

Implementing autonomous haulage trucks in mining: Safety benefits and management challenges

Emmanuel Akukula Attarbo *

Department of Electrical Engineering and Computer Science, South Dakota School of Mines and Technology, Rapid City, South Dakota, U.S.A.

World Journal of Advanced Engineering Technology and Sciences, 2025, 17(02), 329–335

Publication history: Received on 03 October 2025; revised on 11 November 2025; accepted on 14 November 2025

Article DOI: <https://doi.org/10.30574/wjaets.2025.17.2.1492>

Abstract

The mining industry continues to face persistent safety challenges, with powered haulage incidents remaining a leading cause of occupational fatalities. This study investigates the implementation of Autonomous Haulage Systems (AHS) in mining operations, focusing on their potential to enhance safety performance and the managerial complexities that accompany their deployment. Employing a qualitative analytical approach supported by industry case studies and empirical observations, the research evaluates how AHS integrating artificial intelligence (AI), global positioning systems (GPS), and advanced sensor technologies reduces human exposure to hazardous environments and mitigates accidents resulting from fatigue and operational error. Evidence from autonomous operations at Rio Tinto and Resolute Mining demonstrates substantial safety and efficiency gains, including zero lost-time injuries, a 15% reduction in unit costs, and increased operational uptime. Despite these advantages, AHS adoption introduces significant managerial challenges encompassing workforce transition, regulatory compliance, cybersecurity vulnerability, and system reliability. The findings underscore that the successful integration of AHS necessitates comprehensive management frameworks emphasizing employee retraining, adherence to international safety standards, proactive cybersecurity measures, and preventive maintenance systems. The study concludes that AHS represents a transformative technological innovation with the capacity to redefine safety management and operational efficiency in the mining sector. However, its long-term sustainability relies on the alignment of technological advancement with strategic management practices and organizational adaptability.

Keywords: Autonomous Haulage Systems (AHS); Mining Safety; Artificial Intelligence; Global Positioning System (GPS); Safety Management

1. Introduction

As a pillar of economic expansion, the mining sector is invariably riddled with safety hazards, and powered haulage repeatedly figures as one of the principal causes of fatalities and injuries. Although safety protocols, employee instruction, and state-of-the-art equipment have progressed considerably, mishaps in mineral extraction continue to originate mainly from human mistakes, fatigue, lapses, and encounters with perilous conditions, chief among them. Accordingly, the sector is progressively adopting autonomous technologies, with Autonomous Haulage Systems (AHS) a central focus, to curb these risks through the lessening of human exposure to hazardous duties.

Equipped with cutting-edge sensors, artificial intelligence (AI), satellite-based global positioning systems (GPS) and supporting data analytics, autonomous haulage trucks convey ore and material while a human driver is absent. Leveraging live data, these systems recalibrate routing, evade impediments, and run continuously, thereby decreasing the probability of accidents caused by human error or fatigue [6]. Since 2008, Rio Tinto's autonomous operations in

* Corresponding author: Emmanuel Akukula Attarbo

Australia's Pilbara basin have shifted over one billion tons of material, maintained a Zero Lost Time Injury record because of AHS, and thereby highlighted the solution's pronounced safety benefits [7]. Moreover, autonomous units rack up roughly 700 extra hours of operation each year, yielding a 15% reduction in cost per unit, thus underscoring its combined safety and fiscal advantages [7]. The fact that the mining sector has swiftly embraced AHS constitutes compelling proof of its recognition that the solution has the transformative power to enhance safety and operational efficiency.

Still, the deployment of AHS involves its own set of challenges. Mining companies face a host of complex managerial challenges, ranging from the responsibility of workforce retraining and continuous regulatory compliance to the menace of cybersecurity breaches and the need to preserve system reliability. For instance, transitioning to autonomous systems necessitates retraining workers for new positions, a challenge typified by the teaching programs Teck Resources has crafted for autonomous operations [9]. Furthermore, it is essential to implement rigorous cybersecurity measures to safeguard operations from threats such as Wi-Fi de-authentication and GPS-based assaults during AHS deployment [3]. These challenges emphasize the imperative for strong strategic management to maximize the safety and efficiency advantages of autonomous haulage trucks.

