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Abstract

Public Internet Service Providers (ISPs) are increasingly exposed to advanced cyber threats that exploit automation,
artificial intelligence, and zero-day vulnerabilities. As the digital ecosystem expands, these threats can disrupt essential
connectivity and compromise national infrastructure. Conventional security systems, which rely on static, rule-based
detection and manual intervention, struggle to counter rapidly evolving attacks. This paper introduces a cyber-resilient
infrastructure framework designed specifically for ISPs, integrating automated threat detection with adaptive defense
mechanisms. The proposed system combines machine learning models, behavioral traffic analytics, and real-time
response orchestration to identify and mitigate malicious activity before it escalates. By automating the detection and
containment processes, the framework reduces reliance on manual analysis, accelerates incident response, and
maintains service continuity during attack scenarios. Experimental evaluations on simulated ISP environments
demonstrate a 37% improvement in threat identification accuracy and a 52% reduction in response latency compared
to conventional monitoring systems. The results confirm that automation enhances situational awareness, operational
resilience, and system reliability without compromising performance. The framework represents a scalable, data-driven
approach to protecting large-scale public networks and can be extended to future applications such as federated threat
intelligence sharing and autonomous network defense.

Keywords: Cyber Resilience; Internet Service Provider (ISP); Automated Threat Detection; Machine Learning;
Network Security; Adaptive Defense; Intrusion Detection; Cybersecurity Infrastructure

1. Introduction

The rapid evolution of digital infrastructure has positioned Internet Service Providers (ISPs) as essential pillars of
modern connectivity. They enable global communication, cloud computing, and e-commerce, forming the foundation of
national digital economies. However, this central role also makes ISPs high-value targets for cybercriminals and state-
sponsored attackers seeking to disrupt essential services or exploit network vulnerabilities. Increasingly, attacks are
automated, adaptive, and capable of bypassing static defenses. Distributed denial-of-service (DDoS) floods, ransomware
infiltration, and control-plane attacks have grown both in frequency and sophistication. Traditional cybersecurity tools
based on signature matching and manual analysis struggle to detect new, polymorphic, or zero-day threats at ISP scale.
With millions of concurrent connections and petabytes of traffic traversing their networks, ISPs face serious limitations
in maintaining real-time visibility and timely response. Even brief service interruptions can cascade into widespread
outages, economic losses, and erosion of customer trust. To address these challenges, cyber resilience has become a
critical design principle for ISP infrastructure. Cyber resilience emphasizes continuous monitoring, adaptive defense,
and rapid recovery instead of mere prevention. This paper focuses on integrating automated threat detection
mechanisms powered by machine learning and behavioral analytics within ISP networks. The proposed framework
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aims to detect, classify, and mitigate threats dynamically, ensuring service continuity and operational stability even
under sustained cyberattack conditions.

1.1. Background and Motivation

In recent years, the growth of IoT devices ranging from sensors and gateways to intelligent routers has significantly
increased network complexity. According to global industry reports, over 30 billion [oT devices are expected to be active
by 2030, each generating real-time data requiring continuous supervision. Traditional monitoring architectures depend
on centralized servers that gather all network information for processing. However, this approach causes high
transmission loads, delays, and inefficiency when managing large-scale environments. Edge analytics has emerged as a
transformative paradigm that shifts partial processing to local nodes, allowing immediate decision-making close to data
sources. When combined with cloud computing, this hybrid model enables scalable analytics, resource management,
and predictive diagnostics. Consequently, a unified framework integrating IoT, edge, and cloud capabilities can
significantly enhance operational intelligence, network reliability, and cybersecurity.

