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Abstract

The increasing complexity and data throughput of optical fiber communication systems have made them critical yet
vulnerable components of modern digital infrastructure. With the rapid growth of high-speed networks, ensuring
cybersecurity in these systems requires intelligent, adaptive, and real-time mitigation strategies. This review examines
the application of machine learning (ML)-enabled anomaly detection models for identifying and mitigating cyberattacks
in optical fiber communication environments. It highlights how supervised, unsupervised, and reinforcement learning
algorithms—such as Support Vector Machines (SVM), Random Forests, Deep Neural Networks (DNN), and
Autoencoders—enable real-time detection of network anomalies, signal disruptions, and malicious intrusions.
Furthermore, the paper explores the integration of hybrid ML frameworks combining statistical signal processing with
deep learning for enhanced detection accuracy and low false alarm rates. Special emphasis is placed on the challenges
of model interpretability, scalability, and latency in large-scale fiber networks, alongside the role of edge computing and
federated learning in decentralized security monitoring. The study also evaluates emerging trends such as graph-based
anomaly detection, explainable Al (XAI), and transfer learning approaches for resilient optical network protection. By
synthesizing current methodologies, datasets, and performance metrics, this review provides a comprehensive
perspective on the state-of-the-art in ML-driven anomaly detection and outlines research directions for achieving
secure, autonomous, and self-healing optical communication systems.

Keywords: Machine Learning; Anomaly Detection; Cyberattack Mitigation; Optical Fiber Communication; Real-Time
Security.

1. Introduction

1.1. Background and Motivation

Optical fiber communication systems form the backbone of modern digital infrastructure, offering unparalleled
bandwidth, low latency, and high reliability. However, their increasing integration with software-defined networking
(SDN) and Internet of Things (IoT) components has exposed them to sophisticated cyber threats capable of disrupting
large-scale data transmission (Prakash, & Kasthuri, 2024). The emergence of machine learning (ML)-enabled anomaly
detection has revolutionized how network vulnerabilities are identified and mitigated in real time. Advanced
architectures such as convolutional autoencoders and hybrid recurrent models allow optical systems to detect
deviations in light intensity patterns, polarization shifts, and transmission anomalies long before service disruption
occurs (Brian, & Alexander, 2023). These models not only enhance the accuracy of anomaly detection but also reduce
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false alarm rates critical for ensuring continuity in latency-sensitive applications such as financial transactions,
telemedicine, and military communications.

The motivation for this review arises from the growing convergence of Al-driven security and fiber-optic infrastructure
management. Research has demonstrated that applying machine learning frameworks for anomaly detection in optical
networks significantly improves early threat mitigation by learning from traffic patterns and environmental noise
fluctuations (Amebleh & Igba, 2024). Moreover, with increasing cyberattack sophistication including distributed denial-
of-service (DDoS) and side-channel attacks quantum-resistant cryptographic protocols and predictive analytics
frameworks have become essential (Idika, 2023). The integration of explainable Al and real-time data analytics ensures
not only rapid detection but also actionable interpretability, creating resilient and adaptive optical network
environments capable of sustaining secure global communications.

1.2. Importance of Cybersecurity in Optical Fiber Communication Systems

Cybersecurity in optical fiber communication systems is fundamental to preserving data confidentiality, availability,
and integrity across critical infrastructures. Given their extensive use in financial institutions, healthcare networks, and
government operations, any breach in fiber communication can lead to catastrophic service disruptions and national
security risks (Singh, et al, 2025). With transmission capacities reaching terabits per second, optical systems are
susceptible to sophisticated attacks such as eavesdropping, physical tapping, jamming, and signal injection, which
exploit vulnerabilities in optical amplifiers and wavelength-division multiplexing (WDM) components. Advanced Al-
based security mechanisms now enable the real-time classification of intrusions by analyzing optical power variations,
phase shifts, and anomalous signal noise distributions (Kumar, & Altalbe, 2024). These approaches ensure proactive
threat mitigation while maintaining low-latency communication for cloud data centers and high-frequency trading
platforms where even millisecond delays can cause significant losses.

The integration of intelligent cybersecurity frameworks in optical networks has evolved from static rule-based systems
to dynamic, self-adaptive architectures capable of contextual learning and decision-making (James, et al, 2023). Deep
reinforcement learning models, for example, enable proactive response strategies that adjust to evolving attack patterns
by continuously refining their defensive policies through feedback loops. Moreover, Al-enhanced encryption and key
distribution mechanisms, such as quantum-resistant cryptography and adaptive secure modulation schemes, further
strengthen resilience against both classical and quantum-level threats (Oyekan, et al, 2023). The growing convergence
of these intelligent systems highlights the vital role of cybersecurity in safeguarding the reliability, scalability, and
operational continuity of modern optical fiber communication infrastructures.

1.3. Research Scope and Objectives

This review focuses on evaluating the integration of machine learning (ML) models in enhancing real-time anomaly
detection for mitigating cyberattacks in optical fiber communication systems. The scope encompasses supervised,
unsupervised, and deep learning techniques applied to detect, classify, and respond to network anomalies that threaten
optical data integrity. It investigates how data-driven models, including convolutional neural networks (CNNs),
autoencoders, and reinforcement learning algorithms, improve detection precision, adaptability, and scalability within
dense optical transport networks. Furthermore, the review covers hybrid and federated learning frameworks designed
to enable decentralized intrusion monitoring and real-time defense orchestration across geographically distributed
fiber infrastructure.

