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Abstract 

The proper pricing of commodities during market uncertainty and structural incompleteness is a primary challenge in 
financial economics. Although traditional econometric models are interpretable and theoretically rigorous, they tend to 
fail to capture non-linear dynamics and adjust to regime changes. On the other hand, there is a predictive power of 
artificial intelligence (AI) methods, which are limited in their interpretability and the ability to combine economic 
theory. The review focuses on the intersection of AI and econometric models to develop risk-adjusted commodity 
market pricing models. It provides the development of pricing models, a hybrid theoretical framework, and an 
evaluation of recent literature on their application. Areas with major gaps, such as the absence of standardization, data 
quality concerns, and real-time adaptability, are also identified. The paper also concludes with research suggestions to 
enhance accuracy, transparency, and applicability in various market environments. 
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1. Introduction

The instability and dynamics of commodity markets have further demanded the creation of strong and data-driven 
pricing to be able to reflect and model risk appropriately. The extent of macroeconomic, geopolitical, and 
microstructural factors that affect commodities like crude oil, natural gas, agricultural products, and precious metals is 
wide, and thus, price uncertainty is high. The conventional pricing models that mostly rest on deterministic or linear 
econometric models have proven to be ineffective in explaining the dynamic and stochastic environment of these 
markets [1]. To overcome them, new solutions to price discovery, prediction, and risk processing in commodity market 
settings were suggested by the recent progress in artificial intelligence (AI) and the methods of econometric modelling 
[2]. 

The applicability of risk-adjusted pricing on commodities markets is due to the fact that it plays a central part in the 
financial decision-making of producers, consumers, investors, and regulators. Effective hedging, an effective investment 
strategy, and management of liquidity are all possible by having proper risk-adjusted pricing models, which then allow 
the firms to hedge properly. These models also provide policymakers and market designers with ways to track systemic 
risk and price manipulation [3]. In markets with large stakes, such as in energy or food commodities, where small price 
errors can cause serious economic impacts, the capability to add the complex metrics of risk into the pricing models has 
developed into a critical one. 

Machine learning, as well as deep and reinforcement learning, are all forms of artificial intelligence, which have led to 
new strategies in the capacity to predict and price in financial markets. Such approaches are able to identify non-linear 
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dynamics, high-dimensional interactions, and adaptive processes that may not be identified using standard models [4]. 
Long since, commodity prices and volatility have been modelled with econometric methods, especially those based on 
generalised autoregressive conditional heteroskedasticity (GARCH), vector autoregression (VAR), and cointegration 
frameworks. Nevertheless, it has not been long before their combination with AI approaches started garnering interest 
in academic and practical literature of finance [5]. The fusion holds the possibility to create hybrid models that maintain 
theoretical rigour and improve predictive performance and real-time flexibility. 

In spite of this potential that has come into view, a number of critical challenges and research gaps still exist. To start 
with, AI-based pricing models are not interpretable enough, especially in commodity high-stakes settings where 
transparency and regulatory adherence are vital [6]. Second, no standardised frameworks have been established on 
how to incorporate the econometric risk measures, including Value at Risk (VaR) and Conditional VaR or downside beta, 
into the AI-driven pricing models in a consistent and strong fashion [7]. Thirdly, AI models are highly limited by the 
sparsity and heterogeneity of data, particularly with illiquid or immature commodities, and the lack of ways to 
generalise them to other market segments [8]. Also, real-world problems tend to demand real-time adaptable models, 
and this necessitates the incorporation of online learning or adaptive econometric methods, a field of study that is 
under-researched with respect to commodities [9]. 

The merging of AI and econometrics is one of the major paradigm shifts in the wider area of financial economics. 
Although AI can make very strong predictions, econometrics provides consistency and interpretability of the theories, 
which are essential in the interpretation of market behaviour and the development of regulatory policies. Thus, risk-
adjusted price models with the strategic combination of these fields have a prospect of not only increasing the quality 
of forecasts but also the quality of market transparency and resistance. 

This review aims to critically look at the risk-adjusted pricing environment in the commodities market, with a specific 
emphasis given to the models that apply AI, as well as econometric methods.  

2. Literature Review 

Table 1 Summary of Key Literature on Risk-Adjusted Pricing in Commodities Markets Using AI and Econometric 
Techniques 

Ref Research Focus / Objective Key Findings / Contributions 

[10] Investigates the asymmetric relationship 
between unemployment and economic 
growth (Okun’s Law) in Pakistan using a 
threshold cointegration approach. 