1.2. Problem Statement

Conventional cybersecurity frameworks face serious limitations in ISP environments. These systems typically rely on
manually configured rules or predefined signatures to identify attacks. Such methods can detect known threats but fail
when adversaries deploy novel or obfuscated techniques. ISPs handle petabytes of traffic daily, making it impractical
for analysts to manually inspect every anomaly or potential compromise. As a result, many threats remain undetected
until significant damage occurs. The lack of automation also leads to slow response times, often allowing attackers to
pivot within networks and amplify the scale of disruption. Furthermore, the growing interconnectivity between ISPs
and cloud data centers has increased the attack surface, making perimeter-based defense obsolete. The absence of
centralized visibility and real-time coordination across network layers creates additional vulnerabilities. This research
addresses these challenges by developing a cyber-resilient infrastructure capable of detecting, classifying, and
mitigating cyber threats automatically. The goal is to design a scalable framework that supports high-speed data
environments, reduces human dependency, and ensures consistent service availability even during active attacks.

1.3. Proposed Solution

To address the increasing sophistication of cyber threats targeting public Internet Service Providers (ISPs), this paper
proposes the Cyber-Resilient Infrastructure Framework (CRIF), an integrated model that unites automated detection,
adaptive response, and continuous learning. The framework leverages Automated Threat Detection (ATD) through the
combined use of machine learning, network behavior analytics, and orchestration systems capable of autonomous
decision-making. At its core, CRIF employs a Machine Learning-based Intrusion Detection System (ML-IDS) that
analyzes vast network traffic in real time using both supervised and unsupervised algorithms trained on diverse
datasets. Complementing this, Behavioral Traffic Analysis (BTA) establishes baseline activity profiles for each network
segment and identifies abnormal deviations that may indicate malicious intent. Upon detection, the Adaptive Response
Orchestration (ARO) module automatically executes mitigation strategies such as quarantining compromised nodes,
rerouting data through secure paths, or updating firewall and access control policies. Unlike traditional manual
intervention, ARO enables near-instantaneous containment of threats, significantly reducing response latency.
Additionally, a Continuous Learning Module (CLM) enhances the overall framework by retraining detection models
using feedback from previous incidents and new threat intelligence feeds. This iterative process ensures that CRIF
evolves in line with emerging attack patterns. Through this fully integrated and automated approach, ISPs can achieve
real-time situational awareness, minimize service disruption, and sustain operational resilience even under persistent
cyberattacks.

1.4. Contributions

This research makes several significant contributions to the advancement of cyber-resilient infrastructure for Internet
Service Providers (ISPs). First, it introduces an integrated, Al-driven architecture that combines automated threat
detection with adaptive response mechanisms, specifically designed for large-scale, distributed ISP environments. The
framework unifies detection, mitigation, and recovery processes under a single automated system, thereby improving
coordination between network components and reducing human intervention. Second, the model is engineered for
scalability and efficiency, capable of processing vast volumes of network traffic while maintaining low latency and high
throughput. This ensures that security performance does not compromise service quality or user experience, even
during high-demand or attack conditions. Another contribution lies in the system’s adaptive learning capability. By
continuously retraining its models based on real-time data and post-incident analysis, the framework evolves with
emerging threats, significantly lowering false positive rates and improving detection accuracy. In addition, the study
provides empirical validation through controlled testbed experiments that measure key performance indicators such
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as detection rate, response time, and service uptime under simulated cyberattacks. These results confirm measurable
improvements over conventional systems. Finally, the research demonstrates economic viability by presenting a cost-
benefit analysis showing how automation can reduce operational expenses and resource strain. Collectively, these
contributions establish a foundation for developing self-healing, intelligent, and autonomously defensive ISP
infrastructures.

1.5. Paper Organization

The remainder of this paper is organized as follows. Section Il reviews related work on ISP security, automated detection
systems, and cyber resilience frameworks, providing context for the proposed approach. Section III outlines the
methodology used to design, implement, and test the Cyber-Resilient Infrastructure Framework (CRIF), detailing data
collection, detection algorithms, and response mechanisms. Section IV presents the experimental results and discusses
system performance, scalability, and resilience under simulated attack conditions. Section V concludes with key
findings, implications for ISP security architecture, and suggestions for future research directions, including federated
learning and blockchain-based auditing. This structured organization ensures logical flow and clarity, guiding readers
through the motivation, implementation, and evaluation of the proposed cyber-resilient model.

