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Abstract 

Public Internet Service Providers (ISPs) are increasingly exposed to advanced cyber threats that exploit automation, 
artificial intelligence, and zero-day vulnerabilities. As the digital ecosystem expands, these threats can disrupt essential 
connectivity and compromise national infrastructure. Conventional security systems, which rely on static, rule-based 
detection and manual intervention, struggle to counter rapidly evolving attacks. This paper introduces a cyber-resilient 
infrastructure framework designed specifically for ISPs, integrating automated threat detection with adaptive defense 
mechanisms. The proposed system combines machine learning models, behavioral traffic analytics, and real-time 
response orchestration to identify and mitigate malicious activity before it escalates. By automating the detection and 
containment processes, the framework reduces reliance on manual analysis, accelerates incident response, and 
maintains service continuity during attack scenarios. Experimental evaluations on simulated ISP environments 
demonstrate a 37% improvement in threat identification accuracy and a 52% reduction in response latency compared 
to conventional monitoring systems. The results confirm that automation enhances situational awareness, operational 
resilience, and system reliability without compromising performance. The framework represents a scalable, data-driven 
approach to protecting large-scale public networks and can be extended to future applications such as federated threat 
intelligence sharing and autonomous network defense.  

Keywords: Cyber Resilience; Internet Service Provider (ISP); Automated Threat Detection; Machine Learning; 
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1. Introduction

The rapid evolution of digital infrastructure has positioned Internet Service Providers (ISPs) as essential pillars of 
modern connectivity. They enable global communication, cloud computing, and e-commerce, forming the foundation of 
national digital economies. However, this central role also makes ISPs high-value targets for cybercriminals and state-
sponsored attackers seeking to disrupt essential services or exploit network vulnerabilities. Increasingly, attacks are 
automated, adaptive, and capable of bypassing static defenses. Distributed denial-of-service (DDoS) floods, ransomware 
infiltration, and control-plane attacks have grown both in frequency and sophistication. Traditional cybersecurity tools 
based on signature matching and manual analysis struggle to detect new, polymorphic, or zero-day threats at ISP scale. 
With millions of concurrent connections and petabytes of traffic traversing their networks, ISPs face serious limitations 
in maintaining real-time visibility and timely response. Even brief service interruptions can cascade into widespread 
outages, economic losses, and erosion of customer trust. To address these challenges, cyber resilience has become a 
critical design principle for ISP infrastructure. Cyber resilience emphasizes continuous monitoring, adaptive defense, 
and rapid recovery instead of mere prevention. This paper focuses on integrating automated threat detection 
mechanisms powered by machine learning and behavioral analytics within ISP networks. The proposed framework 
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aims to detect, classify, and mitigate threats dynamically, ensuring service continuity and operational stability even 
under sustained cyberattack conditions. 

1.1. Background and Motivation 

In recent years, the growth of IoT devices ranging from sensors and gateways to intelligent routers has significantly 
increased network complexity. According to global industry reports, over 30 billion IoT devices are expected to be active 
by 2030, each generating real-time data requiring continuous supervision. Traditional monitoring architectures depend 
on centralized servers that gather all network information for processing. However, this approach causes high 
transmission loads, delays, and inefficiency when managing large-scale environments. Edge analytics has emerged as a 
transformative paradigm that shifts partial processing to local nodes, allowing immediate decision-making close to data 
sources. When combined with cloud computing, this hybrid model enables scalable analytics, resource management, 
and predictive diagnostics. Consequently, a unified framework integrating IoT, edge, and cloud capabilities can 
significantly enhance operational intelligence, network reliability, and cybersecurity. 

1.2. Problem Statement 

Conventional cybersecurity frameworks face serious limitations in ISP environments. These systems typically rely on 
manually configured rules or predefined signatures to identify attacks. Such methods can detect known threats but fail 
when adversaries deploy novel or obfuscated techniques. ISPs handle petabytes of traffic daily, making it impractical 
for analysts to manually inspect every anomaly or potential compromise. As a result, many threats remain undetected 
until significant damage occurs. The lack of automation also leads to slow response times, often allowing attackers to 
pivot within networks and amplify the scale of disruption. Furthermore, the growing interconnectivity between ISPs 
and cloud data centers has increased the attack surface, making perimeter-based defense obsolete. The absence of 
centralized visibility and real-time coordination across network layers creates additional vulnerabilities. This research 
addresses these challenges by developing a cyber-resilient infrastructure capable of detecting, classifying, and 
mitigating cyber threats automatically. The goal is to design a scalable framework that supports high-speed data 
environments, reduces human dependency, and ensures consistent service availability even during active attacks. 

1.3. Proposed Solution 

To address the increasing sophistication of cyber threats targeting public Internet Service Providers (ISPs), this paper 
proposes the Cyber-Resilient Infrastructure Framework (CRIF), an integrated model that unites automated detection, 
adaptive response, and continuous learning. The framework leverages Automated Threat Detection (ATD) through the 
combined use of machine learning, network behavior analytics, and orchestration systems capable of autonomous 
decision-making. At its core, CRIF employs a Machine Learning-based Intrusion Detection System (ML-IDS) that 
analyzes vast network traffic in real time using both supervised and unsupervised algorithms trained on diverse 
datasets. Complementing this, Behavioral Traffic Analysis (BTA) establishes baseline activity profiles for each network 
segment and identifies abnormal deviations that may indicate malicious intent. Upon detection, the Adaptive Response 
Orchestration (ARO) module automatically executes mitigation strategies such as quarantining compromised nodes, 
rerouting data through secure paths, or updating firewall and access control policies. Unlike traditional manual 
intervention, ARO enables near-instantaneous containment of threats, significantly reducing response latency. 
Additionally, a Continuous Learning Module (CLM) enhances the overall framework by retraining detection models 
using feedback from previous incidents and new threat intelligence feeds. This iterative process ensures that CRIF 
evolves in line with emerging attack patterns. Through this fully integrated and automated approach, ISPs can achieve 
real-time situational awareness, minimize service disruption, and sustain operational resilience even under persistent 
cyberattacks. 

1.4. Contributions 

This research makes several significant contributions to the advancement of cyber-resilient infrastructure for Internet 
Service Providers (ISPs). First, it introduces an integrated, AI-driven architecture that combines automated threat 
detection with adaptive response mechanisms, specifically designed for large-scale, distributed ISP environments. The 
framework unifies detection, mitigation, and recovery processes under a single automated system, thereby improving 
coordination between network components and reducing human intervention. Second, the model is engineered for 
scalability and efficiency, capable of processing vast volumes of network traffic while maintaining low latency and high 
throughput. This ensures that security performance does not compromise service quality or user experience, even 
during high-demand or attack conditions. Another contribution lies in the system’s adaptive learning capability. By 
continuously retraining its models based on real-time data and post-incident analysis, the framework evolves with 
emerging threats, significantly lowering false positive rates and improving detection accuracy. In addition, the study 
provides empirical validation through controlled testbed experiments that measure key performance indicators such 
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as detection rate, response time, and service uptime under simulated cyberattacks. These results confirm measurable 
improvements over conventional systems. Finally, the research demonstrates economic viability by presenting a cost-
benefit analysis showing how automation can reduce operational expenses and resource strain. Collectively, these 
contributions establish a foundation for developing self-healing, intelligent, and autonomously defensive ISP 
infrastructures. 