The chief aim of this project is to furnish a thorough analysis of the safety benefits that autonomous haulage trucks confer within the mining industry, while likewise exploring the managerial strategies required for their effective incorporation. In particular, the objective of the present study is to:

- **Analyze the safety benefits** of autonomous haulage trucks, including reduced accident rates, improved operational efficiency, and enhanced worker well-being, supported by case studies and industry data.
- **Evaluate the management challenges** associated with AHS implementation, such as workforce retraining, regulatory compliance, cybersecurity, and risk management.
- **Provide actionable recommendations** for mining companies adopting AHS, drawing on best practices from industry leaders like Rio Tinto and Teck Resources, as well as academic literature.
- **Reflect on the learning outcomes** from this research, highlighting how it has deepened my understanding of safety management in the context of technological innovation.

In attaining these objectives, this paper seeks to enrich the ongoing discussion on harnessing autonomous technologies to make mining environments safer and more efficient.

Acting as a landmark innovation in the mining sector, Autonomous Haulage Systems (AHS) aim to heighten safety and optimize operational efficiency by allowing haul trucks to be managed through automated control. Outfitting these haul trucks with state-of-the-art sensors, artificial intelligence (AI), global positioning systems (GPS), and advanced data analytics, the vehicles can drive themselves, transporting ore and other material through intricately complex mine environments [3]. AHS are categorized as Cyber-Physical Systems (CPS) that merge computational and physical functions to facilitate autonomous or remotely operated mining equipment [3]. The uptake of AHS has been propelled by the imperative to mitigate the intrinsic hazards of conventional haulage techniques—chiefly powered haulage—which stands as the foremost contributor to fatalities in mining operations [1]. Since their introduction, AHS have been rolled out globally; exemplars such as Komatsu America's fleet at CODELCO's Gabriela Mistral mine in Chile have moved more than 2 billion tons of material since 2008 [3]. By forgoing human operations, AHS mitigates the risks linked to hazardous settings, diminishes accidents arising from human error or fatigue, and raises operational efficiency with uninterrupted, round-the-clock operation.

2. Methodology

This study employed a **qualitative research methodology** supported by structured document analysis and industry case evaluations to assess both the safety benefits and management challenges of Autonomous Haulage Systems (AHS) in mining. The methodology was designed to gather comprehensive, credible, and practice-relevant insights from multiple reliable sources to strengthen the validity of the findings.

2.1. Literature Review and document evaluation

A systematic review of peer-reviewed journal articles, industry reports, technology white papers, and regulatory documents was conducted. This method enabled the identification of major trends, safety performance data, historical accident patterns, and the technological capabilities of AHS. Emphasis was placed on studies addressing powered-haulage incidents, AI-enabled mining systems, and ISO/MSHA compliance requirements. This ensured a robust theoretical and empirical foundation for the study.

2.2. Industry case study evaluation

Specific case studies from leading mining companies such as Rio Tinto, Resolute Mining, BHP, Caterpillar, and Komatsu were examined to understand real-world outcomes of AHS implementation. These cases provided measurable evidence regarding safety improvements, operational efficiency, cost reductions, and organizational challenges. Case-based evaluation allowed comparison between documented benefits and practical management observed during deployment.

2.3. Qualitative comparative analysis

Insights from the literature and case studies were compared to identify common patterns, recurring challenges, and best practices. This method supported the synthesis of cross-industry lessons related to workforce transition, cybersecurity vulnerabilities, and regulatory standards. It also enabled drawing generalizable conclusions that can be applied across mining contexts.

2.4. Analytical framework development

An analytical framework was developed to classify findings into two major thematic categories:

- **Safety benefits of AHS** (e.g., reduced human exposure, accident prevention, improved efficiency), and
- **Management challenges of AHS** (e.g., training needs, compliance, system reliability).
This framework helped organize evidence and ensure clarity and coherence in reporting results.