2. Related work

Research on cyber resilience and automated threat detection for Internet Service Providers (ISPs) spans multiple
domains, including intrusion detection, machine learning applications, resilience engineering, and automated response
systems. This section reviews key studies in each area to position the proposed framework within existing literature.

2.1. Signature-Based and Rule-Based Intrusion Detection Systems

Traditional Intrusion Detection Systems (IDS) such as Snort and Suricata rely on signature-based detection to identify
known attack patterns. These systems are widely used due to their reliability against familiar threats; however, they fail
to detect zero-day exploits and adaptive malware. Since rule-based systems require frequent manual updates, they
cannot respond swiftly to rapidly evolving attack vectors. Studies have shown that static detection methods become
inefficient in high-throughput ISP environments, where attack diversity and traffic volume are extreme [1].
Furthermore, maintaining large signature databases creates performance bottlenecks and increases false positives.
While hybrid intrusion detection systems have attempted to combine signature and anomaly-based methods, they still
rely on human analysts to tune detection thresholds and rules. Consequently, signature-based tools remain foundational
but insufficient for the scale and adaptability required in modern ISP networks, motivating a shift toward automated,
intelligent, and scalable approaches to threat detection.

2.2. Machine Learning and Deep Learning for Anomaly Detection

Machine learning (ML) and deep learning (DL) models have emerged as strong alternatives to static IDS by learning
behavioral patterns from network data. Wang et al. [2] proposed a deep learning framework for network traffic
classification that achieved higher accuracy and lower false alarm rates on benchmark datasets such as CICIDS2017.
Similarly, Almuhanna et al. [3] demonstrated that combining deep autoencoders with random forest classifiers
improved the detection of unknown attacks by 25%. These models can adapt dynamically to evolving network
conditions, making them suitable for complex ISP infrastructures. However, scalability and latency remain challenges.
Many ML-based intrusion detection systems are tested in controlled environments and do not perform optimally under
real-time, multi-gigabit ISP traffic. Moreover, the need for continuous retraining can cause operational overhead. Recent
research focuses on federated and online learning techniques to overcome these issues, but deployment in live ISP
infrastructures is still limited. Hence, while ML significantly enhances anomaly detection, practical implementation at
ISP scale requires further optimization and automation.

2.3. Cyber Resilience in Critical Infrastructure

Cyber resilience extends beyond detection; it emphasizes continuity of operations during and after cyber incidents.
Research on critical infrastructure, particularly energy grids and national communication systems, underscores
resilience as a multidimensional capability involving redundancy, adaptability, and recovery [4]. Dubynskyi and Zubok
[5] highlight the importance of resilient topology design, where network nodes can self-heal and reroute traffic
dynamically during attacks. Similar approaches are recommended in NIST’s cyber resilience engineering guidelines,
which stress automation and continuous monitoring as essential features of national-scale networks. While these
studies provide valuable insights, few apply resilience frameworks directly to public ISPs, where operational conditions
differ significantly. ISP environments demand high throughput, low latency, and multi-tenant management, which
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complicate resilience implementation. Thus, integrating automated threat detection with resilience principles presents
a promising yet underexplored research direction.

2.4. Automated Response and Network Orchestration

Automated incident response frameworks aim to reduce human dependency in cyber defense. Bhardwaj et al. [6]
proposed a resilient network infrastructure policy framework that defines adaptive response strategies for network
anomalies. Similarly, recent studies explore orchestration systems that isolate compromised nodes or dynamically
adjust routing policies when attacks occur. However, most implementations remain limited to enterprise networks or
simulation environments rather than large-scale ISPs. Automation at the ISP level must address interoperability
between heterogeneous hardware, software-defined networking (SDN), and multi-vendor environments. The
integration of detection and response systems through orchestration platforms such as SOAR (Security Orchestration,
Automation, and Response) is still emerging. Therefore, combining automated detection with self-adaptive response
mechanisms at ISP scale remains an open research challenge that this paper seeks to address.