Findings support an asymmetric adjustment process in Okun’s 
Law for Pakistan; economic growth affects unemployment 
differently in recession and expansion periods. This has 
implications for labour market policies in developing 
economies. 

[11] Proposes a hybrid model combining 
Empirical Mode Decomposition (EMD) and 
neural network ensemble learning to 
forecast crude oil prices. 

Demonstrates that decomposing time series into intrinsic 
mode functions (IMFs) significantly improves prediction 
accuracy. The model outperformed traditional single neural 
network models. 

[12] Explores the effectiveness of Support Vector 
Machines (SVM) in forecasting financial time 
series, comparing it with neural networks. 

Shows that SVMs provide better generalisation and forecasting 
accuracy than traditional neural networks, especially in noisy 
financial datasets. Validates the model as a promising 
technique for time series prediction. 

[13] Addresses the emerging issue of collusion in 
AI-driven trading environments using 
reinforcement learning agents. 

Proposes a market-aware multi-agent reinforcement learning 
system that mitigates emergent collusive behaviour. Highlights 
regulatory implications in AI-dominated trading platforms. 

[14] Introduces the use of dilated Convolutional 
Neural Networks (CNNs) for financial time 
series forecasting. 

Demonstrates that dilated CNNs can effectively model long-
range temporal dependencies in time series data, 
outperforming recurrent models like LSTMs in terms of speed 
and accuracy. 
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3. Proposed Theoretical Model and Block Diagrams 

3.1. Commodities Markets, Artificial Intelligence, and Econometric-based risk-adjusted Pricing Models 

Alterations in the pricing model of commodities have also posed the requirement of the creation of a hybrid model that 
is capable of integrating the interpretability of econometric models with the capacity to identify patterns and non-linear 
approximation of artificial intelligence (AI). The proposed theoretical model is the following: A hybrid architecture is 
defined as multi-layered, in which the market fundamentals and the risk indicators, and the price behaviour would be 
modelled together to generate risk-adjusted commodity prices. The appropriate literature and observation support 
each of the elements. In this part, there are two block diagrams: one that represents the macro-structure and the other 
one represents the workflow pipeline of the hybrid modelling process. 

 

Figure 1 The Concepts of the merger of Econometrics with AI to Risk-Adjusted Pricing 

Explanation: 

• Macroeconomic Inputs: These are exogenous variables that influence the behaviour of the price of commodities 
in terms of inflation, interest rates, monetary policy and growth expectations [15]. 

• Econometric Risk Modelling Layer: Addresses the time series volatility modelling, structural analysis (GARCH, 
VAR, Value-at-Risk) and quantifiable market risk [16]. 

• Commodity Market Data: Both the econometric and the AI layers have access to historical prices as well as 
volumes and inventory data, which suggests that the two can be analysed jointly. 

• AI Layer: Scales non-linear models, such as Long Short-Term Memory (LSTM), Convolutional Neural Networks 
(CNN), and Support Vector Machines (SVM) that discover complex dependencies and latent patterns that would 
be hard to discover if only linear structures were used [17]. 

• Feature Fusion / Risk Adjustment Layer: Risk-adjusted and Bayesian updated Probabilistic predictions of both 
layers are obtained by combining the outputs of the two layers [18]. 

• Final Pricing Outcome: Provides amended pricing forecasts which comprise systematic risk, Macroeconomic 
uncertainty and latent market structure. 
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Figure 2 End-to-End Process Pipeline of the Hybrid Risk-Adjusted Commodity Pricing. 

3.2. Theoretical Foundation. 

The model proposed is driven by both the multi-model ensemble learning theory and structural econometrics. The 
significant theoretical hypotheses are: 

• Econometric Risk Decomposition: Econometric models, which are either GARCH models or multivariate VAR 
models, can capture the conditional volatility and spillover effects in order to deliver a quantifiable amount of 
systemic risk [16][19]. 

• AI-based Non-linear Feature Mapping: A machine learning algorithm, in particular, deep neural networks have 
the ability to extrapolate non-linear, high-dimensional associations between variables that are not directly 
specified in an econometric model [17][20]. 

• Fusion to Improve Forecasts: Model forecasting can also be fused with other model predictions to ensure that 
the model prediction is informed by the underlying theoretical model and patterns learnt on empirical data 
[18]. 

Econometrics and Explainability Tools Interpretability AI models do not inherently present themselves in a way that is 
understandable by humans; however, model-agnostic interpretability tools (e.g., SHAP, LIME) can be used to convey 
information on the relevance of variables and model decisions [21]. 