3. Results and Discussion

The driving of Autonomous Haulage Systems (AHS) in the minerals sector is one of the most critical developments which have recently helped in solving the longstanding safety problems which powered haulage has been known to cause in the minerals industry, the leading cause of mortality and injury in minerals operations [1]. Equipped with cutting-edge technologies, including artificial intelligence (AI), global positioning systems (GPS), light detection and ranging (LIDAR), and radar-based sensors, autonomous haulage trucks are operated without human drivers, thus making them much safer in terms of risks related to human error and/ or fatigue as well as the exposure to a dangerous environment. To integrate AHS into mining operations successfully, there must be a transition through significant management challenges, and these are work training, compliance, security, and reliability. Recent studies integrating AI and IoT for mine hazard detection have shown considerable potential to enhance predictive safety capabilities [10].

Image taken from the Komatsu website

Figure 1 Image of a haul truck that has been retrofitted into an autonomous vehicle

3.1. Safety Benefits of Autonomous Haulage Systems

AHS attain its principal advantage through its capability to markedly enhance safety in mining operations. Fatalities arising from powered haulage represent a significant share of the industry's casualties, and dyed-in-the-wool haul trucks accounted for six of the 28 deaths documented in the U.S. mining industry in 2017 [4]. AHS mitigate these dangers by taking humans out of perilous environments, consequently curbing collisions triggered by driver fatigue, human error, or exposure to hazards such as unstable terrain or low visibility [1]. A notable instance is Rio Tinto's autonomous

haulage fleet in Australia's Pilbara region, which has been in operation since 2008 and has yet to generate any injuries linked to the system, while it has transported more than one billion tons of material [7].

Through the enhancement of operational efficiency, AHS fortifies safety, which, in turn, diminishes potential threats. By unremitting operation—foregoing pauses for breaks or shuttle hand-offs—these systems attain a 4% boost in fuel economy and trim idle time by 25–50% when compared with manually driven trucks [3]. Utilizing real-time analytics, AHS adjusts routes and maintains a uniform gap between vehicles, thereby preventing collisions that variations in terrain or changing weather can otherwise precipitate, thereby enhancing overall safety [2]. Another advantage is that AHS integrates collision-avoidance and warning systems, which have proven effective at lowering equipment contact incidents with auxiliary equipment or manual trucks, consequently reducing maintenance and replacement expenses. By operating fully autonomous trucks in Mali, Resolute Mining has reduced mining expenditures by 30% while sharpening safety by diminishing human presence in high-risk zones [2]. Such advantages underscore the potential of AHS to revolutionize mining environments by making them safer.

The existence of autonomous haulage trucks in mining has become a game-changer in many ways to improve safety since powered haulage is one of the major hazards in mining. These dangers are dealt with by AHS, which takes out a human driver in a risky environment, thus preventing accidents caused by driver factors. In this section, the key safety advantages of AHS, such as prevention of accidents, efficiency, and the usage of ultra-safe technologies, will be discussed with references to real-world examples and statistical facts.

3.2. Reduction in Human-Related Accidents

One of the biggest strengths of AHS, as far as safety is concerned, is that it eliminates accidents related to humans, which represent one of the main sources of injuries and fatalities in mining. Human operators can easily become fatigued and distracted as well as make mistakes, especially after working long shifts in adverse conditions, i.e. poor visibility, shaky terrain, or extreme weather. The use of autonomous haulage trucks, with their AI-controlled navigation and sensors, eliminates such risks, as their work is highly predictable and consistent. This is highlighted by the autonomous haulage fleet of Rio Tinto in the Pilbara region of Australia, which, since 2008, has delivered over one billion tons of material without any report of an injury occurring that could be attributed to the system [7]. This development portrays the possibility of AHS making working conditions safer by eliminating human operators through high-risk activities. Likewise, the Command for Hauling system implemented by Caterpillar in more than 350 autonomous trucks all over the globe minimized safety-related incidents by approximately half, which is further evidence of the efficiency of AHS in terms of accident prevention [8].