3. Methodology

This section details the design and implementation of the Cyber-Resilient Infrastructure Framework (CRIF). The
methodology focuses on developing a layered architecture integrating automated detection, adaptive response, and
resilience enhancement. The design was validated through a simulated ISP environment replicating large-scale network
traffic and diverse attack scenarios to assess the system’s detection accuracy, adaptability, and service continuity.

3.1. Framework Architecture

The proposed Cyber-Resilient Infrastructure Framework (CRIF) is built on four key functional layers: Data Collection,
Detection, Response, and Resilience. Each layer contributes a specific defensive role, forming an end-to-end automated
threat management ecosystem. Figure 1 presents an overview of the architectural workflow.
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Figure 1 Cyber-Resilient Infrastructure Framework (CRIF) Architecture

In the Data Collection Layer, telemetry, flow data, and logs from routers, firewalls, and servers are continuously
gathered. The Detection Layer analyzes this data using machine learning models capable of identifying deviations from
normal traffic behavior. When an anomaly is identified, the Response Layer automatically executes preconfigured
defensive actions such as quarantining affected nodes, rate-limiting malicious traffic, or adjusting routing paths. Finally,
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the Resilience Layer maintains operational continuity through redundant systems and load-balancing mechanisms,
ensuring minimal downtime even during containment procedures.

This layered design allows real-time detection and mitigation while maintaining service reliability. It eliminates single
points of failure by decentralizing monitoring and automating defensive operations across the entire ISP infrastructure.

3.2. Data Collection and Preprocessing

Effective threat detection depends on the quality and consistency of input data. The Data Collection Layer aggregates
network telemetry and system logs from multiple data sources including routers, DNS servers, and intrusion sensors.
High-frequency data capture is enabled through protocols such as NetFlow, IPFIX, and SNMP, which provide real-time
visibility into packet behavior and flow anomalies. The collected data is then subjected to preprocessing steps
normalization, feature extraction, and dimensionality reduction—to eliminate redundancy and optimize computational
efficiency. To ensure diverse training and evaluation, benchmark datasets such as CICIDS2017 and UNSW-NB15 were
incorporated. These datasets contain both legitimate and malicious traffic traces, enabling balanced learning. Feature
engineering focuses on variables such as connection duration, byte count, flow direction, and entropy levels, which
strongly influence model accuracy. The preprocessed dataset is partitioned into training and testing subsets using an
80/20 split, with cross-validation applied to prevent overfitting. Feature selection methods like Principal Component
Analysis (PCA) were used to retain the most relevant attributes while reducing computational overhead. This
preprocessing stage ensures that the detection models can process high-volume ISP data in real time without degrading
performance, providing the foundation for accurate and efficient automated threat detection.

3.3. Detection and Learning Mechanisms

The Detection Layer is the analytical core of the CRIF framework, employing machine learning and deep learning models
to identify anomalous behavior across network traffic. Both supervised and unsupervised algorithms were integrated
to balance precision and adaptability. Supervised models such as Random Forest (RF) and Support Vector Machines
(SVM) excel at classifying known attacks using labeled datasets, while unsupervised models like Isolation Forest (IF)
and Autoencoders are capable of detecting novel, unseen threats. An LSTM-based Deep Neural Network was further
developed to capture temporal patterns, allowing early detection of slow-evolving intrusions such as Advanced
Persistent Threats (APTs). Each model was trained on the preprocessed data using 10-fold cross-validation and
evaluated through metrics such as accuracy, precision, recall, and F1-score. A feedback loop connects the Continuous
Learning Module (CLM) with the detection process. After each incident, the CLM retrains the models using updated
threat signatures and network statistics, ensuring the system adapts to evolving attack strategies. This adaptive training
significantly reduces false positives and enhances the precision of anomaly classification. Overall, the multi-model
ensemble achieves high sensitivity and stability, enabling real-time detection of both known and emerging cyber threats
across ISP-scale environments.

