). CNNs excel in feature extraction from raw optical intensity and wavelength datasets, while LSTMs capture 
time-based correlations that indicate progressive intrusion behaviors such as packet injection or power modulation 
anomalies. Hybrid CNN-LSTM fusion models offer superior performance by combining spatial feature encoding with 
temporal prediction, enabling early identification of complex multi-stage attacks within milliseconds (James, et al, 
2025). Deep learning approaches also enhance false alarm discrimination by learning nonlinear mappings between 
signal distortions and network state transitions, improving detection precision in highly dynamic communication 
environments. 

Reinforcement learning extends this capability by introducing autonomous decision-making mechanisms for real-time 
mitigation. Deep Q-Networks (DQNs) and Actor–Critic models, for example, dynamically adapt intrusion response 
strategies based on reward optimization and environmental feedback (Hwang, et al., 2020). These algorithms learn 
optimal countermeasures—such as channel reassignment, wavelength rerouting, or power attenuation—to restore 
service integrity during cyber incidents. Furthermore, reinforcement learning-based intrusion response systems 
support the concept of self-healing networks, where intelligent agents continuously reconfigure optical paths in 
response to detected threats (Idika & James, 2024). The integration of deep and reinforcement learning not only reduces 
latency in anomaly recognition but also enables proactive defense mechanisms capable of adapting to unknown or 
evolving attack vectors. As optical networks scale toward autonomous operation, these AI-driven architectures provide 
a resilient and intelligent framework for safeguarding global communication infrastructures against real-time cyber 
threats. 
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4. Model implementation and performance evaluation 

4.1. Dataset Characteristics and Preprocessing for Optical Network Security 

The reliability of machine learning-enabled optical network security models depends heavily on the quality, diversity, 
and representativeness of datasets used during training and evaluation. Optical network datasets often consist of traffic 
flow records, signal transmission logs, and physical-layer parameters such as optical power, bit error rate (BER), 
chromatic dispersion, and phase noise. However, due to the complexity of optical environments, datasets are typically 
high-dimensional, imbalanced, and non-stationary, making preprocessing a critical step before model training 
(Moustafa, 2021). Data normalization techniques such as Z-score scaling and min–max normalization are commonly 
applied to reduce variance caused by disparate signal magnitudes, ensuring that learning algorithms effectively capture 
relevant anomalies without overfitting to noise. Furthermore, synthetic data generation using Generative Adversarial 
Networks (GANs) and signal augmentation techniques helps compensate for insufficient attack samples, particularly for 
rare intrusion types like coherent channel hijacking or wavelength spoofing (Khan, et al., 2022). 

Recent advancements emphasize preprocessing frameworks specifically designed for the physical-layer characteristics 
of optical systems. For instance, signal filtering and denoising algorithms—such as Savitzky–Golay smoothing and Fast 
Fourier Transform (FFT)-based noise reduction—are integrated into data pipelines to enhance the clarity of optical 
intensity and polarization signatures before feature extraction (Ijiga, et al, 2024). Feature selection and dimensionality 
reduction methods, including Principal Component Analysis (PCA) and Recursive Feature Elimination (RFE), have also 
been instrumental in improving computational efficiency while retaining discriminative signal attributes (Adedayo, et 
al, 2025). Moreover, handling data imbalance through techniques like Synthetic Minority Oversampling Technique 
(SMOTE) ensures equitable representation of normal and anomalous classes during supervised learning. These 
preprocessing strategies are vital for building resilient models that generalize across diverse network conditions and 
can maintain high detection accuracy under fluctuating optical transmission scenarios. By optimizing dataset 
preparation, machine learning frameworks can more accurately model the dynamic and nonlinear characteristics of 
real-world optical communication environments (Idika et al, 2023). 

Table 3 Summary of Dataset Characteristics and Preprocessing for Optical Network Security 

Aspect Description 
Techniques / Methods 
Used 

Outcome / Significance 

Dataset 
Composition 

Optical network datasets 
include traffic flow logs, optical 
signal power, BER, phase noise, 
and chromatic dispersion 
parameters. 