The Proposed Model has several benefits 

• Higher Precision: It has been empirically found to improve more than single models in volatile and non-
stationary such as commodity [22]. 

• Greater Risk Visibility: With AI and econometrics, it is possible to predict and quantify risk simultaneously. 

Transparency & Regulation-Ready Is Econometrics often offers systematised interpretability, which augments the 
adaptive power of AI, as a compliance mandate together with an innovation. 
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4. Applications in the Real-Life of the Risk-Adjusted Pricing Model in Commodities Markets based on 
AI and Econometric Methods 

4.1. BP - Crude Oil Price Forecasting based on AI-Econometric Hybrids 

4.1.1. Context 

British Petroleum (BP) is an international energy company that is highly vulnerable to fluctuations in crude oil prices. 
The company also uses hybrid forecasting models in its trading division, which is a combination of GARCH-based 
volatility models with machine learning algorithms like the Random Forests and Support Vector Machines (SVM), 
forecasting the price of oil in a risk-adjusted manner. 

4.1.2. Application 

Conditional volatility is measured and predicted with the help of GARCH. 

The generated output of these models are then combined into ML pipelines in the form of engineered features to be 
used in subsequent price prediction. 

These forecasts are useful in hedging decisions and also in determining internal transfer prices of trading and 
production activities. 

Impact: This dual-modelling approach has resulted in higher short-term forecasting accuracy and enhanced portfolio 
risk management results as reported by BP. 

4.2. CME Group - Volatility Forecasting in Agricultural Derivatives with Econometric and AI-based Models 

4.2.1. Context 

The Chicago Mercantile Exchange (CME) applies AI and econometric models to determine margin requirements and 
measure volatility risk in its agricultural derivatives markets (e.g. corn, wheat, soybeans). 

4.2.2. Application 

EGARCH and stochastic volatility models are used in the CME to gauge price variability. 

Highlighted by these models, AI-based anomaly detection algorithms supplement them in detecting exogenous shocks 
(e.g., weather events or supply chain disruptions). 

The systems accommodate the models, which dynamically adjust Value-at-Risk (VaR) and margining systems. 

Impact: This mixed methodology allows improved monitoring of systemic risks, assists the SPAN margining system, 
and helps keep the market intact in high uncertainty times. 

4.3. Goldman Sachs AI-Enhanced Commodity Trading Strategies 

4.3.1. Context 

The Global Commodities Division of Goldman Sachs has implemented deep learning algorithms and econometric 
algorithms to perform real-time commodity trading and pricing (especially in the markets of energy and metals). 

4.3.2. Application 

Trains Long Short-Term Memory (LSTM) networks on previous price movement and macroeconomic data to forecast 
future price changes. 

At the same time, uses cointegration and VAR models to estimate long-run equilibrium relationships among 
commodities (e.g. oil and gas or gold and silver). 

The outputs of the models are used to drive automated trading algorithms that implement positions based on the 
predicted returns and risk metrics that are adjusted. 
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Impact: The strategy has led to increased alpha, increased inventory optimisation and increased liquidity provision in 
volatile markets. 

4.4. Trafigura - Real-Time Risk-Adjusted Pricing in Trading Physical Commodities 

4.4.1. Context 

Trafigura is one of the largest and independent commodity trading companies in the world that trades in refined 
products, crude oil and base metals. To handle global price exposure, it came up with a real-time commodity pricing 
platform operated using AI and econometric engines. 

4.4.2. Application 

The company applies autoregressive distributed lag (ARDL) models to know price elasticity and lag forms in the supply-
demand data. 

The gradient boosting machines (GBMs) and other AI methods are used to predict intra-day and daily prices based on 
streaming prices provided by shipping, weather, and inventory markets. 

The platform is dynamically adjusted to price offers by including hedging costs, basis risk and volatility forecasts. 

Impact: Trafigura has enhanced the accuracy of its transaction-level pricing, expanded trade margins and streamlined 
physical delivery pathways by converting prices more towards risk measurements. 

4.5. Pricing of Shell - Carbon Market and Energy Derivatives using AI and Risk Models 

4.5.1. Context 

As a part of its low-carbon trading activities, Shell uses AI-enhanced pricing models to operate collections of carbon 
credits, renewable energy certificates, and energy derivatives. 

4.5.2. Application 

Integrates Monte Carlo simulation, VaR modelling and reinforcement learning to value complex derivative contracts. 

Adjusts volatility and regulatory risk by using AI models conditioned on the energy consumption data, regulatory policy 
cues, and carbon offset prices. 

Implemented in the internal reporting of risks, as well as in structuring deals in relation to decarbonization plans. 