The primary objective is to synthesize current methodologies, benchmark their performance in intrusion detection and
response latency, and identify the technological gaps limiting full automation in optical network security. This study
aims to (1) examine the evolution of ML-driven cybersecurity tools tailored for optical systems, (2) assess their efficacy
in detecting both known and zero-day attacks, and (3) propose a future roadmap integrating explainable Al and
predictive analytics for autonomous network defense. By consolidating existing advancements and challenges, the
review aspires to guide the development of next-generation secure, adaptive, and self-healing optical communication
environments.

1.4. Structure of the Paper

The structure of this paper is organized to provide a logical and systematic review of the role of machine learning-
enabled anomaly detection models in enhancing cybersecurity within optical fiber communication systems. Section 1
introduces the study, outlining its background, motivation, and objectives. Section 2 presents an overview of optical
fiber communication systems and the evolving cybersecurity landscape, identifying key vulnerabilities and risk factors.
Section 3 discusses various machine learning models, including supervised, unsupervised, and deep learning
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approaches, highlighting their application in anomaly detection. Section 4 focuses on model implementation and
performance evaluation, detailing datasets, metrics, and benchmarking frameworks. Section 5 explores emerging
trends, including the use of edge computing, explainable Al, and federated learning for scalable and interpretable
security solutions. Finally, Section 6 concludes the review by summarizing key insights and proposing future research
directions for developing autonomous, intelligent, and resilient optical communication networks capable of mitigating
cyber threats in real time.

2. Optical fiber communication systems and cybersecurity landscape

2.1. Architecture and Components of Optical Fiber Networks

Optical fiber networks form the core of global high-speed communication systems, providing scalable and low-latency
data transmission capabilities that underpin the modern digital economy. These networks typically consist of three
main architectural layers: the core, metro, and access networks, each designed to optimize data routing and
transmission efficiency as shown in Figure 1 (Zhang, et al., 2021). Core networks employ Dense Wavelength Division
Multiplexing (DWDM) and Optical Transport Network (OTN) protocols to aggregate high-capacity traffic, while metro
networks bridge regional nodes through dynamic bandwidth allocation. The access layer, incorporating Passive Optical
Networks (PONs) and Fiber-to-the-Home (FTTH) systems, ensures end-user connectivity with minimal signal loss. The
fundamental components—transmitters, receivers, amplifiers, multiplexers, and optical switches—work in concert to
achieve terabit-per-second throughput. Modern architectures increasingly integrate software-defined optical
networking (SDON), allowing for adaptive control and resource optimization through centralized network intelligence
(Sejan, et al, 2022).

The evolution of intelligent optical systems has been accelerated by artificial intelligence and machine learning
applications, which facilitate fault prediction, energy-efficient routing, and anomaly detection. Al-driven modulation
optimization and power balancing enhance signal-to-noise ratios and minimize nonlinear distortions that typically
degrade performance (Amebleh & Omachi, 2023). Moreover, the adoption of hybrid optical-electrical control planes
enables real-time reconfiguration in response to network congestion or cyber threats. These adaptive frameworks not
only improve resilience but also enhance operational efficiency by enabling self-optimization and self-healing
capabilities. As optical networks expand to support data-intensive services like cloud computing and 5G backhaul,
intelligent architectural designs that combine flexibility, scalability, and security have become indispensable for
ensuring the reliability of next-generation communication infrastructures (Fagbohungbe, et al,, 2025).
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Figure 1 A picture Showing Structural Composition of a Fiber Optic Cable in Optical Network Architecture (Blog, 2024).



World Journal of Advanced Engineering Technology and Sciences, 2025, 17(02), 001-017

Figure 1 shows the main components of a fiber optic cable: the glass core, glass cladding, glass buffer, and outer jacket.
The glass core carries light signals, while the cladding ensures total internal reflection for efficient transmission. The
buffer layer protects the fiber from stress and microbending, and the outer jacket shields it from moisture and damage.
These components form the foundation of optical network architecture, ensuring high-speed, low-loss, and reliable data
transfer across core, metro, and access layers. Their precision enables advanced technologies like DWDM and SDON to
support intelligent, scalable, and resilient communication systems.

2.2. Common Cyber Threats and Vulnerabilities in Optical Communication

Optical communication systems, though inherently secure due to light-based transmission, face an increasing array of
cyber threats as they become more software-defined and interconnected. Common attack vectors include
eavesdropping, jamming, denial-of-service (DoS), and physical layer tapping, which exploit vulnerabilities in optical
amplifiers, transceivers, and control-plane protocols (Pedro, et al, 2022). Eavesdropping attacks typically occur when
adversaries intercept light signals through microbending or evanescent coupling, leading to unauthorized data
extraction without significant signal degradation. Similarly, jamming attacks disrupt communication by injecting high-
intensity optical signals that overwhelm legitimate data channels, degrading signal-to-noise ratios and causing service
outages. The transition toward Software-Defined Optical Networks (SDONs) has further expanded the attack surface,
exposing control layers to malware and configuration manipulation, particularly in multi-domain infrastructures.

Machine learning-based intrusion detection frameworks are increasingly employed to counteract these vulnerabilities,
providing adaptive anomaly recognition and mitigation capabilities. Recent studies have demonstrated how hybrid
deep neural architectures can classify real-time signal distortions linked to cyber intrusions with higher precision than
traditional threshold-based methods (Oyekan, et al, 2024). Additionally, optical-layer threat intelligence systems
leverage predictive analytics to forecast jamming attempts and unauthorized spectrum access, thereby enhancing
network resilience (Idika & Salami, 2024). However, the complexity of optical-layer attacks, coupled with the challenge
of differentiating between environmental noise and intentional disruptions, necessitates continuous innovation in
adaptive defense algorithms as presented in Table 1. The integration of intelligent monitoring tools within control and
data planes remains critical to mitigating these evolving threats in high-capacity optical communication environments.