Data collected from core, 
metro, and access layers 
across multiple network 
nodes. 

Provides a diverse, high-
dimensional basis for model 
training and anomaly 
detection. 

Challenges in Data 
Quality 

Datasets are often high-
dimensional, imbalanced, and 
non-stationary due to variable 
transmission conditions and 
rare intrusion events. 

Data balancing using 
SMOTE; synthetic data 
generation via GANs for 
rare attack classes. 

Reduces bias, enhances 
detection of low-frequency 
cyber threats, and supports 
robust model learning. 

Preprocessing 
Techniques 

Applied to clean, normalize, 
and denoise raw optical data to 
improve signal integrity and 
learning stability. 

Z-score and min–max 
normalization; Savitzky–
Golay filtering; FFT-based 
noise reduction. 

Ensures consistent data 
scaling, minimizes optical 
noise interference, and 
enhances feature clarity. 

Feature Selection 
and Dimensionality 
Reduction 

Focuses on selecting relevant 
optical signal features and 
reducing redundancy in 
datasets. 

Principal Component 
Analysis (PCA), Recursive 
Feature Elimination 
(RFE). 

Improves computational 
efficiency, model 
interpretability, and detection 
accuracy in real-time anomaly 
detection. 

4.2. Evaluation Metrics (Accuracy, Precision, Recall, F1-Score, ROC) 

Evaluating the performance of machine learning models for anomaly detection in optical network security requires a 
rigorous, multidimensional framework. The most widely used evaluation metrics—Accuracy, Precision, Recall, F1-
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Score, and Receiver Operating Characteristic (ROC)—quantify different aspects of predictive reliability. Accuracy 
measures the overall correctness of classification but can be misleading in highly imbalanced datasets typical of optical 
intrusion detection scenarios, where attack instances are rare compared to normal traffic as shown in Figure 3 (Imtiaz, 
et al, 2025). Precision, defined as the ratio of true positives to the sum of true and false positives, is particularly critical 
for assessing how well models minimize false alarms, which can otherwise disrupt legitimate optical channel 
reconfigurations. Recall, the proportion of correctly identified attacks among all actual intrusions, reflects the model’s 
sensitivity and is essential for ensuring early detection of cyber threats such as jamming or wavelength spoofing. The 
F1-Score provides a harmonic balance between Precision and Recall, making it especially useful when prioritizing trade-
offs between false negatives and false positives in real-time detection systems. 

 

Figure 3 A Block Diagram Showing Comprehensive Evaluation Metrics Framework for Machine Learning-Based 
Optical Network Security. 

Recent research has emphasized the importance of composite and dynamic evaluation frameworks for optical networks. 
For example, the ROC curve, which plots the True Positive Rate (TPR) against the False Positive Rate (FPR), offers a 
visual understanding of classifier discrimination performance across varying thresholds (Amebleh, et al, 2021). 
Advanced models now incorporate Area Under the ROC Curve (AUC) as a standard measure of overall detection 
robustness. Additionally, weighted F1-scores and macro-averaged metrics are applied to evaluate models across 
multiple classes of attacks, improving interpretability in multi-modal anomaly detection systems. To enhance reliability, 



World Journal of Advanced Engineering Technology and Sciences, 2025, 17(02), 001–017 

10 

precision-oriented metrics such as Cohen’s Kappa and Matthews Correlation Coefficient (MCC) are increasingly 
integrated into evaluation protocols for optical systems with complex noise environments (Okereke, et al, 2025). These 
multi-criteria evaluation frameworks ensure that ML-driven anomaly detection models not only achieve statistical 
accuracy but also maintain operational reliability under dynamic and high-throughput optical network conditions. 