Impact: The implementation of such models by Shell enables it to provide more competitive prices, mitigate risk, 
expand its business of carbon trading, and remain transparent. 

4.6. Real-World Cases Conclusion 

These industrial examples reflect the increasing dependence of AI-econometric models, which combine both AI and the 
economy in pricing and risk management in the commodity markets. Some of the similarities in these cases are: 

• Risk quantification by means of econometric models (e.g., GARCH, VAR). 
• Foresight and anomaly detection AI algorithms (e.g., LSTM, SVM, GBM) deployment. 
• Construction of models in the trading, hedging, and portfolio optimisation pipeline in decision-making. 
• Focus on data fusion - traditional financial data in combination with macroeconomic, sensor, or unstructured 

data. 
• Creation of real-time pricing engines that are responsive to dynamic market conditions. 

These practical applications confirm the theory and suggest the potential area of future research, such as aligning 
regulation across markets, explaining models, and their scalability. 
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5. Future Research Directions 

5.1. Development of Hybrid Models that are understandable 

Future research will attempt to come up with interpretable hybrid models in a manner that they do not lose the 
theoretical basis of econometrics and apply the adaptive and non-linear learning capabilities of AI. The techniques that 
ought to be incorporated in the commodity pricing models are: model distillation, post-hoc explainability (e.g., SHAP, 
LIME), which will enable the models to adhere to regulations and be transparent in their operations. 

5.2. Incorporation of real-time streaming data 

Most of the existing models take historical ensembles of information, which is calculated in batches. The next step would 
be a successor (to incorporate real-time streaming information (e.g. satellite picture of crop harvests, high frequency 
trade information, sensor-based energy generation) into prices). Online learning algorithms and adaptive econometric 
stream-based methods are needed in order to respond to the altering market conditions. 

5.3. Expansion to Emerging Markets and Carbon Markets 

In the past, research has been on the common commodities like crude oil, gold, and agricultural products. Yet there are 
some new markets, such as carbon credits, lithium, and rare earth elements, which are gaining significance in the world 
market. The markets are also normally void of past information, which makes them good candidates for the hybrid 
models that could be exploited in the low-data and high-uncertainty regimes. 

5.4. Multi-Mode Learning Architectures Context-Aware Learning Architectures 

The future versions should have context-sensitive mechanisms, such as attention layers or hierarchies that dynamically 
weigh the weight of macroeconomic signals, policy events, and geopolitical signals. Multi-modal data (e.g., text on policy 
announcements, satellite data, and numerical time series) can be added to forecasting systems, and it is expected to 
make them more accurate and powerful. 

5.5. The Uncertainty and Model Risk to be measured 

This is because full-scale applications of hybrid models are in a high-stakes context where there is a need to measure 
the uncertainty of model results. The Bayesian deep learning and probabilistic econometric models can offer a solution. 
Research will be carried out on the estimation of confidence intervals, tail risks, and measures of robustness at different 
levels of the model. 

5.6. Governance and Ethical Frameworks Design 

As the role of AI-driven systems in the pricing decision-making process grows, ethical model governance frameworks, 
bias detection, and accountability should be offered. These models are expected to adhere to the norms of transparency 
in the financial market but should be capable of being innovated within a short time. This will involve studies to find out 
how to develop such structures of governance in an environment of algorithmic prices. 

6. Conclusion 

The AI, coupled with econometric techniques used in price-setting models of commodities, is a paradigm shift in 
financial models. The traditional econometric methods are interpretable and structurally clear, and even now, they 
matter a great deal in regulatory adoption and economic justification. They, however, tend not to cope with non-linear 
and fast-changing markets. Conversely, AI models are flexible and predictive, but they lack transparency and a 
theoretical foundation. To do away with such vulnerabilities, hybrid risk-adjusted pricing models that combine the best 
of AI with those of econometrics are gaining in popularity, as demonstrated in this review. The issues of this integrated 
approach outlined in this article, as both practical and tangible benefits, have been proposed through the analysis of 
significant literature, a proposed theoretical framework outlined, and its applications discussed in the real-world 
setting. Its major problems are explainability of the model, real-time adaptability, and quality of data and regulatory 
compliance, as well as suggesting the opportunities of future studies in the academic field and industry. The pressure of 
powerful, scalable, and understandable risk-adjusted pricing systems will continue to rise as commodity markets get 
more interlinked and volatile. The current development in the research and practice suggests that neither the adoption 
of AI nor econometrics is the future of commodities pricing, but the need to align them strategically to meet several 
complex needs in the existing markets. 
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