Table 1 Summary of Common Cyber Threats and Vulnerabilities in Optical Communication

Type of Threat Attack Mechanism Impact on Optical | Mitigation / Defense

Network Strategy
Interception of light signals | Breach of data
via microbending or | confidentiality; Use of advanced encryption,
Eavesdropping evanescent  coupling  to | unauthorized access to | optical-layer monitoring, and
extract data without | sensitive transmitted | secure channel modulation.
noticeable signal loss. information.

Signal degradation, reduced | Machine-learning-based
signal-to-noise ratio (SNR), | detection of abnormal optical
and  potential  service | power patterns and adaptive
outage. wavelength rerouting.

Injection of high-intensity
Jamming Attack optical signals to overwhelm
legitimate channels.

Saturation of optical control | Network congestion, Al-driven traffic filtering and

Denial-of-Service or data planes through | latency spikes, and redictive anomalv detection
(DoS) excessive requests or | temporary loss of service fnodels for earl m};ti ation
malicious traffic bursts. availability. y § '

Data manipulation, | Integration of intelligent

. Unauthorized physical access . . . .
Physical Layer lzed phy configuration corruption, | monitoring tools, control-
or exploitation of software-

Tapping & Malware . and  expanded  attack | plane authentication, and
S e defined controllers to alter k . X i .
Injection in SDON ' . surface in multi-domain | predictive analytics

configurations.
systems. frameworks.

2.3. Security Requirements and Risk Assessment Frameworks

Ensuring robust security in optical fiber communication systems requires a multidimensional approach encompassing
confidentiality, integrity, availability, and authenticity (Maqousi, & Basu, 2025). Unlike traditional IP networks, optical
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systems operate at physical and photonic layers where attacks can compromise data transmission without triggering
higher-level alarms. Therefore, risk assessment frameworks must integrate both physical-layer monitoring and
software-defined control-layer analytics. The zero-trust model has emerged as a viable approach in modern optical
infrastructures, requiring continuous verification and segmentation to prevent lateral movement of threats (Dong, et
al., 2021). This model emphasizes continuous authentication of devices, optical amplifiers, and controllers through
anomaly-based verification mechanisms that minimize the likelihood of insider and advanced persistent threats.
Systematic risk analysis methods, such as failure mode and effect analysis (FMEA) combined with probabilistic risk
assessment (PRA), are also employed to evaluate vulnerabilities and their potential network-wide impacts.

Recent frameworks have incorporated artificial intelligence to enhance the predictive accuracy of risk modeling and
automate incident response. For example, Bayesian inference models integrated with adversarial learning have been
used to predict optical signal corruption and routing-based intrusions before service degradation occurs (ljiga, et al,
2024). Similarly, cyber risk quantification methods developed for adaptive wavelength-routed networks now leverage
reinforcement learning to dynamically estimate attack probabilities and allocate mitigation resources in real time.
These Al-driven methodologies ensure a proactive security posture, reducing detection latency and false positives while
maintaining operational efficiency. Collectively, such hybrid approaches advance optical network protection by aligning
real-time threat intelligence with compliance-driven cybersecurity governance, forming the foundation of resilient and
trustworthy optical communication ecosystems (James, 2022).

3. Machine learning models for anomaly detection

3.1. Supervised learning techniques (svm, random forest, decision trees)

Supervised learning techniques form the cornerstone of machine learning-driven anomaly detection in optical
communication systems. Algorithms such as Support Vector Machines (SVM), Decision Trees (DT), and Random Forests
(RF) have demonstrated exceptional efficiency in detecting and classifying cyber threats based on labeled datasets
derived from optical signal patterns and network telemetry (Dixit, et al, 2021). SVMs are particularly effective for high-
dimensional feature spaces, enabling precise boundary separation between normal and anomalous optical behaviors
through kernel optimization. In contrast, Decision Trees provide interpretability and transparency, allowing security
analysts to trace decision paths for specific anomalies such as signal jamming or packet injection. Ensemble-based
methods like Random Forests improve robustness by combining multiple tree outputs, reducing overfitting while
maintaining high detection accuracy across fluctuating optical noise environments as shown in Figure 2 (Brian, &
Alexander, 2023). These algorithms are integral to systems where minimal latency and maximum classification
precision are paramount for real-time cyberattack mitigation.

Recent research highlights that integrating adaptive supervised learning frameworks enhances the scalability and
responsiveness of optical anomaly detection systems. For instance, reinforcement-assisted Decision Tree hybrids have
been used to dynamically adjust classification thresholds in response to evolving attack patterns (Amebleh & Omachi,
2022). Similarly, multi-layer Random Forest models embedded with temporal feature selection modules have improved
detection accuracy in Wavelength Division Multiplexing (WDM) networks where signal distortion and polarization
mode dispersion introduce non-linear data variability. These advanced models are further optimized using real-time
feedback mechanisms that continuously update training datasets, enabling adaptive learning without compromising
inference speed. Consequently, supervised learning techniques continue to be foundational in developing intelligent,
high-performance security frameworks for next-generation optical communication infrastructures (ljiga, et al, 2025).
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Figure 2 A Block Diagram Showing Supervised Learning Framework for Optical Network Anomaly Detection.