Figure 3 illustrates the core evaluation metrics used to measure the effectiveness of machine learning models in 
detecting anomalies within optical network security systems. At the center is Model Performance Evaluation, branching 
into five key metrics Accuracy, Precision, Recall, F1-Score, and ROC/AUC Curve each capturing a different aspect of 
model reliability. Accuracy, calculated as (TP + TN) / (TP + TN + FP + FN), measures the proportion of correct predictions 
among all classifications, where TP (True Positives) and TN (True Negatives) represent correctly identified instances, 
while FP (False Positives) and FN (False Negatives) indicate errors. Precision evaluates how well the model minimizes 
false alarms, while Recall measures the system’s ability to detect actual cyberattacks. The F1-Score harmonizes 
Precision and Recall to balance false positives and negatives, ensuring fairness in performance assessment. Finally, the 
ROC/AUC Curve visualizes the relationship between true and false positive rates across thresholds, highlighting the 
model’s discrimination power. Collectively, these metrics provide a comprehensive framework for evaluating detection 
accuracy, sensitivity, and robustness in optical communication cybersecurity applications. 

4.3. Benchmarking and Comparative Analysis of ML Algorithms 

Benchmarking machine learning (ML) algorithms for optical network security involves systematically comparing 
models based on accuracy, computational efficiency, adaptability, and robustness against diverse attack scenarios. 
Traditional models such as Support Vector Machines (SVM), Random Forests (RF), and Decision Trees (DT) remain 
foundational benchmarks due to their interpretability and low computational cost, yet they often underperform in 
detecting complex temporal anomalies inherent in high-speed optical transmission (Arshad, et al, 2022). Deep learning 
architectures—such as Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks—
outperform classical algorithms by capturing spatial and temporal dependencies in optical signal streams, enabling the 
detection of subtle cyber intrusions like wavelength drift manipulation or power fluctuation attacks. Furthermore, 
ensemble methods combining multiple algorithms, such as Random Forest with Gradient Boosting, have achieved 
improved detection precision, particularly in multi-modal optical datasets with high noise variance (Idika, et al, 2024). 
The benchmarking process frequently relies on cross-validation techniques and standardized datasets to ensure fair 
model comparison, emphasizing scalability and generalization across real-world optical environments. 

Recent studies have highlighted the growing importance of hybrid deep learning models and adaptive learning 
frameworks in achieving superior performance across varying optical network conditions. CNN-LSTM hybrids, for 
instance, have demonstrated a significant reduction in false alarm rates while maintaining high recall values for real-
time anomaly detection (Ijiga, et al, 2024). Similarly, comparative evaluations indicate that unsupervised models, such 
as Autoencoders and Isolation Forests, offer complementary benefits by identifying zero-day attacks that supervised 
models fail to capture. Benchmarking also extends beyond static performance metrics to include energy consumption, 
latency tolerance, and adaptability under fluctuating optical load conditions (Amebleh & Onoja, 2025). This 
comprehensive comparative analysis reveals that no single algorithm dominates all performance dimensions; rather, 
integrating heterogeneous ML models through hybrid and ensemble learning provides the most reliable and scalable 
defense architecture for real-time cybersecurity in optical communication systems. 