3.2.1. Image taken from the MSHA website

Figure 2 Collision between an LV and a manned truck

3.3. Operational Efficiency and Indirect Safety Improvements

The safety affected by AHS includes improvement in the efficiency of operations, therefore, indirectly minimizing risks. The systems make nonstop operations possible and thus the idle time is lower by 25 per cent to 50 per cent, and fuel consumption is higher by about 4 per cent than in manually operated trucks [3]. AHS reduces the chances that an accident could be caused by changes in the terrain or due to bad weather, as the routes and speeds are optimized based on real-time data provided by GPS and sensors [2]. To give an example, the fully autonomous mine operated by Resolute Mining in Mali has resulted in a 30 per cent cut in mining costs and a cost of production of gold by \$135 per ounce, and an improvement of safety by reducing the human presence in active mining zones [2]. Also, AHS adds simple collision avoidance systems (radar and LIDA) and increases the safety of having no impact between equipment and auxiliary vehicles or people. Such technologies allow trucks to recognize obstacles on the road and adjust in real-time, making safety even more significant. The ability to integrate AHS with fleet management systems (FMS), like that of Komatsu, Frontrunner, allows optimum allocation of vehicles and lessens the possibility of crash occurrence in what can be regarded as safer operational working conditions [5].

3.4. Case Studies Demonstrating Safety Benefits

Some mining firms have already managed to adopt AHS, which gives additional information on how they can be realized and made effective. The autonomous fleet of Rio Tinto in Australia, which has been operating since the year 2008, has carried more than one billion tons of material with zero employee injuries, proving the safety and stability of AHS [7]. The fleet has led to a 15 per cent reduction in unit cost whilst also being able to run 700 hours more per year when compared to manned trucks, which shows the safety benefits as well as the cost benefit [7]. The full autonomous operation of Resolute mining in Mali has realized a 30 per cent cut down of the cost of mining and a cost cut on gold production of a substantial 135 dollars apiece [2]. The South Flank project in Australia installed more than 40 autonomous haul trucks at BHP, which made it possible to experience improvements in safety and productivity by September 2023 [9]. The case studies indicate that AHS can be used to change the mining operations, given that it is accompanied by effective management approaches.

There is very sound evidence to show the safety advantages of AHS, as can be found in industry case studies. The autonomous fleet manufactured by Rio Tinto, which includes more than 80 Komatsu trucks, has witnessed zero injury since 2008 and works 700 hours more than manned trucks every year, which has led to a reduction in the unit cost by 15 per cent [7]. Such a combination of safety and efficiency highlights the potential of AHS to change the situation. In the same line, the South Flank project of BHP in Australia implemented more than 40 autonomous haul trucks, which triggered better safety results because people were less exposed to dangerous places [9]. The second instance is the Komatsu Frontrunner system that is deployed to improve truck assignments during the operation, which is integrated with Modular Mining DISPATCH FMS to minimize the risk of collision and improve the level of operational safety [5].

3.5. Management Challenges of Autonomous Haulage Systems

No matter the substantial safety benefits they supply, deploying AHS creates an array of managerial hurdles that necessitate detailed planning and coordination. Cybersecurity emerges as a pivotal concern, since AHS are heavily exposed to hacking schemes spanning Wi-Fi De-Auth, GPS spoofing and jamming, and camera assaults (e.g., laser blinding) and these vulnerabilities can trigger serious repercussions such as equipment damage, production downtime, injuries, and even fatalities [3]. AHS safety is largely contingent on dependable wireless networks, for example, Wi-Fi 802.11 whose capacity is currently being strengthened through the evaluation of next-generation solutions such as 5G and private LTE [3]. Nonetheless, the advent of these new technologies brings forth additional cybersecurity risks that demand comprehensive countermeasures, notably security-by-design practices and conformity with a standard such as ISO/IEC 27000:2016 [3]. The continuing prevalence of ad-hoc standards, combined with the proprietary attributes of most data, renders risk assessment and mitigation efforts still more arduous [3].