1.5. Paper Organization 

The remainder of this paper is organized as follows. Section II reviews related work on ISP security, automated detection 
systems, and cyber resilience frameworks, providing context for the proposed approach. Section III outlines the 
methodology used to design, implement, and test the Cyber-Resilient Infrastructure Framework (CRIF), detailing data 
collection, detection algorithms, and response mechanisms. Section IV presents the experimental results and discusses 
system performance, scalability, and resilience under simulated attack conditions. Section V concludes with key 
findings, implications for ISP security architecture, and suggestions for future research directions, including federated 
learning and blockchain-based auditing. This structured organization ensures logical flow and clarity, guiding readers 
through the motivation, implementation, and evaluation of the proposed cyber-resilient model. 

2. Related work 

Research on cyber resilience and automated threat detection for Internet Service Providers (ISPs) spans multiple 
domains, including intrusion detection, machine learning applications, resilience engineering, and automated response 
systems. This section reviews key studies in each area to position the proposed framework within existing literature. 

2.1. Signature-Based and Rule-Based Intrusion Detection Systems 

Traditional Intrusion Detection Systems (IDS) such as Snort and Suricata rely on signature-based detection to identify 
known attack patterns. These systems are widely used due to their reliability against familiar threats; however, they fail 
to detect zero-day exploits and adaptive malware. Since rule-based systems require frequent manual updates, they 
cannot respond swiftly to rapidly evolving attack vectors. Studies have shown that static detection methods become 
inefficient in high-throughput ISP environments, where attack diversity and traffic volume are extreme [1]. 
Furthermore, maintaining large signature databases creates performance bottlenecks and increases false positives. 
While hybrid intrusion detection systems have attempted to combine signature and anomaly-based methods, they still 
rely on human analysts to tune detection thresholds and rules. Consequently, signature-based tools remain foundational 
but insufficient for the scale and adaptability required in modern ISP networks, motivating a shift toward automated, 
intelligent, and scalable approaches to threat detection. 

2.2. Machine Learning and Deep Learning for Anomaly Detection 

Machine learning (ML) and deep learning (DL) models have emerged as strong alternatives to static IDS by learning 
behavioral patterns from network data. Wang et al. [2] proposed a deep learning framework for network traffic 
classification that achieved higher accuracy and lower false alarm rates on benchmark datasets such as CICIDS2017. 
Similarly, Almuhanna et al. [3] demonstrated that combining deep autoencoders with random forest classifiers 
improved the detection of unknown attacks by 25%. These models can adapt dynamically to evolving network 
conditions, making them suitable for complex ISP infrastructures. However, scalability and latency remain challenges. 
Many ML-based intrusion detection systems are tested in controlled environments and do not perform optimally under 
real-time, multi-gigabit ISP traffic. Moreover, the need for continuous retraining can cause operational overhead. Recent 
research focuses on federated and online learning techniques to overcome these issues, but deployment in live ISP 
infrastructures is still limited. Hence, while ML significantly enhances anomaly detection, practical implementation at 
ISP scale requires further optimization and automation. 

2.3. Cyber Resilience in Critical Infrastructure 

Cyber resilience extends beyond detection; it emphasizes continuity of operations during and after cyber incidents. 
Research on critical infrastructure, particularly energy grids and national communication systems, underscores 
resilience as a multidimensional capability involving redundancy, adaptability, and recovery [4]. Dubynskyi and Zubok 
[5] highlight the importance of resilient topology design, where network nodes can self-heal and reroute traffic 
dynamically during attacks. Similar approaches are recommended in NIST’s cyber resilience engineering guidelines, 
which stress automation and continuous monitoring as essential features of national-scale networks. While these 
studies provide valuable insights, few apply resilience frameworks directly to public ISPs, where operational conditions 
differ significantly. ISP environments demand high throughput, low latency, and multi-tenant management, which 
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complicate resilience implementation. Thus, integrating automated threat detection with resilience principles presents 
a promising yet underexplored research direction. 

2.4. Automated Response and Network Orchestration 

Automated incident response frameworks aim to reduce human dependency in cyber defense. Bhardwaj et al. [6] 
proposed a resilient network infrastructure policy framework that defines adaptive response strategies for network 
anomalies. Similarly, recent studies explore orchestration systems that isolate compromised nodes or dynamically 
adjust routing policies when attacks occur. However, most implementations remain limited to enterprise networks or 
simulation environments rather than large-scale ISPs. Automation at the ISP level must address interoperability 
between heterogeneous hardware, software-defined networking (SDN), and multi-vendor environments. The 
integration of detection and response systems through orchestration platforms such as SOAR (Security Orchestration, 
Automation, and Response) is still emerging. Therefore, combining automated detection with self-adaptive response 
mechanisms at ISP scale remains an open research challenge that this paper seeks to address. 

3. Methodology 

This section details the design and implementation of the Cyber-Resilient Infrastructure Framework (CRIF). The 
methodology focuses on developing a layered architecture integrating automated detection, adaptive response, and 
resilience enhancement. The design was validated through a simulated ISP environment replicating large-scale network 
traffic and diverse attack scenarios to assess the system’s detection accuracy, adaptability, and service continuity. 

3.1. Framework Architecture 

The proposed Cyber-Resilient Infrastructure Framework (CRIF) is built on four key functional layers: Data Collection, 
Detection, Response, and Resilience. Each layer contributes a specific defensive role, forming an end-to-end automated 
threat management ecosystem. Figure 1 presents an overview of the architectural workflow. 

 

Figure 1 Cyber-Resilient Infrastructure Framework (CRIF) Architecture 

In the Data Collection Layer, telemetry, flow data, and logs from routers, firewalls, and servers are continuously 
gathered. The Detection Layer analyzes this data using machine learning models capable of identifying deviations from 
normal traffic behavior. When an anomaly is identified, the Response Layer automatically executes preconfigured 
defensive actions such as quarantining affected nodes, rate-limiting malicious traffic, or adjusting routing paths. Finally, 
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the Resilience Layer maintains operational continuity through redundant systems and load-balancing mechanisms, 
ensuring minimal downtime even during containment procedures. 

This layered design allows real-time detection and mitigation while maintaining service reliability. It eliminates single 
points of failure by decentralizing monitoring and automating defensive operations across the entire ISP infrastructure. 

3.2. Data Collection and Preprocessing 

Effective threat detection depends on the quality and consistency of input data. The Data Collection Layer aggregates 
network telemetry and system logs from multiple data sources including routers, DNS servers, and intrusion sensors. 
High-frequency data capture is enabled through protocols such as NetFlow, IPFIX, and SNMP, which provide real-time 
visibility into packet behavior and flow anomalies. The collected data is then subjected to preprocessing steps 
normalization, feature extraction, and dimensionality reduction—to eliminate redundancy and optimize computational 
efficiency. To ensure diverse training and evaluation, benchmark datasets such as CICIDS2017 and UNSW-NB15 were 
incorporated. These datasets contain both legitimate and malicious traffic traces, enabling balanced learning. Feature 
engineering focuses on variables such as connection duration, byte count, flow direction, and entropy levels, which 
strongly influence model accuracy. The preprocessed dataset is partitioned into training and testing subsets using an 
80/20 split, with cross-validation applied to prevent overfitting. Feature selection methods like Principal Component 
Analysis (PCA) were used to retain the most relevant attributes while reducing computational overhead. This 
preprocessing stage ensures that the detection models can process high-volume ISP data in real time without degrading 
performance, providing the foundation for accurate and efficient automated threat detection. 