3.4. Automated Response and Recovery

Upon the confirmation of a threat, the Response Layer activates the Adaptive Response Orchestration (ARO) engine,
which automates mitigation without manual intervention. The ARO prioritizes three defense objectives: containment,
continuity, and recovery. Containment involves isolating infected hosts or redirecting suspicious traffic to a sandbox
environment for analysis. Continuity ensures unaffected services remain operational through automated load balancing
and rerouting strategies. Recovery mechanisms restore affected components by reconfiguring routing tables, applying
security patches, or restarting isolated services once sanitized. The Resilience Layer complements ARO by maintaining
backup communication paths and redundant resources through micro-segmentation and software-defined networking
(SDN). These technologies enable dynamic traffic rerouting and service preservation during mitigation. Experimental
results showed that automated response actions reduced mean response time from 3.2 minutes in manual systems to
1.5 minutes using CRIF. This automation not only enhances speed but also consistency, as the system follows predefined
playbooks validated through prior simulations. Together, ARO and the Resilience Layer ensure that network operations
remain stable and that defensive actions occur seamlessly across distributed nodes without requiring centralized
manual control, embodying true cyber resilience for ISP environments.

3.5. Experimental Setup and Evaluation Metrics

The CRIF framework was evaluated in a simulated ISP testbed consisting of virtual routers, servers, and traffic
emulators generating both legitimate and malicious flows. Attacks simulated included DDoS, port scanning, and
malware propagation. Performance was assessed using four core metrics: Detection Accuracy, False Positive Rate,
Response Time, and Service Availability.
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Table 1 presents a comparative analysis between conventional manual systems and the proposed automated

framework.

Table 1 Performance Comparison between Manual and Automated Threat Detection Systems

Metric Manual System | CRIF (Proposed) | Improvement
Detection Accuracy | 81% 94% +13%

False Positive Rate | 0.19 0.11 -42%
Response Time 3.2 min 1.5 min -53%

Service Availability | 99.85% 99.97% +0.12%

The results in Table 1 confirm that the CRIF model significantly enhances detection accuracy and reduces false positives
while improving service uptime. Automated response capabilities shortened mitigation delays by over 50%,
demonstrating the practical advantage of integrating machine learning, orchestration, and resilience strategies within
ISP cybersecurity frameworks. The system’s scalability and low-latency performance validate its potential for
deployment in real-world service provider infrastructures.

4. Results and Discussion

4.1. System Performance Analysis

The Cyber-Resilient Infrastructure Framework (CRIF) prototype significantly enhanced detection and response
efficiency compared with a baseline manual setup. Automated machine-learning-based log inspection allowed the
system to identify patterns of intrusion within seconds, resulting in a threat-detection accuracy increase from 81 % to
94 %. Figure 1 visualizes this improvement, showing a steep rise in accuracy as the adaptive classifier received feedback
from network events. Equally important, the false-positive rate fell by 28 %, which directly reduced alert fatigue and
operator workload. These metrics validate that the Al engine not only detects anomalies faster but also distinguishes
between legitimate traffic bursts and coordinated attacks. Furthermore, predictive modeling helped the system
recognize evolving attack signatures through online learning, minimizing the need for full retraining. Figure 2 shows
how the CRIF engine dynamically adjusts detection thresholds to sustain high performance even under varying network
loads. Together, these results confirm that automated intelligence greatly strengthens the reliability and responsiveness
of public-ISP infrastructures.

100%

94%

80%

81%

60%

40%

20%

0%

Baseline CRIF

Figure 2 Improvement in Detection Accuracy (Baseline vs CRIF) (Bar chart illustrating accuracy growth from 81 % to
94 %.)
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Figure 3 Adaptive Learning Curve of the Threat-Detection Engine (Line graph showing accuracy stabilization over 10
iterations of self-learning.)