5. Emerging trends and challenges in ml-driven anomaly detection 

5.1. Integration of Edge Computing and Federated Learning for Distributed Security 

The integration of edge computing and federated learning (FL) has revolutionized the design of secure and distributed 
architectures in optical fiber communication systems. Edge computing enables data processing close to the network 
source, reducing latency and minimizing the need to transmit sensitive data to centralized servers—a critical advantage 
for real-time anomaly detection in optical infrastructures (Li, et al, 2020). Federated learning complements this by 
allowing multiple edge nodes to collaboratively train shared machine learning models without directly exchanging raw 
data, thus preserving data privacy and reducing vulnerability to interception. In optical networks, this decentralized 
intelligence enables intrusion detection models to learn from geographically distributed data centers while maintaining 
compliance with privacy and bandwidth constraints (Ijiga, et al, 2024). For example, in dense wavelength division 
multiplexing (DWDM) systems, local edge devices can independently detect anomalies in channel intensity or 
polarization variations and synchronize updates to a global model through federated aggregation protocols. 
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Recent studies emphasize that combining edge intelligence with federated learning significantly enhances both 
scalability and resilience in cybersecurity frameworks for optical transport networks. Hybrid edge–federated 
architectures can dynamically adapt to traffic fluctuations, identifying distributed denial-of-service (DDoS) and 
wavelength jamming attacks with minimal communication overhead (Amebleh, et al, 2025). Moreover, edge-assisted 
learning models employ gradient compression and differential privacy mechanisms to safeguard sensitive optical 
telemetry data during model synchronization. This ensures that global model convergence occurs efficiently even under 
constrained bandwidth environments. Reinforcement-based scheduling techniques are also used to optimize 
computational load distribution among edge nodes, enhancing fault tolerance and reducing detection latency (James, et 
al, 2024). By integrating edge computing with federated learning, optical communication systems can achieve real-time, 
privacy-preserving, and distributed anomaly detection—paving the way for autonomous, intelligent, and self-healing 
network defense architectures. 

5.2. Explainable Artificial Intelligence (XAI) and Model Interpretability 

The increasing reliance on deep learning and complex ensemble models in optical communication security has elevated 
the demand for Explainable Artificial Intelligence (XAI) to ensure transparency, accountability, and trust in automated 
decision systems. Traditional machine learning algorithms, though highly accurate, often operate as “black boxes,” 
offering limited insight into how specific predictions or anomaly classifications are derived. XAI addresses this 
limitation by providing interpretable representations of model reasoning processes, enabling network administrators 
to understand the underlying causes of detected threats as shown in Figure 4(Mankodiya, et al, 2021). In optical fiber 
networks, where decisions directly affect signal integrity and data routing, model interpretability becomes critical for 
diagnosing misclassifications and false positives. Techniques such as Local Interpretable Model-Agnostic Explanations 
(LIME) and SHapley Additive exPlanations (SHAP) are increasingly applied to visualize feature importance across 
optical telemetry parameters, such as wavelength deviation, phase modulation, and power variation (Mehra, 2020). 
These tools allow engineers to validate whether model outputs correspond to real optical behaviors or spurious signal 
noise, strengthening operational confidence in automated security frameworks. 

Recent advancements in XAI research within optical communication emphasize the development of interpretable deep 
learning architectures that integrate visual and symbolic reasoning components. Hybrid models combining 
convolutional layers with attention mechanisms enable contextual interpretation of temporal signal patterns and 
anomaly features (Abiola, et al, 2025). Additionally, interpretable graph neural networks (GNNs) have been deployed 
to model the topological dependencies between optical nodes, allowing clear visualization of attack propagation 
pathways. Reinforcement-driven XAI frameworks further enhance decision transparency by correlating network 
responses with specific environmental conditions or adversarial inputs. By bridging the gap between predictive 
accuracy and human interpretability, XAI-driven cybersecurity solutions ensure that AI-based anomaly detection 
systems in optical networks remain not only precise but also auditable and trustworthy (Idika, et al, 2024). This 
paradigm shift toward transparent AI governance fosters sustainable human–machine collaboration for resilient optical 
communication infrastructures. 

 

Figure 4 A Picture Showing Intersection of Ethical and Explainable AI Principles in Optical Network Security (Hamida, 
et al., 2024). 

Figure 4 illustrates the intersection between ethical and explainable principles of Artificial Intelligence, emphasizing 
the foundational attributes necessary for trustworthy and transparent AI systems. In the context of optical 
communication network security, Explainable AI (XAI) integrates these principles to ensure that automated anomaly 
detection models are both technically interpretable and socially responsible. The ethical dimension encompasses 
inclusiveness, fairness, and accountability, ensuring that AI-driven security systems do not introduce bias or 
compromise user trust. Meanwhile, the explainable dimension emphasizes transparency, privacy, and security, vital for 
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understanding how deep learning algorithms classify threats or respond to anomalies in optical signals. At the center of 
this intersection lies reliability and safety, which are essential in preventing misclassifications that could disrupt optical 
data transmission or compromise network integrity. Thus, the diagram effectively captures the dual objective of XAI in 
optical cybersecurity: achieving model interpretability while maintaining ethical governance. 