Figure 2 illustrates how supervised learning algorithms—Support Vector Machines (SVM), Decision Trees (DT), and
Random Forests (RF)—contribute to intelligent anomaly detection in optical communication systems. The central node
represents supervised learning as the foundation for identifying cyber threats using labeled datasets derived from
optical signal telemetry. The SVM branch emphasizes optimal boundary separation between normal and anomalous
behaviors in high-dimensional data spaces, while the Decision Tree branch highlights interpretable rule-based
classification for tracing specific attacks such as jamming or packet injection. The Random Forest branch demonstrates
how ensemble learning enhances robustness and accuracy by aggregating multiple tree decisions. These algorithms
collectively feed into an adaptive anomaly detection system that dynamically updates models, supports real-time
analysis, and mitigates evolving threats within Wavelength Division Multiplexing (WDM) and Software-Defined Optical
Network (SDON) infrastructures, ensuring high reliability and minimal latency in cybersecurity operations.

3.2. Unsupervised and Semi-Supervised Learning Models (K-Means, Autoencoders, Isolation Forest)

Unsupervised and semi-supervised learning models have become indispensable in identifying anomalies within optical
communication systems, particularly when labeled datasets are scarce or incomplete. Techniques such as K-Means
clustering, Autoencoders, and Isolation Forests enable systems to discover latent structures and detect irregular
behaviors without explicit supervision (Prakash, & Kasthuri, 2024). K-Means partitions multidimensional optical
telemetry data—such as signal strength variations, phase noise, and bit error rates—into clusters, allowing deviations
from normal operational patterns to be detected as outliers. This clustering capability is especially beneficial in multi-
channel Wavelength Division Multiplexing (WDM) networks, where distinguishing between benign fluctuations and
malicious distortions is complex. Autoencoders, on the other hand, learn compact latent representations of network
states, reconstructing inputs and flagging deviations with high reconstruction error as anomalies. Their deep
architectures enable nuanced feature extraction from raw optical data streams, improving accuracy in detecting low-
intensity intrusions that evade traditional monitoring systems (Oyekan, et al, 2025).

Semi-supervised approaches extend these models by leveraging limited labeled samples to refine anomaly classification
boundaries. Isolation Forests, which rely on recursive partitioning of feature spaces, are particularly effective for
detecting rare cyber events, such as covert channel exploitation or power-level manipulation in optical amplifiers
(Amebleh & Okoh, 2023). The hybridization of K-Means and Isolation Forests facilitates both clustering-based pre-
screening and probabilistic isolation of anomalous points, optimizing detection precision while reducing false positives.
In optical transport networks, where real-time security monitoring is critical, these hybrid unsupervised models
outperform signature-based systems by adapting to evolving attack vectors and data drift as presented in Table 2.
Furthermore, combining autoencoders with dynamic threshold tuning enables continuous learning from operational
feedback, ensuring adaptive resilience against novel intrusion patterns. Collectively, these unsupervised and semi-
supervised models establish the foundation for autonomous anomaly detection frameworks that safeguard high-
capacity optical communication infrastructures with minimal human intervention (Gayawan, & Fagbohungbe, 2023).
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Table 2 Summary of Unsupervised and Semi-Supervised Learning Models (K-Means, Autoencoders, Isolation Forest).

outliers that deviate from

cluster centroids.

phase noise, and bit error rates
in WDM networks.

Model / Technique | Core Functionality Appllcatlf)n _m Optical | Advantages / Key
Communication Systems Outcomes

Groups data into clusters based Use.d . to . dete(.:t abnormal S¥mp11.f1es. anomaly

on  similarity identifying variations in optical telemetry | visualization, detects

K-Means Clustering ! data such as power levels, | subtle deviations, and

efficiently handles large-
scale optical datasets.

Autoencoders

Employ neural networks to
learn  compressed latent
representations and
reconstruct input data, flagging
high reconstruction errors as
anomalies.

Capture hidden optical signal
behaviors and detect low-
intensity intrusions that evade
threshold-based methods.

Enhance detection
sensitivity, extract
complex patterns, and
support continuous

learning from raw data
streams.

Isolation Forest

Utilizes recursive partitioning
to isolate anomalous data
points based on path length

Identifies rare cyber incidents
such as covert wavelength
manipulation and power-level

Effective  for  sparse
anomalies, reduces false
positives, and adapts to

1 . o i data drift in real-time
within decision trees. tampering in amplifiers. .
environments.
Hybrid Models (K- | Combines clustering, | Provides pre-screening, | Improves accuracy,
Means + Isolation | reconstruction, and | refined classification, and | resilience, and real-time
Forest + | probabilistic  isolation for | adaptive learning in optical | anomaly detection with
Autoencoders) multi-level detection. transport networks. minimal human oversight.

3.3. Deep Learning and Reinforcement Learning Approaches for Real-Time Detection

Deep learning and reinforcement learning techniques have transformed real-time anomaly detection in optical fiber
communication systems by introducing adaptive intelligence and contextual awareness into cybersecurity frameworks.
Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks, for instance, have proven
highly effective in modeling the temporal and spectral dependencies inherent in optical signal transmission (Behera, et
al, 2023). CNNs excel in feature extraction from raw optical intensity and wavelength datasets, while LSTMs capture
time-based correlations that indicate progressive intrusion behaviors such as packet injection or power modulation
anomalies. Hybrid CNN-LSTM fusion models offer superior performance by combining spatial feature encoding with
temporal prediction, enabling early identification of complex multi-stage attacks within milliseconds (James, et al,
2025). Deep learning approaches also enhance false alarm discrimination by learning nonlinear mappings between
signal distortions and network state transitions, improving detection precision in highly dynamic communication
environments.