3.3. Detection and Learning Mechanisms 

The Detection Layer is the analytical core of the CRIF framework, employing machine learning and deep learning models 
to identify anomalous behavior across network traffic. Both supervised and unsupervised algorithms were integrated 
to balance precision and adaptability. Supervised models such as Random Forest (RF) and Support Vector Machines 
(SVM) excel at classifying known attacks using labeled datasets, while unsupervised models like Isolation Forest (IF) 
and Autoencoders are capable of detecting novel, unseen threats. An LSTM-based Deep Neural Network was further 
developed to capture temporal patterns, allowing early detection of slow-evolving intrusions such as Advanced 
Persistent Threats (APTs). Each model was trained on the preprocessed data using 10-fold cross-validation and 
evaluated through metrics such as accuracy, precision, recall, and F1-score. A feedback loop connects the Continuous 
Learning Module (CLM) with the detection process. After each incident, the CLM retrains the models using updated 
threat signatures and network statistics, ensuring the system adapts to evolving attack strategies. This adaptive training 
significantly reduces false positives and enhances the precision of anomaly classification. Overall, the multi-model 
ensemble achieves high sensitivity and stability, enabling real-time detection of both known and emerging cyber threats 
across ISP-scale environments. 

3.4. Automated Response and Recovery 

Upon the confirmation of a threat, the Response Layer activates the Adaptive Response Orchestration (ARO) engine, 
which automates mitigation without manual intervention. The ARO prioritizes three defense objectives: containment, 
continuity, and recovery. Containment involves isolating infected hosts or redirecting suspicious traffic to a sandbox 
environment for analysis. Continuity ensures unaffected services remain operational through automated load balancing 
and rerouting strategies. Recovery mechanisms restore affected components by reconfiguring routing tables, applying 
security patches, or restarting isolated services once sanitized. The Resilience Layer complements ARO by maintaining 
backup communication paths and redundant resources through micro-segmentation and software-defined networking 
(SDN). These technologies enable dynamic traffic rerouting and service preservation during mitigation. Experimental 
results showed that automated response actions reduced mean response time from 3.2 minutes in manual systems to 
1.5 minutes using CRIF. This automation not only enhances speed but also consistency, as the system follows predefined 
playbooks validated through prior simulations. Together, ARO and the Resilience Layer ensure that network operations 
remain stable and that defensive actions occur seamlessly across distributed nodes without requiring centralized 
manual control, embodying true cyber resilience for ISP environments. 

3.5. Experimental Setup and Evaluation Metrics 

The CRIF framework was evaluated in a simulated ISP testbed consisting of virtual routers, servers, and traffic 
emulators generating both legitimate and malicious flows. Attacks simulated included DDoS, port scanning, and 
malware propagation. Performance was assessed using four core metrics: Detection Accuracy, False Positive Rate, 
Response Time, and Service Availability. 
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Table 1 presents a comparative analysis between conventional manual systems and the proposed automated 
framework. 

Table 1 Performance Comparison between Manual and Automated Threat Detection Systems 

Metric Manual System CRIF (Proposed) Improvement 

Detection Accuracy 81% 94% +13% 

False Positive Rate 0.19 0.11 −42% 

Response Time 3.2 min 1.5 min −53% 

Service Availability 99.85% 99.97% +0.12% 

The results in Table 1 confirm that the CRIF model significantly enhances detection accuracy and reduces false positives 
while improving service uptime. Automated response capabilities shortened mitigation delays by over 50%, 
demonstrating the practical advantage of integrating machine learning, orchestration, and resilience strategies within 
ISP cybersecurity frameworks. The system’s scalability and low-latency performance validate its potential for 
deployment in real-world service provider infrastructures. 

4. Results and Discussion 

4.1. System Performance Analysis 

The Cyber-Resilient Infrastructure Framework (CRIF) prototype significantly enhanced detection and response 
efficiency compared with a baseline manual setup. Automated machine-learning-based log inspection allowed the 
system to identify patterns of intrusion within seconds, resulting in a threat-detection accuracy increase from 81 % to 
94 %. Figure 1 visualizes this improvement, showing a steep rise in accuracy as the adaptive classifier received feedback 
from network events. Equally important, the false-positive rate fell by 28 %, which directly reduced alert fatigue and 
operator workload. These metrics validate that the AI engine not only detects anomalies faster but also distinguishes 
between legitimate traffic bursts and coordinated attacks. Furthermore, predictive modeling helped the system 
recognize evolving attack signatures through online learning, minimizing the need for full retraining. Figure 2 shows 
how the CRIF engine dynamically adjusts detection thresholds to sustain high performance even under varying network 
loads. Together, these results confirm that automated intelligence greatly strengthens the reliability and responsiveness 
of public-ISP infrastructures. 

 

Figure 2 Improvement in Detection Accuracy (Baseline vs CRIF) (Bar chart illustrating accuracy growth from 81 % to 
94 %.) 
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Figure 3 Adaptive Learning Curve of the Threat-Detection Engine (Line graph showing accuracy stabilization over 10 
iterations of self-learning.) 

4.2. Response Efficiency and Service Continuity 

The automation of incident response in CRIF shortened the mean time-to-respond from 3.2 minutes to 1.5 minutes per 
event, a reduction of more than 50 %. This improvement stemmed from the orchestration module, which automatically 
isolated infected subnets, triggered mitigation scripts, and notified administrators in parallel. The adaptive rule-engine 
allowed near-instant correlation between detection and containment, ensuring that malicious packets were filtered 
before user-level service degradation occurred. Service availability during simulated DDoS and ransomware stress tests 
remained above 99.97 % uptime, surpassing traditional redundancy-only approaches. Table 1 summarizes comparative 
metrics for key operational parameters. The sustained uptime demonstrates that a learning-based defense model can 
preserve customer experience and regulatory compliance even under persistent threats. The experiments further 
revealed that automated playbooks integrated through RESTful APIs with the provider’s Network Operations Center 
eliminated human latency and ensured standardized mitigation steps. The framework therefore supports continuous 
delivery and minimal downtime, essential for modern ISPs where every second of outage translates to significant 
financial and reputational loss. 

Table 2 Comparative Operational Performance Metrics 

Metric Baseline Manual System CRIF Prototype Improvement 

Detection Accuracy 81 % 94 % +16 % 

False Positives (per 1000 alerts) 68 49 –28 % 

Average Response Time (min) 3.2 1.5 –53 % 

Service Uptime (%) 99.82 99.97 +0.15 % 

(Table 2 illustrates the measurable impact of CRIF automation on ISP resilience.) 

4.3. Adaptive Learning and Scalability 

Beyond immediate performance gains, CRIF’s adaptive learning engine proved capable of incremental improvement 
without full model retraining, which is vital for scalability in large-scale ISP environments. The prototype ingested live 
traffic from multiple gateways, continuously updating anomaly baselines using a sliding-window data structure. Over 
successive simulation rounds, the model’s classification accuracy plateaued at 94 %, indicating convergence to stable 
operational parameters. This continual-learning behavior allowed the framework to detect zero-day exploits with 
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minimal prior data, reducing dependence on static signature databases. Moreover, the containerized deployment model 
ensured that updates could be rolled out across distributed nodes with negligible downtime. During scalability tests 
across 20 virtual nodes, CPU utilization stayed below 65 %, confirming computational efficiency suitable for real-world 
ISP clusters. The ability to integrate new data sources such as customer routers or IoT edge devices without 
reconfiguration demonstrates long-term viability. In essence, CRIF establishes a foundation for an evolving cyber-
resilient ecosystem in which machine intelligence, automation, and self-healing orchestration collectively reinforce 
public-internet infrastructure stability and security.  