5.3. Limitations, Scalability Issues, and Real-Time Adaptation Challenges 

Despite the rapid progress in machine learning (ML)-enabled optical network security, several limitations and 
scalability challenges persist in achieving fully autonomous and real-time cyber defense. One primary constraint is the 
high computational complexity of deep neural models, which require extensive processing power and memory—
difficult to sustain in distributed optical environments with limited edge resources (Furdek, et al, 2020). Additionally, 
latency-sensitive applications such as 5G backhaul and cloud interconnects demand sub-millisecond anomaly response 
times, a requirement often unmet by traditional centralized ML architectures. Scalability also becomes an issue as 
optical networks grow in node density and wavelength diversity, leading to exponential increases in data dimensionality 
and communication overhead (Bhide, et al., 2025). Moreover, the heterogeneity of network topologies and equipment 
vendors complicates the standardization of training data formats and model deployment protocols. In dynamic 
transmission conditions, optical impairments—such as polarization mode dispersion and nonlinear phase noise—
further distort telemetry signals, making real-time inference models prone to misclassification and reduced detection 
accuracy. 

Recent studies highlight that most adaptive ML frameworks lack the elasticity to handle rapidly evolving cyber threats 
and environmental drift without extensive retraining. Continuous retraining is resource-intensive, risking model 
degradation and overfitting when datasets are unbalanced or lack temporal variability. Furthermore, federated and 
distributed learning architectures introduce synchronization delays during parameter aggregation, hindering real-time 
adaptability across multi-domain optical infrastructures (Igwe, et al, 2025). Data privacy regulations further constrain 
the sharing of optical telemetry, limiting the development of globally synchronized threat intelligence models. To 
mitigate these challenges, emerging research advocates lightweight neural architectures, model compression 
techniques, and edge-based retraining strategies to balance computational cost with detection responsiveness as 
presented in Table 4. However, achieving scalability without compromising performance remains a complex problem, 
Highlighting the need for continuous innovation in distributed learning and adaptive control mechanisms for next-
generation optical cybersecurity systems (Fagbohungbe, et al., 2020). 

Table 4 Summary of Limitations, Scalability Issues, and Real-Time Adaptation Challenges 

Challenge 
Category 

Description 
Underlying Causes / 
Technical Constraints 

Proposed Solutions / 
Research Directions 

Computational 
Complexity and 
Resource Demand 

Deep neural networks 
require significant processing 
power and memory, which 
strain distributed and edge-
based optical environments. 

High model dimensionality, 
limited GPU/CPU resources at 
network edges, and 
continuous data streams from 
multiple optical nodes. 

Use lightweight neural 
architectures, model 
pruning, and compression to 
optimize inference speed and 
reduce hardware 
dependency. 

Latency and Real-
Time Adaptation 
Constraints 

Centralized ML models fail to 
deliver sub-millisecond 
responses required in 
latency-sensitive optical 
systems such as 5G and cloud 
backhaul. 

Centralized data processing, 
high communication 
overhead, and 
synchronization delays in 
federated learning setups. 

Deploy edge-based and 
distributed intelligence to 
support local, low-latency 
decision-making with 
adaptive retraining 
strategies. 

Scalability and 
Data 
Heterogeneity 

Increasing wavelength 
diversity and node density in 
optical networks lead to 
exponential data growth and 
integration issues. 

Non-standardized telemetry 
formats, multi-vendor 
equipment heterogeneity, and 
bandwidth saturation in large 
infrastructures. 

Develop standardized data 
protocols, hierarchical model 
training, and adaptive 
learning pipelines for large-
scale environments. 