4.2. Response Efficiency and Service Continuity

The automation of incident response in CRIF shortened the mean time-to-respond from 3.2 minutes to 1.5 minutes per
event, a reduction of more than 50 %. This improvement stemmed from the orchestration module, which automatically
isolated infected subnets, triggered mitigation scripts, and notified administrators in parallel. The adaptive rule-engine
allowed near-instant correlation between detection and containment, ensuring that malicious packets were filtered
before user-level service degradation occurred. Service availability during simulated DDoS and ransomware stress tests
remained above 99.97 % uptime, surpassing traditional redundancy-only approaches. Table 1 summarizes comparative
metrics for key operational parameters. The sustained uptime demonstrates that a learning-based defense model can
preserve customer experience and regulatory compliance even under persistent threats. The experiments further
revealed that automated playbooks integrated through RESTful APIs with the provider’s Network Operations Center
eliminated human latency and ensured standardized mitigation steps. The framework therefore supports continuous
delivery and minimal downtime, essential for modern ISPs where every second of outage translates to significant
financial and reputational loss.

Table 2 Comparative Operational Performance Metrics

Metric Baseline Manual System | CRIF Prototype | Improvement
Detection Accuracy 81 % 94 % +16 %

False Positives (per 1000 alerts) | 68 49 -28%
Average Response Time (min) 3.2 1.5 -53%

Service Uptime (%) 99.82 99.97 +0.15 %

(Table 2 illustrates the measurable impact of CRIF automation on ISP resilience.)

4.3. Adaptive Learning and Scalability

Beyond immediate performance gains, CRIF’s adaptive learning engine proved capable of incremental improvement
without full model retraining, which is vital for scalability in large-scale ISP environments. The prototype ingested live
traffic from multiple gateways, continuously updating anomaly baselines using a sliding-window data structure. Over
successive simulation rounds, the model’s classification accuracy plateaued at 94 %, indicating convergence to stable
operational parameters. This continual-learning behavior allowed the framework to detect zero-day exploits with
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minimal prior data, reducing dependence on static signature databases. Moreover, the containerized deployment model
ensured that updates could be rolled out across distributed nodes with negligible downtime. During scalability tests
across 20 virtual nodes, CPU utilization stayed below 65 %, confirming computational efficiency suitable for real-world
ISP clusters. The ability to integrate new data sources such as customer routers or IoT edge devices without
reconfiguration demonstrates long-term viability. In essence, CRIF establishes a foundation for an evolving cyber-
resilient ecosystem in which machine intelligence, automation, and self-healing orchestration collectively reinforce
public-internet infrastructure stability and security.

5. Conclusion

This research presents a Cyber-Resilient Infrastructure Framework (CRIF) designed to strengthen the defensive
capabilities of Internet Service Providers (ISPs) through automation and adaptive intelligence. By combining Al-
powered anomaly detection, automated response orchestration, and continuous self-learning, the framework
significantly enhances operational resilience and detection efficiency. Experimental results demonstrated notable
improvements in detection accuracy, response time, and overall service availability, underscoring CRIF’s potential as a
scalable and practical model for ISP-level cybersecurity. The integration of adaptive learning ensures that the system
evolves with emerging threats, thereby sustaining protection even in rapidly changing network environments.

For future work, the study envisions expanding CRIF into a collaborative ecosystem by incorporating federated learning
for cross-ISP threat intelligence sharing, enabling privacy-preserving model updates across distributed networks.
Additionally, the integration of blockchain-based audit trails is proposed to ensure transparent, tamper-resistant
incident reporting and verification. Further exploration into quantum-safe encryption and Al-driven risk prediction
could also provide deeper resilience layers, positioning CRIF as a next-generation cybersecurity paradigm capable of
safeguarding the public internet infrastructure against increasingly sophisticated cyber threats.
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