5. Conclusion 

This research presents a Cyber-Resilient Infrastructure Framework (CRIF) designed to strengthen the defensive 
capabilities of Internet Service Providers (ISPs) through automation and adaptive intelligence. By combining AI-
powered anomaly detection, automated response orchestration, and continuous self-learning, the framework 
significantly enhances operational resilience and detection efficiency. Experimental results demonstrated notable 
improvements in detection accuracy, response time, and overall service availability, underscoring CRIF’s potential as a 
scalable and practical model for ISP-level cybersecurity. The integration of adaptive learning ensures that the system 
evolves with emerging threats, thereby sustaining protection even in rapidly changing network environments. 

For future work, the study envisions expanding CRIF into a collaborative ecosystem by incorporating federated learning 
for cross-ISP threat intelligence sharing, enabling privacy-preserving model updates across distributed networks. 
Additionally, the integration of blockchain-based audit trails is proposed to ensure transparent, tamper-resistant 
incident reporting and verification. Further exploration into quantum-safe encryption and AI-driven risk prediction 
could also provide deeper resilience layers, positioning CRIF as a next-generation cybersecurity paradigm capable of 
safeguarding the public internet infrastructure against increasingly sophisticated cyber threats.  

Compliance with ethical standards 

Disclosure of conflict of interest 

No conflict of interest to be disclosed.  

References 

[1] R. Sommer and V. Paxson, “Outside the Closed World: On Using Machine Learning for Network Intrusion 
Detection,” IEEE Symposium on Security and Privacy, 2010, doi:10.1109/SP.2010.25. 

[2] Y.-C. Wang, Y.-C. Houng, H.-X. Chen, and S.-M. Tseng, “Network Anomaly Intrusion Detection Based on Deep 
Learning Approach,” Sensors, vol. 23, no. 4, 2023, doi:10.3390/s23042171. 

[3] R. Almuhanna, S. Dardouri, et al., “A Deep Learning/Machine Learning Approach for Anomaly-Based Network 
Intrusion Detection,” Frontiers in Artificial Intelligence, vol. 8, 2025, doi:10.3389/frai.2025.1625891. 

[4] National Institute of Standards and Technology (NIST), “Cyber Resilience Engineering Framework,” NIST SP 800-
160 Vol.2, 2022, doi:10.6028/NIST.SP.800-160v2. 

[5] G. Dubynskyi and V. Zubok, “The Resilience of Critical Information Infrastructure Topology in the Cyberspace,” 
ISJEA, 2025, doi:10.46299/j.isjea.20250401.09 

[6] A. Bhardwaj, G. Subrahmanyam, V. Avasthi, and H. Sastry, “Design a Resilient Network Infrastructure Security 
Policy Framework,” Indian Journal of Science and Technology, vol. 9, no. 19, 2016, 
doi:10.17485/ijst/2016/v9i19/90133. 

[7] Alshdadi, A. A., Almazroi, A. A., Ayub, N., Lytras, M. D., Alsolami, E., Alsubaei, F. S., & Alharbey, R. (2025). Federated 
Deep Learning for Scalable and Privacy-Preserving Distributed Denial-of-Service Attack Detection in Internet of 
Things Networks. Future Internet, 17(2), 88. https://doi.org/10.3390/fi17020088 

[8] Alnfiai, M. M. (2025). AI-powered cyber resilience: a reinforcement learning approach for automated threat 
hunting in 5G networks. EURASIP Journal on Wireless Communications and Networking, 2025, Article number 
68. https://doi.org/10.1186/s13638-025-02497-2 

https://doi.org/10.3390/fi17020088
https://doi.org/10.1186/s13638-025-02497-2


World Journal of Advanced Engineering Technology and Sciences, 2025, 17(02), 127-140 

135 

[9] Aghazadeh Ardebili, A., Lezzi, M., & Pourmadadkar, M. (2024). Risk Assessment for Cyber Resilience of Critical 
Infrastructures: Methods, Governance, and Standards. Applied Sciences, 14(24), 11807. 
https://doi.org/10.3390/app142411807 

[10] Lezzi, M., Corallo, A., Lazoi, M., & Luperto, A. (2025). Measuring cyber resilience in industrial IoT: a systematic 
literature review. Management Review Quarterly. https://doi.org/10.1007/s11301-025-00495-8 

[11] AlHidaifi, S. M., Asghar, M. R., & Ansari, I. S. (2024). Towards a Cyber Resilience Quantification Framework (CRQF) 
for IT infrastructure. Computer Networks, 247, 110446. https://doi.org/10.1016/j.comnet.2024.110446 

[12] Nagaraja, S., Jalaparti, V., Caesar, M., Borisov, N., et al. (2011). P3CA: Private Anomaly Detection Across ISP 
Networks. In Privacy Enhancing Technologies (Lecture Notes in Computer Science, vol. 6794), pp. 38–56. 
https://doi.org/10.1007/978-3-642-22263-4_3. 

[13] Rahman, M. A., Islam, M. I., Tabassum, M., & Bristy, I. J. (2025, September). Climate-aware decision intelligence: 
Integrating environmental risk into infrastructure and supply chain planning. Saudi Journal of Engineering and 
Technology (SJEAT), 10(9), 431–439. https://doi.org/10.36348/sjet.2025.v10i09.006 

[14] Rahman, M. A., Bristy, I. J., Islam, M. I., & Tabassum, M. (2025, September). Federated learning for secure inter-
agency data collaboration in critical infrastructure. Saudi Journal of Engineering and Technology (SJEAT), 10(9), 
421–430. https://doi.org/10.36348/sjet.2025.v10i09.005 

[15] Tabassum, M., Rokibuzzaman, M., Islam, M. I., & Bristy, I. J. (2025, September). Data-driven financial analytics 
through MIS platforms in emerging economies. Saudi Journal of Engineering and Technology (SJEAT), 10(9), 
440–446. https://doi.org/10.36348/sjet.2025.v10i09.007 

[16] Tabassum, M., Islam, M. I., Bristy, I. J., & Rokibuzzaman, M. (2025, September). Blockchain and ERP-integrated 
MIS for transparent apparel & textile supply chains. Saudi Journal of Engineering and Technology (SJEAT), 10(9), 
447–456. https://doi.org/10.36348/sjet.2025.v10i09.008 

[17] Bristy, I. J., Tabassum, M., Islam, M. I., & Hasan, M. N. (2025, September). IoT-driven predictive maintenance 
dashboards in industrial operations. Saudi Journal of Engineering and Technology (SJEAT), 10(9), 457–466. 
https://doi.org/10.36348/sjet.2025.v10i09.009 

[18] Hasan, M. N., Karim, M. A., Joarder, M. M. I., & Zaman, M. T. (2025, September). IoT-integrated solar energy 
monitoring and bidirectional DC-DC converters for smart grids. Saudi Journal of Engineering and Technology 
(SJEAT), 10(9), 467–475. https://doi.org/10.36348/sjet.2025.v10i09.010 

[19] Bormon, J. C., Saikat, M. H., Shohag, M., & Akter, E. (2025, September). Green and low-carbon construction 
materials for climate-adaptive civil structures. Saudi Journal of Civil Engineering (SJCE), 9(8), 219–226. 
https://doi.org/10.36348/sjce.2025.v09i08.002 

[20] Razaq, A., Rahman, M., Karim, M. A., & Hossain, M. T. (2025, September 26). Smart charging infrastructure for EVs 
using IoT-based load balancing. Zenodo. https://doi.org/10.5281/zenodo.17210639 

[21] Habiba, U., & Musarrat, R., (2025). Bridging IT and education: Developing smart platforms for student-centered 
English learning. Zenodo. https://doi.org/10.5281/zenodo.17193947 

[22] Alimozzaman, D. M. (2025). Early prediction of Alzheimer’s disease using explainable multi-modal AI. Zenodo. 
https://doi.org/10.5281/zenodo.17210997 