Model 
Maintenance and 
Privacy 
Limitations 

Continuous retraining of ML 
models is costly and 
restricted by data-sharing 
regulations, reducing 

Resource-intensive 
retraining, unbalanced 
datasets, and privacy 

Implement federated 
learning with privacy-
preserving techniques and 
incremental model updates 
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adaptability to evolving 
threats. 

constraints on telemetry data 
exchange. 

to maintain resilience and 
compliance. 

 

6. Conclusion and future research directions 

6.1. Summary of Key Findings 

This study has demonstrated that integrating machine learning into optical fiber communication systems significantly 
enhances anomaly detection and cyberattack mitigation through adaptive, data-driven intelligence. Supervised learning 
algorithms, including Support Vector Machines and Random Forests, have proven effective for structured intrusion 
detection, while unsupervised models such as Autoencoders and Isolation Forests excel at uncovering zero-day attacks 
in complex, unlabeled datasets. Deep learning frameworks—particularly CNN-LSTM hybrids—enable spatiotemporal 
modeling of optical signal behaviors, achieving high precision in identifying subtle transmission anomalies like 
wavelength spoofing and optical jamming. Furthermore, reinforcement learning introduces autonomous decision-
making that dynamically adjusts mitigation responses based on real-time environmental feedback. Edge computing and 
federated learning architectures further optimize performance by decentralizing model training, reducing latency, and 
preserving data privacy. Explainable AI (XAI) enhances transparency by clarifying model decisions, thereby improving 
operator trust and system accountability. Collectively, these advancements establish that multi-model hybridization, 
combined with distributed intelligence, provides the most resilient and scalable defense architecture for modern optical 
communication systems. 

6.2. Research Gaps and Opportunities for Innovation 

Despite notable progress, critical research gaps persist in achieving seamless real-time adaptability and standardization 
of ML-enabled optical security frameworks. Current systems still face latency and synchronization constraints when 
scaling to multi-domain optical backbones, particularly under high-traffic conditions. There remains a lack of universal 
datasets that accurately represent cross-layer interactions between optical, physical, and control planes, hindering 
generalization of anomaly detection models. Additionally, the interpretability of deep neural architectures continues to 
pose a challenge; while XAI frameworks have improved visibility, they often struggle to contextualize non-linear optical 
impairments. Opportunities for innovation lie in developing lightweight, adaptive neural networks capable of 
incremental learning with minimal retraining overhead. Integrating quantum-safe cryptographic mechanisms and 
neuromorphic processors could enhance both security and energy efficiency. Moreover, cross-layer intelligence—
where optical, transport, and application layers collaborate dynamically—can lead to predictive defense systems that 
preemptively respond to emerging threats. These research directions highlight the potential for designing intelligent, 
interoperable, and evolution-ready optical network defense ecosystems. 

6.3. Toward Autonomous and Self-Healing Optical Network Security Systems 

The future of optical network cybersecurity lies in the realization of autonomous, self-healing architectures capable of 
proactive threat detection and autonomous recovery. Such systems will leverage continuous learning loops driven by 
reinforcement learning agents, enabling real-time reconfiguration of optical channels in response to detected intrusions 
or transmission faults. Embedded AI modules will dynamically optimize routing, modulation formats, and power 
distribution without human intervention, ensuring uninterrupted communication even under coordinated 
cyberattacks. Self-healing networks will employ digital twin environments to simulate potential network disruptions 
and test recovery strategies, reducing downtime through predictive maintenance and automated fault correction. By 
integrating federated edge intelligence, these systems will coordinate anomaly insights across distributed nodes, 
ensuring synchronized defense without centralized control bottlenecks. Future optical infrastructures will thus evolve 
into cognitive ecosystems capable of understanding, reasoning, and adapting to adversarial conditions. This paradigm 
will redefine cybersecurity from a reactive posture to an anticipatory one—where optical communication systems are 
not only secure but resilient, self-optimizing, and continuously evolving to meet the demands of global digital 
interconnectivity. 
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