Reinforcement learning extends this capability by introducing autonomous decision-making mechanisms for real-time
mitigation. Deep Q-Networks (DQNs) and Actor-Critic models, for example, dynamically adapt intrusion response
strategies based on reward optimization and environmental feedback (Hwang, et al.,, 2020). These algorithms learn
optimal countermeasures—such as channel reassignment, wavelength rerouting, or power attenuation—to restore
service integrity during cyber incidents. Furthermore, reinforcement learning-based intrusion response systems
support the concept of self-healing networks, where intelligent agents continuously reconfigure optical paths in
response to detected threats (Idika & James, 2024). The integration of deep and reinforcement learning not only reduces
latency in anomaly recognition but also enables proactive defense mechanisms capable of adapting to unknown or
evolving attack vectors. As optical networks scale toward autonomous operation, these Al-driven architectures provide
a resilient and intelligent framework for safeguarding global communication infrastructures against real-time cyber
threats.
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4. Model implementation and performance evaluation

4.1. Dataset Characteristics and Preprocessing for Optical Network Security

The reliability of machine learning-enabled optical network security models depends heavily on the quality, diversity,
and representativeness of datasets used during training and evaluation. Optical network datasets often consist of traffic
flow records, signal transmission logs, and physical-layer parameters such as optical power, bit error rate (BER),
chromatic dispersion, and phase noise. However, due to the complexity of optical environments, datasets are typically
high-dimensional, imbalanced, and non-stationary, making preprocessing a critical step before model training
(Moustafa, 2021). Data normalization techniques such as Z-score scaling and min-max normalization are commonly
applied to reduce variance caused by disparate signal magnitudes, ensuring that learning algorithms effectively capture
relevant anomalies without overfitting to noise. Furthermore, synthetic data generation using Generative Adversarial
Networks (GANs) and signal augmentation techniques helps compensate for insufficient attack samples, particularly for
rare intrusion types like coherent channel hijacking or wavelength spoofing (Khan, et al., 2022).

Recent advancements emphasize preprocessing frameworks specifically designed for the physical-layer characteristics
of optical systems. For instance, signal filtering and denoising algorithms—such as Savitzky-Golay smoothing and Fast
Fourier Transform (FFT)-based noise reduction—are integrated into data pipelines to enhance the clarity of optical
intensity and polarization signatures before feature extraction (ljiga, et al, 2024). Feature selection and dimensionality
reduction methods, including Principal Component Analysis (PCA) and Recursive Feature Elimination (RFE), have also
been instrumental in improving computational efficiency while retaining discriminative signal attributes (Adedayo, et
al, 2025). Moreover, handling data imbalance through techniques like Synthetic Minority Oversampling Technique
(SMOTE) ensures equitable representation of normal and anomalous classes during supervised learning. These
preprocessing strategies are vital for building resilient models that generalize across diverse network conditions and
can maintain high detection accuracy under fluctuating optical transmission scenarios. By optimizing dataset
preparation, machine learning frameworks can more accurately model the dynamic and nonlinear characteristics of
real-world optical communication environments (Idika et al, 2023).

Table 3 Summary of Dataset Characteristics and Preprocessing for Optical Network Security

Techniques / Methods

Quality

non-stationary due to variable
transmission conditions and
rare intrusion events.

generation via GANs for
rare attack classes.

Aspect Description Used Outcome / Significance
thlcal nt'—":twork datas.ets Data collected from core, | Provides a diverse, high-
include traffic flow logs, optical . : .
Dataset . . metro, and access layers | dimensional basis for model
. signal power, BER, phase noise, . ..
Composition . ! . across multiple network | training and anomaly
and chromatic dispersion .
nodes. detection.
parameters.
Dataset: ft high- . . .
di?nisfsfona?r?mbglairée d ggn d Data balancing wusing | Reduces  bias, enhances
Challenges in Data ’ ’ SMOTE; synthetic data | detection of low-frequency

cyber threats, and supports
robust model learning.

Applied to clean, normalize, | Z-score and min-max | Ensures consistent data

Preprocessing and denoise raw optical data to | normalization; Savitzky- | scaling, minimizes optical

Techniques improve signal integrity and | Golay filtering; FFT-based | noise interference, and
learning stability. noise reduction. enhances feature clarity.

. o I ional

. Focuses on selecting relevant | Principal Component mproves computationa

Feature Selection : : : . efficiency, model

. . ) optical signal features and | Analysis (PCA), Recursive | . . .
and Dimensionality . . o interpretability, and detection
Reduction reducing  redundancy  in | Feature Elimination accuracy in real-time anomaly
datasets. (RFE).

detection.

4.2. Evaluation Metrics (Accuracy, Precision, Recall, F1-Score, ROC)

Evaluating the performance of machine learning models for anomaly detection in optical network security requires a
rigorous, multidimensional framework. The most widely used evaluation metrics—Accuracy, Precision, Recall, F1-
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Score, and Receiver Operating Characteristic (ROC)—quantify different aspects of predictive reliability. Accuracy
measures the overall correctness of classification but can be misleading in highly imbalanced datasets typical of optical
intrusion detection scenarios, where attack instances are rare compared to normal traffic as shown in Figure 3 (Imtiaz,
et al, 2025). Precision, defined as the ratio of true positives to the sum of true and false positives, is particularly critical
for assessing how well models minimize false alarms, which can otherwise disrupt legitimate optical channel
reconfigurations. Recall, the proportion of correctly identified attacks among all actual intrusions, reflects the model’s
sensitivity and is essential for ensuring early detection of cyber threats such as jamming or wavelength spoofing. The
F1-Score provides a harmonic balance between Precision and Recall, making it especially useful when prioritizing trade-
offs between false negatives and false positives in real-time detection systems.
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Harmonic Positive Rate
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Precision Positive Rate
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Figure 3 A Block Diagram Showing Comprehensive Evaluation Metrics Framework for Machine Learning-Based
Optical Network Security.