Yet another formidable obstacle arises from the workforce's management. As the shift to AHS takes effect, workforce retraining is compulsory, since conventionally manned trucking positions give way to posts focused on system monitoring, maintenance, and data analysis [9]. For example, Teck Over this stage, escalating fears of workforce displacement compel mining companies to navigate the adoption of new technologies while simultaneously maintaining their staff and safeguarding their morale. Yet another hurdle relates to regulatory compliance, demanding that AHS meet the stringent safety directives set forth by the U.S. Mine Safety and Health Administration (MSHA) and by other regulatory groups worldwide. If further expenditure, ranging from factory licensing fees and qualified specialists to the heightened upkeep of roadways, fortified cybersecurity, and upgraded telecommunication infrastructure were to be absorbed by AHS-related companies, the anticipated cost reductions would be compromised. These hurdles underscore the imperative to adopt all-encompassing management strategies to ensure the successful uptake of AHS.

In spite of the tremendous safety advantages AHS are associated with, there are major management issues associated with the implementation of AHS, and strategic planning and organization are the challenges involved. Among these challenges are workforce management, regulatory compliance, cybersecurity, and system reliability, all of which must be tackled to guarantee a successful adoption of AHS. The chapter analyses these issues in detail, using both research and the experience of scholars and people working in the industry.

3.6. Workforce Management and Transition

A shift to AHS will require an extensive change in the workforce, since the existing jobs of drivers will be substituted by the ones capturing information, maintaining and monitoring the system [9]. This transition necessitates a wholesome retraining initiative that would provide employees with what they would require in their new position, in addition to counteracting the displacement of jobs and morale among workers. An example is that Teck Resources has a five-year program to switch to a fully autonomous fleet at its Mina Quebrada Blanca in Chile, which involves training to prepare workers in autonomous operation roles, including those to deal with diagnostics on the system and remote monitoring [9].

Such programs play a crucial role towards keeping the employees as an essential part of the process, although the chances of displacement of employees still loom large over areas where there is a paucity of other jobs.

3.7. Regulatory Compliance and Safety Standards

AHS encompasses a complicated regulatory framework that challenges the ability to enhance safety compliance with the standards of industry bodies like MSHA and global organizations like the ISO. All these standards demand strict testing and verification of autonomous systems, so they can safely operate in dynamic mining conditions. An example is that AHS is expected to be in line with the ISO 17757:2017, which entails safety requirements of autonomous and semi-autonomous systems of machines in mining [3]. Costs also present themselves with compliance costs as manufacturers charge fees to license them, specialists are created, road maintenance expenses increase and telecommunications infrastructure is enhanced, which could counterbalance the financial gains of AHS.

3.8. System Reliability and Maintenance

The reliability of AHS is a crucial managerial issue, taking into consideration that such systems depend on multifaceted technologies that need to be regularly maintained and updated to avoid failure [3]. To ensure that there is minimal downtime to interrupt regular operation, mining firms must invest in qualified human resources and strong maintenance programs, especially in remote mining operations where help might be far apart.

4. Conclusion

Autonomous haulage Systems (AHS) in the mining industry come with the significant advantages of improved safety, which is effective in solving the ongoing risks of powered haulage, one of the main sources of death and injury. The advanced technology in autonomous haulage trucks, which responds to artificial intelligence (AI), global positioning systems (GPS), and sensor-based navigation, has shown that human-related accidents have been greatly reduced since it allows the operator to leave the high-risk area. The case example of Rio Tinto's autonomous fleet in the Pilbara region of Australia has been in operation since 2008 without any injuries incurred so far and has transported more than one billion tons of material, all of which highlights the potential transformative nature of AHS in improving safety. Further reduction is achieved through operational efficiencies such as continuous operation and optimized routing that also reduce risks by cutting idle time and accident-prone situations. Nevertheless, there are other high-profile management issues associated with the implementation of AHS, the most noteworthy being staff replacement, regulatory compliance, data safety threats, and system stability. A transition to AHS can only be achieved through thorough retraining plans (i.e., the five-year Teck Resources plan at Mina Quebrada Blanca), and cybersecurity threats such as Wi-Fi de-authentication and GPS-spoofing must be taken down with potent countermeasures. Such findings demonstrate that AHS is, on the one hand, a technologically safety-enhancing tool and, on the other hand, a complicated management project.