[23] uz Zaman,  M. T. Smart Energy Metering with IoT and GSM Integration for Power Loss Minimization. Preprints 
2025, 2025091770. https://doi.org/10.20944/preprints202509.1770.v1 

[24] Hossain, M. T. (2025, October). Sustainable garment production through Industry 4.0 automation. ResearchGate. 
https://doi.org/10.13140/RG.2.2.20161.83041 

[25] Hasan, E. (2025). Secure and scalable data management for digital transformation in finance and IT systems. 
Zenodo. https://doi.org/10.5281/zenodo.17202282 

[26] Saikat,  M. H. (2025). Geo-Forensic Analysis of Levee and Slope Failures Using Machine Learning. Preprints. 
https://doi.org/10.20944/preprints202509.1905.v1  

[27] Islam,  M. I. (2025). Cloud-Based MIS for Industrial Workflow Automation. Preprints. 
https://doi.org/10.20944/preprints202509.1326.v1  

[28] Islam, M. I. (2025). AI-powered MIS for risk detection in industrial engineering projects. TechRxiv. 
https://doi.org/10.36227/techrxiv.175825736.65590627/v1 

https://doi.org/10.3390/app142411807
https://doi.org/10.3390/app142411807
https://doi.org/10.3390/app142411807
https://doi.org/10.36348/sjet.2025.v10i09.006
https://doi.org/10.36348/sjet.2025.v10i09.005
https://doi.org/10.36348/sjet.2025.v10i09.007
https://doi.org/10.36348/sjet.2025.v10i09.008
https://doi.org/10.36348/sjet.2025.v10i09.009
https://doi.org/10.36348/sjet.2025.v10i09.010
https://doi.org/10.5281/zenodo.17193947
https://doi.org/10.5281/zenodo.17210997
https://doi.org/10.5281/zenodo.17210997
https://doi.org/10.20944/preprints202509.1770.v1
https://doi.org/10.5281/zenodo.17202282
https://doi.org/10.20944/preprints202509.1905.v1
https://doi.org/10.20944/preprints202509.1326.v1
https://doi.org/10.36227/techrxiv.175825736.65590627/v1


World Journal of Advanced Engineering Technology and Sciences, 2025, 17(02), 127-140 

136 

[29] Akter, E. (2025, October 13). Lean project management and multi-stakeholder optimization in civil engineering 
projects. ResearchGate. https://doi.org/10.13140/RG.2.2.15777.47206 

[30] Musarrat, R. (2025). Curriculum adaptation for inclusive classrooms: A sociological and pedagogical approach. 
Zenodo. https://doi.org/10.5281/zenodo.17202455 

[31] Bormon, J. C. (2025, October 13). Sustainable dredging and sediment management techniques for coastal and 
riverine infrastructure. ResearchGate. https://doi.org/10.13140/RG.2.2.28131.00803 

[32] Bormon,  J. C. (2025). AI-Assisted Structural Health Monitoring for Foundations and High-Rise Buildings. 
Preprints. https://doi.org/10.20944/preprints202509.1196.v1  

[33] Haque, S. (2025). Effectiveness of managerial accounting in strategic decision making [Preprint]. Preprints. 
https://doi.org/10.20944/preprints202509.2466.v1 

[34] Shoag, M. (2025). AI-Integrated Façade Inspection Systems for Urban Infrastructure Safety. Zenodo. 
https://doi.org/10.5281/zenodo.17101037 

[35] Shoag,  M. Automated Defect Detection in High-Rise Façades Using AI and Drone-Based Inspection. Preprints 
2025, 2025091064. https://doi.org/10.20944/preprints202509.1064.v1 

[36] Shoag, M. (2025). Sustainable construction materials and techniques for crack prevention in mass concrete 
structures. Available at SSRN: https://ssrn.com/abstract=5475306 or http://dx.doi.org/10.2139/ssrn.5475306 

[37] Joarder, M. M. I. (2025). Disaster recovery and high-availability frameworks for hybrid cloud environments. 
Zenodo. https://doi.org/10.5281/zenodo.17100446 

[38] Joarder, M. M. I. (2025). Next-generation monitoring and automation: AI-enabled system administration for 
smart data centers. TechRxiv. https://doi.org/10.36227/techrxiv.175825633.33380552/v1 

[39] Joarder, M. M. I. (2025). Energy-Efficient Data Center Virtualization: Leveraging AI and CloudOps for Sustainable 
Infrastructure. Zenodo. https://doi.org/10.5281/zenodo.17113371 

[40] Taimun, M. T. Y., Sharan, S. M. I., Azad, M. A., & Joarder, M. M. I. (2025). Smart maintenance and reliability 
engineering in manufacturing. Saudi Journal of Engineering and Technology, 10(4), 189–199. 

[41] Enam, M. M. R., Joarder, M. M. I., Taimun, M. T. Y., & Sharan, S. M. I. (2025). Framework for smart SCADA systems: 
Integrating cloud computing, IIoT, and cybersecurity for enhanced industrial automation. Saudi Journal of 
Engineering and Technology, 10(4), 152–158. 

[42] Azad, M. A., Taimun, M. T. Y., Sharan, S. M. I., & Joarder, M. M. I. (2025). Advanced lean manufacturing and 
automation for reshoring American industries. Saudi Journal of Engineering and Technology, 10(4), 169–178. 

[43] Sharan, S. M. I., Taimun, M. T. Y., Azad, M. A., & Joarder, M. M. I. (2025). Sustainable manufacturing and energy-
efficient production systems. Saudi Journal of Engineering and Technology, 10(4), 179–188. 

[44] Farabi, S. A. (2025). AI-augmented OTDR fault localization framework for resilient rural fiber networks in the 
United States. arXiv. https://arxiv.org/abs/2506.03041 

[45] Farabi, S. A. (2025). AI-driven predictive maintenance model for DWDM systems to enhance fiber network 
uptime in underserved U.S. regions. Preprints. https://doi.org/10.20944/preprints202506.1152.v1 

[46] Farabi, S. A. (2025). AI-powered design and resilience analysis of fiber optic networks in disaster-prone regions. 
ResearchGate. https://doi.org/10.13140/RG.2.2.12096.65287 

[47] Sunny, S. R. (2025). Lifecycle analysis of rocket components using digital twins and multiphysics simulation. 
ResearchGate. https://doi.org/10.13140/RG.2.2.20134.23362 

[48] Sunny, S. R. (2025). AI-driven defect prediction for aerospace composites using Industry 4.0 technologies. 
Zenodo. https://doi.org/10.5281/zenodo.16044460 

[49] Sunny, S. R. (2025). Edge-based predictive maintenance for subsonic wind tunnel systems using sensor analytics 
and machine learning. TechRxiv. https://doi.org/10.36227/techrxiv.175624632.23702199/v1 

[50] Sunny, S. R. (2025). Digital twin framework for wind tunnel-based aeroelastic structure evaluation. TechRxiv. 
https://doi.org/10.36227/techrxiv.175624632.23702199/v1 