Recent research has emphasized the importance of composite and dynamic evaluation frameworks for optical networks.
For example, the ROC curve, which plots the True Positive Rate (TPR) against the False Positive Rate (FPR), offers a
visual understanding of classifier discrimination performance across varying thresholds (Amebleh, et al, 2021).
Advanced models now incorporate Area Under the ROC Curve (AUC) as a standard measure of overall detection
robustness. Additionally, weighted F1-scores and macro-averaged metrics are applied to evaluate models across
multiple classes of attacks, improving interpretability in multi-modal anomaly detection systems. To enhance reliability,
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precision-oriented metrics such as Cohen’s Kappa and Matthews Correlation Coefficient (MCC) are increasingly
integrated into evaluation protocols for optical systems with complex noise environments (Okereke, et al, 2025). These
multi-criteria evaluation frameworks ensure that ML-driven anomaly detection models not only achieve statistical
accuracy but also maintain operational reliability under dynamic and high-throughput optical network conditions.

Figure 3 illustrates the core evaluation metrics used to measure the effectiveness of machine learning models in
detecting anomalies within optical network security systems. At the center is Model Performance Evaluation, branching
into five key metrics Accuracy, Precision, Recall, F1-Score, and ROC/AUC Curve each capturing a different aspect of
model reliability. Accuracy, calculated as (TP + TN) / (TP + TN + FP + FN), measures the proportion of correct predictions
among all classifications, where TP (True Positives) and TN (True Negatives) represent correctly identified instances,
while FP (False Positives) and FN (False Negatives) indicate errors. Precision evaluates how well the model minimizes
false alarms, while Recall measures the system’s ability to detect actual cyberattacks. The F1-Score harmonizes
Precision and Recall to balance false positives and negatives, ensuring fairness in performance assessment. Finally, the
ROC/AUC Curve visualizes the relationship between true and false positive rates across thresholds, highlighting the
model’s discrimination power. Collectively, these metrics provide a comprehensive framework for evaluating detection
accuracy, sensitivity, and robustness in optical communication cybersecurity applications.

4.3. Benchmarking and Comparative Analysis of ML Algorithms

Benchmarking machine learning (ML) algorithms for optical network security involves systematically comparing
models based on accuracy, computational efficiency, adaptability, and robustness against diverse attack scenarios.
Traditional models such as Support Vector Machines (SVM), Random Forests (RF), and Decision Trees (DT) remain
foundational benchmarks due to their interpretability and low computational cost, yet they often underperform in
detecting complex temporal anomalies inherent in high-speed optical transmission (Arshad, et al, 2022). Deep learning
architectures—such as Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks—
outperform classical algorithms by capturing spatial and temporal dependencies in optical signal streams, enabling the
detection of subtle cyber intrusions like wavelength drift manipulation or power fluctuation attacks. Furthermore,
ensemble methods combining multiple algorithms, such as Random Forest with Gradient Boosting, have achieved
improved detection precision, particularly in multi-modal optical datasets with high noise variance (Idika, et al, 2024).
The benchmarking process frequently relies on cross-validation techniques and standardized datasets to ensure fair
model comparison, emphasizing scalability and generalization across real-world optical environments.

Recent studies have highlighted the growing importance of hybrid deep learning models and adaptive learning
frameworks in achieving superior performance across varying optical network conditions. CNN-LSTM hybrids, for
instance, have demonstrated a significant reduction in false alarm rates while maintaining high recall values for real-
time anomaly detection (ljiga, et al, 2024). Similarly, comparative evaluations indicate that unsupervised models, such
as Autoencoders and Isolation Forests, offer complementary benefits by identifying zero-day attacks that supervised
models fail to capture. Benchmarking also extends beyond static performance metrics to include energy consumption,
latency tolerance, and adaptability under fluctuating optical load conditions (Amebleh & Onoja, 2025). This
comprehensive comparative analysis reveals that no single algorithm dominates all performance dimensions; rather,
integrating heterogeneous ML models through hybrid and ensemble learning provides the most reliable and scalable
defense architecture for real-time cybersecurity in optical communication systems.

5. Emerging trends and challenges in ml-driven anomaly detection

5.1. Integration of Edge Computing and Federated Learning for Distributed Security

The integration of edge computing and federated learning (FL) has revolutionized the design of secure and distributed
architectures in optical fiber communication systems. Edge computing enables data processing close to the network
source, reducing latency and minimizing the need to transmit sensitive data to centralized servers—a critical advantage
for real-time anomaly detection in optical infrastructures (Li, et al, 2020). Federated learning complements this by
allowing multiple edge nodes to collaboratively train shared machine learning models without directly exchanging raw
data, thus preserving data privacy and reducing vulnerability to interception. In optical networks, this decentralized
intelligence enables intrusion detection models to learn from geographically distributed data centers while maintaining
compliance with privacy and bandwidth constraints (ljiga, et al, 2024). For example, in dense wavelength division
multiplexing (DWDM) systems, local edge devices can independently detect anomalies in channel intensity or
polarization variations and synchronize updates to a global model through federated aggregation protocols.
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Recent studies emphasize that combining edge intelligence with federated learning significantly enhances both
scalability and resilience in cybersecurity frameworks for optical transport networks. Hybrid edge-federated
architectures can dynamically adapt to traffic fluctuations, identifying distributed denial-of-service (DDoS) and
wavelength jamming attacks with minimal communication overhead (Amebleh, et al, 2025). Moreover, edge-assisted
learning models employ gradient compression and differential privacy mechanisms to safeguard sensitive optical
telemetry data during model synchronization. This ensures that global model convergence occurs efficiently even under
constrained bandwidth environments. Reinforcement-based scheduling techniques are also used to optimize
computational load distribution among edge nodes, enhancing fault tolerance and reducing detection latency (James, et
al, 2024). By integrating edge computing with federated learning, optical communication systems can achieve real-time,
privacy-preserving, and distributed anomaly detection—paving the way for autonomous, intelligent, and self-healing
network defense architectures.