Drawing on the safety advantages and management obstacles analysis, it is possible to offer several recommendations that mining companies opting to implement AHS can follow to become as effective as possible and ensure that all operations are safe. To begin with, companies ought to participate in employee training programs that are thorough and are aimed at ensuring that employees are well-rounded to master the elements of monitoring the system, maintenance and interpretation of data, as was the case with Teck Resources' transition strategy. They should also entail a consistent learning process that touches on adapting to changing technology and the issue of job displacement by

diversifying career paths. Second, strong cybersecurity, including ISO/IEC 27000:2016 compliance, together with the measurement of the security-by-design principles, is necessary to shield AHS against cyber-attacks like GPS jamming and camera attacks. Third, mining firms ought to come up with stringent regulatory compliance procedures by collaborating with the relevant authorities, including the U.S. Mine Safety and Health Administration (MSHA), to achieve compliance with such standards as ISO 17757:2017. This would come with investing in improved telecommunications infrastructure and maintenance of roads to facilitate the deployment of AHS. Lastly, active preventative maintenance timelines and trained individuals are very important towards creating system availability with a minimum shutdown during an operation in a remote mining setup.

Compliance with ethical standards

Acknowledgement

The author wishes to express profound gratitude to the Department of Electrical Engineering and Computer Science at the South Dakota School of Mines and Technology for providing the academic environment that supported the completion of this research. The author further acknowledges the contributions of industry practitioners and researchers whose work, data, and published insights formed the empirical foundation of this research.

The author also expresses gratitude to the Mine Automation Team at Cortez Hills Mine of Nevada Gold Mines, Elko, for providing practical exposure to mining automation during the 2025 summer internship.

Disclosure of Conflict of Interest

There is no conflict of interest.

References

- [1] Al-Aseeri, M. A. M. (2023). Powered haulage safety, challenges, analysis, and solutions in the mining industry: a comprehensive review. *Results in Engineering*, 19, 101684. <https://doi.org/10.1016/j.rineng.2023.101684>
- [2] Futurebridge. (2024). Autonomous haulage systems – The future of mining operations. <https://www.futurebridge.com/industry/perspectives-industrial-manufacturing/autonomous-haulage-systems-the-future-of-mining-operations/>
- [3] Gaber, T., El Jazouli, Y., Elde souky, E., and Ali, A. (2021). Autonomous haulage systems in the mining industry: Cybersecurity, communication and safety issues and challenges. *Electronics*, 10(11), 1357. <https://doi.org/10.3390/electronics10111357>
- [4] Kecojevic, M., and Greshock, D. W. (2014). Investigation of haul truck-related fatal accidents in surface mining using fault tree analysis. *Safety Science*, 61, 85–97. <https://doi.org/10.1016/j.ssci.2013.07.019>
- [5] Komatsu. Frontrunner autonomous haulage system. <https://www.komatsu.com/en-us/technology/smart-mining/loading-and-haulage/autonomous-haulage-system>
- [6] Mix by Powerfleet. The rise of autonomous trucks in the mining industry. <https://www.mixtelematics.com/us/resources/blog/autonomous-trucks-in-mining/>
- [7] Cecilia Jamasmie (2018). Rio Tinto autonomous trucks now hauling a quarter of Pilbara material. Rio Tinto autonomous trucks now hauling a quarter of Pilbara material - MINING.COM
- [8] Mining Technology. (2021). Autonomous haulage systems for the mining industry: Leading manufacturers. <https://www.mining-technology.com/features/autonomous-haulage-systems/>
- [9] Okane Consultants. (2022). Integrating autonomous/automated mining equipment throughout the life of the mine plan. <https://okaneconsultants.com/ideas/integrating-automated-mining-equipment>
- [10] Amuah, G. K., Djanetey, G. E., Effah, B. B., Whajah, J., Attarbo, E. A., and Kpedzroku, G. E. (2025). Integration of Artificial Intelligence (AI) and Internet of Things (IoT) for Hazard Detection and Accident Prevention in Mining. *17(02)*, 187-194. <https://doi.org/10.30574/wjaets.2025.17.2.1484>.