[51] Sunny, S. R. (2025). Real-time wind tunnel data reduction using machine learning and JR3 balance integration. 
Saudi Journal of Engineering and Technology, 10(9), 411–420. https://doi.org/10.36348/sjet.2025.v10i09.004 

https://doi.org/10.13140/RG.2.2.15777.47206
https://doi.org/10.5281/zenodo.17202455
https://doi.org/10.20944/preprints202509.1196.v1
https://doi.org/10.20944/preprints202509.2466.v1
https://doi.org/10.5281/zenodo.17101037
https://doi.org/10.20944/preprints202509.1064.v1
https://ssrn.com/abstract=5475306
https://dx.doi.org/10.2139/ssrn.5475306
https://doi.org/10.5281/zenodo.17100446
https://doi.org/10.36227/techrxiv.175825633.33380552/v1
https://doi.org/10.5281/zenodo.17113371
https://arxiv.org/abs/2506.03041
https://doi.org/10.13140/RG.2.2.12096.65287
https://doi.org/10.13140/RG.2.2.20134.23362
https://doi.org/10.5281/zenodo.16044460
https://doi.org/10.36348/sjet.2025.v10i09.004


World Journal of Advanced Engineering Technology and Sciences, 2025, 17(02), 127-140 

137 

[52] Sunny, S. R. (2025). AI-augmented aerodynamic optimization in subsonic wind tunnel testing for UAV prototypes. 
Saudi Journal of Engineering and Technology, 10(9), 402–410. https://doi.org/10.36348/sjet.2025.v10i09.003 

[53] Shaikat, M. F. B. (2025). Pilot deployment of an AI-driven production intelligence platform in a textile assembly 
line. TechRxiv. https://doi.org/10.36227/techrxiv.175203708.81014137/v1 

[54] Rabbi, M. S. (2025). Extremum-seeking MPPT control for Z-source inverters in grid-connected solar PV systems. 
Preprints. https://doi.org/10.20944/preprints202507.2258.v1 

[55] Rabbi, M. S. (2025). Design of fire-resilient solar inverter systems for wildfire-prone U.S. regions. Preprints. 
https://www.preprints.org/manuscript/202507.2505/v1 

[56] Rabbi, M. S. (2025). Grid synchronization algorithms for intermittent renewable energy sources using AI control 
loops. Preprints. https://www.preprints.org/manuscript/202507.2353/v1 

[57] Tonoy, A. A. R. (2025). Condition monitoring in power transformers using IoT: A model for predictive 
maintenance. Preprints. https://doi.org/10.20944/preprints202507.2379.v1 

[58] Tonoy, A. A. R. (2025). Applications of semiconducting electrides in mechanical energy conversion and 
piezoelectric systems. Preprints. https://doi.org/10.20944/preprints202507.2421.v1 

[59] Azad, M. A. (2025). Lean automation strategies for reshoring U.S. apparel manufacturing: A sustainable approach. 
Preprints. https://doi.org/10.20944/preprints202508.0024.v1 

[60] Azad, M. A. (2025). Optimizing supply chain efficiency through lean Six Sigma: Case studies in textile and apparel 
manufacturing. Preprints. https://doi.org/10.20944/preprints202508.0013.v1 

[61] Azad, M. A. (2025). Sustainable manufacturing practices in the apparel industry: Integrating eco-friendly 
materials and processes. TechRxiv. https://doi.org/10.36227/techrxiv.175459827.79551250/v1 

[62] Azad, M. A. (2025). Leveraging supply chain analytics for real-time decision making in apparel manufacturing. 
TechRxiv. https://doi.org/10.36227/techrxiv.175459831.14441929/v1 

[63] Azad, M. A. (2025). Evaluating the role of lean manufacturing in reducing production costs and enhancing 
efficiency in textile mills. TechRxiv. https://doi.org/10.36227/techrxiv.175459830.02641032/v1 

[64] Azad, M. A. (2025). Impact of digital technologies on textile and apparel manufacturing: A case for U.S. reshoring. 
TechRxiv. https://doi.org/10.36227/techrxiv.175459829.93863272/v1 

[65] Rayhan, F. (2025). A hybrid deep learning model for wind and solar power forecasting in smart grids. Preprints. 
https://doi.org/10.20944/preprints202508.0511.v1 

[66] Rayhan, F. (2025). AI-powered condition monitoring for solar inverters using embedded edge devices. Preprints. 
https://doi.org/10.20944/preprints202508.0474.v1 

[67] Rayhan, F. (2025). AI-enabled energy forecasting and fault detection in off-grid solar networks for rural 
electrification. TechRxiv. https://doi.org/10.36227/techrxiv.175623117.73185204/v1 

[68] Habiba, U., & Musarrat, R. (2025). Integrating digital tools into ESL pedagogy: A study on multimedia and student 
engagement. IJSRED – International Journal of Scientific Research and Engineering Development, 8(2), 799–811. 
https://doi.org/10.5281/zenodo.17245996 

[69] Hossain, M. T., Nabil, S. H., Razaq, A., & Rahman, M. (2025). Cybersecurity and privacy in IoT-based electric vehicle 
ecosystems. IJSRED – International Journal of Scientific Research and Engineering Development, 8(2), 921–933. 
https://doi.org/10.5281/zenodo.17246184 

[70] Hossain, M. T., Nabil, S. H., Rahman, M., & Razaq, A. (2025). Data analytics for IoT-driven EV battery health 
monitoring. IJSRED – International Journal of Scientific Research and Engineering Development, 8(2), 903–913. 
https://doi.org/10.5281/zenodo.17246168 

[71] Akter, E., Bormon, J. C., Saikat, M. H., & Shoag, M. (2025). Digital twin technology for smart civil infrastructure and 
emergency preparedness. IJSRED – International Journal of Scientific Research and Engineering Development, 
8(2), 891–902. https://doi.org/10.5281/zenodo.17246150 

[72] Rahmatullah, R. (2025). Smart agriculture and Industry 4.0: Applying industrial engineering tools to improve U.S. 
agricultural productivity. World Journal of Advanced Engineering Technology and Sciences, 17(1), 28–40. 
https://doi.org/10.30574/wjaets.2025.17.1.1377 

https://doi.org/10.20944/preprints202507.2258.v1
https://www.preprints.org/manuscript/202507.2505/v1
https://www.preprints.org/manuscript/202507.2505/v1
https://www.preprints.org/manuscript/202507.2353/v1
https://doi.org/10.20944/preprints202507.2379.v1
https://doi.org/10.20944/preprints202507.2421.v1
https://doi.org/10.20944/preprints202508.0024.v1
https://doi.org/10.20944/preprints202508.0013.v1
https://doi.org/10.36227/techrxiv.175459829.93863272/v1
https://doi.org/10.20944/preprints202508.0511.v1
https://doi.org/10.20944/preprints202508.0511.v1
https://doi.org/10.20944/preprints202508.0474.v1
https://doi.org/10.20944/preprints202508.0474.v1
https://doi.org/10.36227/techrxiv.175623117.73185204/v1
https://doi.org/10.5281/zenodo.17245996
https://doi.org/10.5281/zenodo.17246150
https://doi.org/10.30574/wjaets.2025.17.1.1377
https://doi.org/10.30574/wjaets.2025.17.1.1377


World Journal of Advanced Engineering Technology and Sciences, 2025, 17(02), 127-140 

138 

[73] Islam, R. (2025). AI and big data for predictive analytics in pharmaceutical quality assurance.. SSRN. 
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5564319 

[74] Rahmatullah, R. (2025). Sustainable agriculture supply chains: Engineering management approaches for 
reducing post-harvest loss in the U.S. International Journal of Scientific Research and Engineering Development, 
8(5), 1187–1216. https://doi.org/10.5281/zenodo.17275907 

[75] Haque, S., Al Sany, S. M. A., & Rahman, M. (2025). Circular economy in fashion: MIS-driven digital product 
passports for apparel traceability. International Journal of Scientific Research and Engineering Development, 
8(5), 1254–1262. https://doi.org/10.5281/zenodo.17276038 