5.2. Explainable Artificial Intelligence (XAI) and Model Interpretability

The increasing reliance on deep learning and complex ensemble models in optical communication security has elevated
the demand for Explainable Artificial Intelligence (XAI) to ensure transparency, accountability, and trust in automated
decision systems. Traditional machine learning algorithms, though highly accurate, often operate as “black boxes,”
offering limited insight into how specific predictions or anomaly classifications are derived. XAl addresses this
limitation by providing interpretable representations of model reasoning processes, enabling network administrators
to understand the underlying causes of detected threats as shown in Figure 4(Mankodiya, et al, 2021). In optical fiber
networks, where decisions directly affect signal integrity and data routing, model interpretability becomes critical for
diagnosing misclassifications and false positives. Techniques such as Local Interpretable Model-Agnostic Explanations
(LIME) and SHapley Additive exPlanations (SHAP) are increasingly applied to visualize feature importance across
optical telemetry parameters, such as wavelength deviation, phase modulation, and power variation (Mehra, 2020).
These tools allow engineers to validate whether model outputs correspond to real optical behaviors or spurious signal
noise, strengthening operational confidence in automated security frameworks.

Recent advancements in XAl research within optical communication emphasize the development of interpretable deep
learning architectures that integrate visual and symbolic reasoning components. Hybrid models combining
convolutional layers with attention mechanisms enable contextual interpretation of temporal signal patterns and
anomaly features (Abiola, et al, 2025). Additionally, interpretable graph neural networks (GNNs) have been deployed
to model the topological dependencies between optical nodes, allowing clear visualization of attack propagation
pathways. Reinforcement-driven XAl frameworks further enhance decision transparency by correlating network
responses with specific environmental conditions or adversarial inputs. By bridging the gap between predictive
accuracy and human interpretability, XAl-driven cybersecurity solutions ensure that Al-based anomaly detection
systems in optical networks remain not only precise but also auditable and trustworthy (Idika, et al, 2024). This
paradigm shift toward transparent Al governance fosters sustainable human-machine collaboration for resilient optical
communication infrastructures.

Figure 4 A Picture Showing Intersection of Ethical and Explainable Al Principles in Optical Network Security (Hamida,
etal, 2024).

Figure 4 illustrates the intersection between ethical and explainable principles of Artificial Intelligence, emphasizing
the foundational attributes necessary for trustworthy and transparent Al systems. In the context of optical
communication network security, Explainable Al (XAI) integrates these principles to ensure that automated anomaly
detection models are both technically interpretable and socially responsible. The ethical dimension encompasses
inclusiveness, fairness, and accountability, ensuring that Al-driven security systems do not introduce bias or
compromise user trust. Meanwhile, the explainable dimension emphasizes transparency, privacy, and security, vital for
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understanding how deep learning algorithms classify threats or respond to anomalies in optical signals. At the center of
this intersection lies reliability and safety, which are essential in preventing misclassifications that could disrupt optical
data transmission or compromise network integrity. Thus, the diagram effectively captures the dual objective of XAl in
optical cybersecurity: achieving model interpretability while maintaining ethical governance.

5.3. Limitations, Scalability Issues, and Real-Time Adaptation Challenges

Despite the rapid progress in machine learning (ML)-enabled optical network security, several limitations and
scalability challenges persist in achieving fully autonomous and real-time cyber defense. One primary constraint is the
high computational complexity of deep neural models, which require extensive processing power and memory—
difficult to sustain in distributed optical environments with limited edge resources (Furdek, et al, 2020). Additionally,
latency-sensitive applications such as 5G backhaul and cloud interconnects demand sub-millisecond anomaly response
times, a requirement often unmet by traditional centralized ML architectures. Scalability also becomes an issue as
optical networks grow in node density and wavelength diversity, leading to exponential increases in data dimensionality
and communication overhead (Bhide, et al., 2025). Moreover, the heterogeneity of network topologies and equipment
vendors complicates the standardization of training data formats and model deployment protocols. In dynamic
transmission conditions, optical impairments—such as polarization mode dispersion and nonlinear phase noise—
further distort telemetry signals, making real-time inference models prone to misclassification and reduced detection
accuracy.

Recent studies highlight that most adaptive ML frameworks lack the elasticity to handle rapidly evolving cyber threats
and environmental drift without extensive retraining. Continuous retraining is resource-intensive, risking model
degradation and overfitting when datasets are unbalanced or lack temporal variability. Furthermore, federated and
distributed learning architectures introduce synchronization delays during parameter aggregation, hindering real-time
adaptability across multi-domain optical infrastructures (Igwe, et al, 2025). Data privacy regulations further constrain
the sharing of optical telemetry, limiting the development of globally synchronized threat intelligence models. To
mitigate these challenges, emerging research advocates lightweight neural architectures, model compression
techniques, and edge-based retraining strategies to balance computational cost with detection responsiveness as
presented in Table 4. However, achieving scalability without compromising performance remains a complex problem,
Highlighting the need for continuous innovation in distributed learning and adaptive control mechanisms for next-
generation optical cybersecurity systems (Fagbohungbe, et al., 2020).

Table 4 Summary of Limitations, Scalability Issues, and Real-Time Adaptation Challenges

Challenge - Underlying Causes / | Proposed  Solutions /
Description . . . .
Category Technical Constraints Research Directions
Deep neural networks | High model dimensionality, Use . lightweight  neural
. L . .o architectures, model
Computational require significant processing | limited GPU/CPU resources at : .
: . pruning, and compression to
Complexity = and | power and memory, which | network edges, and L
o : optimize inference speed and
Resource Demand | strain distributed and edge- | continuous data streams from
. . . . reduce hardware
based optical environments. | multiple optical nodes.
dependency.
Centralized ML models fail to : : Deploy edge-based and
. 1 Centralized data processing, | ;.= . . .
deliver sub-millisecond | . N distributed intelligence to
Latency and Real- . .| high communication
. . responses required in support local, low-latency
Time Adaptation iy . overhead, and : . . .
, latency-sensitive optical . .| decision-making with
Constraints synchronization delays in . .
systems such as 5G and cloud i adaptive retraining
federated learning setups. .
backhaul. strategies.
Increasing wavelength | Non-standardized telemetry | Develop standardized data
Scalability and | diversity and node density in | formats, multi-vendor | protocols, hierarchical model
Data optical networks lead to | equipment heterogeneity, and | training, and adaptive
Heterogeneity exponential data growth and | bandwidth saturation in large | learning pipelines for large-
integration issues. infrastructures. scale environments.
Model Continuous retraining of ML Resource-intensive Implement federated
Maintenance and | models is costly and . learning  with  privacy-
Pri . . retraining, unbalanced > .
rivacy restricted by data-sharing datasets and rivacy | Preserving techniques and
Limitations regulations, reducing ’ P Y | incremental model updates
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adaptability to evolving | constraints on telemetry data | to maintain resilience and
threats. exchange. compliance.

6. Conclusion and future research directions

6.1. Summary of Key Findings

This study has demonstrated that integrating machine learning into optical fiber communication systems significantly
enhances anomaly detection and cyberattack mitigation through adaptive, data-driven intelligence. Supervised learning
algorithms, including Support Vector Machines and Random Forests, have proven effective for structured intrusion
detection, while unsupervised models such as Autoencoders and Isolation Forests excel at uncovering zero-day attacks
in complex, unlabeled datasets. Deep learning frameworks—particularly CNN-LSTM hybrids—enable spatiotemporal
modeling of optical signal behaviors, achieving high precision in identifying subtle transmission anomalies like
wavelength spoofing and optical jamming. Furthermore, reinforcement learning introduces autonomous decision-
making that dynamically adjusts mitigation responses based on real-time environmental feedback. Edge computing and
federated learning architectures further optimize performance by decentralizing model training, reducing latency, and
preserving data privacy. Explainable Al (XAI) enhances transparency by clarifying model decisions, thereby improving
operator trust and system accountability. Collectively, these advancements establish that multi-model hybridization,
combined with distributed intelligence, provides the most resilient and scalable defense architecture for modern optical
communication systems.

6.2. Research Gaps and Opportunities for Innovation

Despite notable progress, critical research gaps persist in achieving seamless real-time adaptability and standardization
of ML-enabled optical security frameworks. Current systems still face latency and synchronization constraints when
scaling to multi-domain optical backbones, particularly under high-traffic conditions. There remains a lack of universal
datasets that accurately represent cross-layer interactions between optical, physical, and control planes, hindering
generalization of anomaly detection models. Additionally, the interpretability of deep neural architectures continues to
pose a challenge; while XAl frameworks have improved visibility, they often struggle to contextualize non-linear optical
impairments. Opportunities for innovation lie in developing lightweight, adaptive neural networks capable of
incremental learning with minimal retraining overhead. Integrating quantum-safe cryptographic mechanisms and
neuromorphic processors could enhance both security and energy efficiency. Moreover, cross-layer intelligence—
where optical, transport, and application layers collaborate dynamically—can lead to predictive defense systems that
preemptively respond to emerging threats. These research directions highlight the potential for designing intelligent,
interoperable, and evolution-ready optical network defense ecosystems.

6.3. Toward Autonomous and Self-Healing Optical Network Security Systems

The future of optical network cybersecurity lies in the realization of autonomous, self-healing architectures capable of
proactive threat detection and autonomous recovery. Such systems will leverage continuous learning loops driven by
reinforcement learning agents, enabling real-time reconfiguration of optical channels in response to detected intrusions
or transmission faults. Embedded Al modules will dynamically optimize routing, modulation formats, and power
distribution without human intervention, ensuring uninterrupted communication even under coordinated
cyberattacks. Self-healing networks will employ digital twin environments to simulate potential network disruptions
and test recovery strategies, reducing downtime through predictive maintenance and automated fault correction. By
integrating federated edge intelligence, these systems will coordinate anomaly insights across distributed nodes,
ensuring synchronized defense without centralized control bottlenecks. Future optical infrastructures will thus evolve
into cognitive ecosystems capable of understanding, reasoning, and adapting to adversarial conditions. This paradigm
will redefine cybersecurity from a reactive posture to an anticipatory one—where optical communication systems are
not only secure but resilient, self-optimizing, and continuously evolving to meet the demands of global digital
interconnectivity.
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