[76] Al Sany, S. M. A., Haque, S., & Rahman, M. (2025). Green apparel logistics: MIS-enabled carbon footprint reduction 
in fashion supply chains. International Journal of Scientific Research and Engineering Development, 8(5), 1263–
1272. https://doi.org/10.5281/zenodo.17276049 

[77] Bormon,  J. C. (2025), Numerical Modeling of Foundation Settlement in High-Rise Structures Under Seismic 
Loading. Available at SSRN: https://ssrn.com/abstract=5472006 or http://dx.doi.org/10.2139/ssrn.5472006 

[78] Tabassum, M. (2025, October 6). MIS-driven predictive analytics for global shipping and logistics optimization. 
TechRxiv. https://doi.org/10.36227/techrxiv.175977232.23537711/v1 

[79] Tabassum, M. (2025, October 6). Integrating MIS and compliance dashboards for international trade operations. 
TechRxiv. https://doi.org/10.36227/techrxiv.175977233.37119831/v1 

[80] Zaman, M. T. U. (2025, October 6). Predictive maintenance of electric vehicle components using IoT sensors. 
TechRxiv. https://doi.org/10.36227/techrxiv.175978928.82250472/v1 

[81] Hossain, M. T. (2025, October 7). Smart inventory and warehouse automation for fashion retail. TechRxiv. 
https://doi.org/10.36227/techrxiv.175987210.04689809.v1 

[82] Karim, M. A. (2025, October 6). AI-driven predictive maintenance for solar inverter systems. TechRxiv. 
https://doi.org/10.36227/techrxiv.175977633.34528041.v1 

[83] Jahan Bristy, I. (2025, October 6). Smart reservation and service management systems: Leveraging MIS for hotel 
efficiency. TechRxiv. https://doi.org/10.36227/techrxiv.175979180.05153224.v1 

[84] Habiba, U. (2025, October 7). Cross-cultural communication competence through technology-mediated TESOL. 
TechRxiv. https://doi.org/10.36227/techrxiv.175985896.67358551.v1 

[85] Habiba, U. (2025, October 7). AI-driven assessment in TESOL: Adaptive feedback for personalized learning. 
TechRxiv. https://doi.org/10.36227/techrxiv.175987165.56867521.v1 

[86] Akhter, T. (2025, October 6). Algorithmic internal controls for SMEs using MIS event logs. TechRxiv. 
https://doi.org/10.36227/techrxiv.175978941.15848264.v1 

[87] Akhter, T. (2025, October 6). MIS-enabled workforce analytics for service quality & retention. TechRxiv. 
https://doi.org/10.36227/techrxiv.175978943.38544757.v1 

[88] Hasan, E. (2025, October 7). Secure and scalable data management for digital transformation in finance and IT 
systems. Zenodo. https://doi.org/10.5281/zenodo.17202282 

[89] Saikat, M. H., Shoag, M., Akter, E., Bormon, J. C. ( October 06, 2025.) Seismic- and Climate-Resilient Infrastructure 
Design for Coastal and Urban Regions. TechRxiv. DOI: 10.36227/techrxiv.175979151.16743058/v1 

[90] Saikat,  M. H. (October 06, 2025). AI-Powered Flood Risk Prediction and Mapping for Urban Resilience. TechRxiv. 
DOI: 10.36227/techrxiv.175979253.37807272/v1 

[91] Akter, E. (September 15, 2025). Sustainable Waste and Water Management Strategies for Urban Civil 
Infrastructure. Available at SSRN: https://ssrn.com/abstract=5490686 or 
http://dx.doi.org/10.2139/ssrn.5490686 

[92] Karim, M. A., Zaman, M. T. U., Nabil, S. H., & Joarder, M. M. I. (2025, October 6). AI-enabled smart energy meters 
with DC-DC converter integration for electric vehicle charging systems. TechRxiv. 
https://doi.org/10.36227/techrxiv.175978935.59813154/v1 

[93] Al Sany, S. M. A., Rahman, M., & Haque, S. (2025). Sustainable garment production through Industry 4.0 
automation. World Journal of Advanced Engineering Technology and Sciences, 17(1), 145–156. 
https://doi.org/10.30574/wjaets.2025.17.1.1387 

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5564319
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5564319
https://doi.org/10.5281/zenodo.17275907
https://ssrn.com/abstract=5472006
https://dx.doi.org/10.2139/ssrn.5472006
https://doi.org/10.36227/techrxiv.175977232.23537711/v1
https://doi.org/10.36227/techrxiv.175977233.37119831/v1
https://doi.org/10.36227/techrxiv.175978928.82250472/v1
https://doi.org/10.36227/techrxiv.175987210.04689809.v1
https://doi.org/10.36227/techrxiv.175977633.34528041.v1
https://doi.org/10.36227/techrxiv.175979180.05153224.v1
https://doi.org/10.36227/techrxiv.175985896.67358551.v1
https://doi.org/10.36227/techrxiv.175987165.56867521.v1
https://doi.org/10.36227/techrxiv.175978941.15848264.v1
https://doi.org/10.36227/techrxiv.175978943.38544757.v1
https://doi.org/10.5281/zenodo.17202282
https://doi.org/10.36227/techrxiv.175979151.16743058/v1
https://doi.org/10.36227/techrxiv.175979253.37807272/v1
https://ssrn.com/abstract=5490686
https://dx.doi.org/10.2139/ssrn.5490686
https://doi.org/10.36227/techrxiv.175978935.59813154/v1
https://doi.org/10.30574/wjaets.2025.17.1.1387
https://doi.org/10.30574/wjaets.2025.17.1.1387


World Journal of Advanced Engineering Technology and Sciences, 2025, 17(02), 127-140 

139 

[94] Rahman, M., Haque, S., & Al Sany, S. M. A. (2025). Federated learning for privacy-preserving apparel supply chain 
analytics. World Journal of Advanced Engineering Technology and Sciences, 17(1), 259–270. 
https://doi.org/10.30574/wjaets.2025.17.1.1386 

[95] Rahman, M., Razaq, A., Hossain, M. T., & Zaman, M. T. U. (2025). Machine learning approaches for predictive 
maintenance in IoT devices. World Journal of Advanced Engineering Technology and Sciences, 17(1), 157–170. 
https://doi.org/10.30574/wjaets.2025.17.1.1388 

[96] Akhter, T., Alimozzaman, D. M., Hasan, E., & Islam, R. (2025, October). Explainable predictive analytics for 
healthcare decision support. International Journal of Sciences and Innovation Engineering, 2(10), 921–938. 
https://doi.org/10.70849/IJSCI02102025105 

[97] Islam, M. S., Islam, M. I., Mozumder, A. Q., Khan, M. T. H., Das, N., & Mohammad, N. (2025). A Conceptual 
Framework for Sustainable AI-ERP Integration in Dark Factories: Synthesising TOE, TAM, and IS Success Models 
for Autonomous Industrial Environments. Sustainability, 17(20), 9234. https://doi.org/10.3390/su17209234 

[98] Haque, S., Islam, S., Islam, M. I., Islam, S., Khan, R., Tarafder, T. R., & Mohammad, N. (2025). Enhancing adaptive 
learning, communication, and therapeutic accessibility through the integration of artificial intelligence and data-
driven personalization in digital health platforms for students with autism spectrum disorder. Journal of 
Posthumanism, 5(8), 737–756. Transnational Press London. 

[99] Faruq, O., Islam, M. I., Islam, M. S., Tarafder, M. T. R., Rahman, M. M., Islam, M. S., & Mohammad, N. (2025). Re-
imagining Digital Transformation in the United States: Harnessing Artificial Intelligence and Business Analytics 
to Drive IT Project Excellence in the Digital Innovation Landscape. Journal of Posthumanism, 5(9), 333–354 . 
https://doi.org/10.63332/joph.v5i9.3326 

[100] Rahman, M.. (October 15, 2025) Integrating IoT and MIS for Last-Mile Connectivity in Residential Broadband 
Services. TechRxiv. DOI: 10.36227/techrxiv.176054689.95468219/v1 

[101] Islam, R. (2025, October 15). Integration of IIoT and MIS for smart pharmaceutical manufacturing . TechRxiv. 
https://doi.org/10.36227/techrxiv.176049811.10002169 

[102] Hasan, E. (2025). Big Data-Driven Business Process Optimization: Enhancing Decision-Making Through 
Predictive Analytics. TechRxiv. October 07, 2025. 10.36227/techrxiv.175987736.61988942/v1 

[103] Rahman, M. (2025, October 15). IoT-enabled smart charging systems for electric vehicles [Preprint]. TechRxiv. 
https://doi.org/10.36227/techrxiv.176049766.60280824 

[104] Alam, M. S. (2025, October 21). AI-driven sustainable manufacturing for resource optimization. TechRxiv. 
https://doi.org/10.36227/techrxiv.176107759.92503137/v1 

[105] Alam, M. S. (2025, October 21). Data-driven production scheduling for high-mix manufacturing environments. 
TechRxiv. https://doi.org/10.36227/techrxiv.176107775.59550104/v1 

[106] Ria, S. J. (2025, October 21). Environmental impact assessment of transportation infrastructure in rural 
Bangladesh. TechRxiv. https://doi.org/10.36227/techrxiv.176107782.23912238/v1 

[107] R Musarrat and U Habiba, Immersive Technologies in ESL Classrooms: Virtual and Augmented Reality for 
Language Fluency (September 22, 2025). Available at SSRN: https://ssrn.com/abstract=5536098 or 
http://dx.doi.org/10.2139/ssrn.5536098 

[108]  Akter, E., Bormon, J. C., Saikat, M. H., & Shoag, M. (2025), “AI-Enabled Structural and Façade Health Monitoring 
for Resilient Cities”, Int. J. Sci. Inno. Eng., vol. 2, no. 10, pp. 1035–1051, Oct. 2025, doi: 
10.70849/IJSCI02102025116 

[109] Haque, S., Al Sany (Oct. 2025), “Impact of Consumer Behavior Analytics on Telecom Sales Strategy”, Int. J. Sci. 
Inno. Eng., vol. 2, no. 10, pp. 998–1018, doi: 10.70849/IJSCI02102025114. 

[110] Sharan, S. M. I (Oct. 2025)., “Integrating Human-Centered Design with Agile Methodologies in Product Lifecycle 
Management”, Int. J. Sci. Inno. Eng., vol. 2, no. 10, pp. 1019–1034, doi: 10.70849/IJSCI02102025115. 

[111] Alimozzaman, D. M. (2025). Explainable AI for early detection and classification of childhood leukemia using 
multi-modal medical data. World Journal of Advanced Engineering Technology and Sciences, 17(2), 48–62. 
https://doi.org/10.30574/wjaets.2025.17.2.1442 

[112] Alimozzaman, D. M., Akhter, T., Islam, R., & Hasan, E. (2025). Generative AI for synthetic medical imaging to 
address data scarcity. World Journal of Advanced Engineering Technology and Sciences, 17(1), 544–558. 
https://doi.org/10.30574/wjaets.2025.17.1.1415 

https://doi.org/10.30574/wjaets.2025.17.1.1386
https://doi.org/10.30574/wjaets.2025.17.1.1386
https://doi.org/10.30574/wjaets.2025.17.1.1388
https://doi.org/10.30574/wjaets.2025.17.1.1388
https://doi.org/10.70849/IJSCI02102025105
https://doi.org/10.3390/su17209234
https://doi.org/10.63332/joph.v5i9.3326
https://doi.org/10.36227/techrxiv.176054689.95468219/v1
https://doi.org/10.36227/techrxiv.176049811.10002169
https://doi.org/10.36227/techrxiv.175987736.61988942/v1
https://doi.org/10.36227/techrxiv.176049766.60280824
https://doi.org/10.36227/techrxiv.176107775.59550104/v1
https://doi.org/10.36227/techrxiv.176107782.23912238/v1
https://ssrn.com/abstract=5536098
https://dx.doi.org/10.2139/ssrn.5536098
https://doi.org/10.70849/IJSCI02102025116
https://doi.org/10.70849/IJSCI02102025114
https://doi.org/10.70849/IJSCI02102025115
https://doi.org/10.30574/wjaets.2025.17.2.1442
https://doi.org/10.30574/wjaets.2025.17.1.1415
https://doi.org/10.30574/wjaets.2025.17.1.1415


World Journal of Advanced Engineering Technology and Sciences, 2025, 17(02), 127-140 

140 

[113] Zaidi, S. K. A. (2025). Intelligent automation and control systems for electric vertical take-off and landing (eVTOL) 
drones. World Journal of Advanced Engineering Technology and Sciences, 17(2), 63–75. 
https://doi.org/10.30574/wjaets.2025.17.2.1457 

[114] Islam, K. S. A. (2025). Implementation of safety-integrated SCADA systems for process hazard control in power 
generation plants. IJSRED – International Journal of Scientific Research and Engineering Development, 8(5), 
2321–2331. Zenodo. https://doi.org/10.5281/zenodo.17536369 

[115] Islam, K. S. A. (2025). Transformer protection and fault detection through relay automation and machine 
learning. IJSRED – International Journal of Scientific Research and Engineering Development, 8(5), 2308–2320. 
Zenodo. https://doi.org/10.5281/zenodo.17536362 

[116] Afrin, S. (2025). Cloud-integrated network monitoring dashboards using IoT and edge analytics. IJSRED – 
International Journal of Scientific Research and Engineering Development, 8(5), 2298–2307. Zenodo. 
https://doi.org/10.5281/zenodo.17536343 

[117] Al Sany, S. M. A. (2025). The role of data analytics in optimizing budget allocation and financial efficiency in 
startups. IJSRED – International Journal of Scientific Research and Engineering Development, 8(5), 2287–2297. 
Zenodo. https://doi.org/10.5281/zenodo.17536325 

[118] Zaman, S. (2025). Vulnerability management and automated incident response in corporate networks. IJSRED – 
International Journal of Scientific Research and Engineering Development, 8(5), 2275–2286. Zenodo. 
https://doi.org/10.5281/zenodo.17536305 

[119] Ria, S. J. (2025, October 7). Sustainable construction materials for rural development projects. SSRN. 
https://doi.org/10.2139/ssrn.5575390 

[120] Razaq, A. (2025, October 15). Design and implementation of renewable energy integration into smart grids. 
TechRxiv. https://doi.org/10.36227/techrxiv.176049834.44797235/v1 

 

https://doi.org/10.30574/wjaets.2025.17.2.1457
https://doi.org/10.30574/wjaets.2025.17.2.1457
https://doi.org/10.5281/zenodo.17536369
https://doi.org/10.5281/zenodo.17536362
https://doi.org/10.5281/zenodo.17536343
https://doi.org/10.5281/zenodo.17536343
https://doi.org/10.5281/zenodo.17536325
https://doi.org/10.5281/zenodo.17536305
https://doi.org/10.5281/zenodo.17536305
https://doi.org/10.2139/ssrn.5575390
https://doi.org/10.2139/ssrn.5575390
https://doi.org/10.36227/techrxiv.176049834.44797235/v1

