
 Corresponding author: Henry Samambgwa 

Copyright © 2025 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0. 

Deriving mathematical models from neural networks: A method for deducing 
individual effects of factors on a response variable  

Henry Samambgwa *, Thomas Musora and Joseph Kamusha 

Department of Mathematics and Statistics, Chinhoyi University of Technology, Chinhoyi, Zimbabwe. Private Bag 7724, 
Chinhoyi, Zimbabwe. 

World Journal of Advanced Engineering Technology and Sciences, 2025, 17(03), 051-059 

Publication history: Received 20 October 2025; revised on 29 November 2025; accepted on 01 December 2025 

Article DOI: https://doi.org/10.30574/wjaets.2025.17.3.1524 

Abstract 

This research outlines a novel approach to obtaining mathematical models from neural networks. The target scenario 
is one where a response variable depends on a number of factors, each factor has an effect which is a function of the 
factor and the response variable is the sum of the effects of the factors. A neural network was trained such that response 
values were generated from factor values. It was assumed that each effect was zero when the underlying factor was set 
to zero. The effect of a factor could be isolated by setting all other factors to zero, so that the response value became 
equal to the effect of the factor being isolated. In that way each effect was isolated and then modelled as a function of 
the factor. Thus, the technique was developed, for modelling a response variable as a function of its input factors.  

Keywords:  Neural Network; Perceptron; Mathematical Modelling; Machine Learning; Simulation 

1. Introduction

Neural network research is a subfield of machine learning, concerned with replication of human brain function in 
machines [1]. Machine learning procedures are designed to learn from empirical data [2]. Machine learning itself is a 
subfield of artificial intelligence (AI). AI research is concerned with the replication of human actions, activities and 
abilities in machines. Machines are designed to replicate human hearing, sight, touch, thinking and human activity 
recognition (HAR). In HAR, machines are taught to monitor and analyse human movements using sensor or visual data 
[3]. AI has transformed various sectors by integrating human-like abilities such as learning, reasoning, and perception 
into software systems [4]. 

Artificial neural network research was developed in the 1940s, by researchers Warren McCulloh and Walter Pitts, who 
proposed a mathematical model for brain neurons [5]. Over the decades since, neural network research has developed 
tremendously and made valuable contributions to academia, mining, pharmaceutical, medical, financial and 
geographical research among many other fields of study [6]. 

1.1. Neural networks 

Neural networks are mathematical models were input variable data is propagated from the input layer neurons, through 
hidden layer neurons and then response data is obtained at the output layer neurons. Neural networks are inspired by 
the human brain, and they replicate the way real neurons communicate with one another [7]. Neural networks have 
been studied under statistical mechanics since the 1980s [8], and have proven to be a highly effective tool for solving 
complex problems in many areas of life [9]. A neuron calculates the weighted sum of its inputs and then applies an 
activation function to obtain a signal that will be transmitted to the next neuron [10]. Neural networks reduce 

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://www.wjaets.com/
https://doi.org/10.30574/wjaets.2025.17.3.1524
https://crossmark.crossref.org/dialog/?doi=10.30574/wjaets.2025.17.3.1524&domain=pdf


World Journal of Advanced Engineering Technology and Sciences, 2025, 17(03), 051-059 

52 

humanity’s burden to solve complex problems highly efficiently [11]. Figure 1 illustrates the basic structure of a 
feedforward neural network.  

 

Figure 1 Feedforward neural network 

In this neural network the input layer (left) has four neurons and the output layer(right) has two neurons. Values from 
input variables are set in the input layer. Values of the response variables are generated at the output layer. In general, 
neuron layers between the input and the output layers are called hidden layers [12]. Here there is one hidden layer with 
five neurons. 

Input values are captured at the neurons in the input layer. Each neuron in the input layer passes its value to each 
neuron in the hidden layer. All neurons in hidden layers collect values from each neuron in the preceding layer and pass 
values to each neuron in the succeeding layer. The values coming into each hidden layer neuron are weighted and 
summed. 

1.2. Input  

Equation (1) shows how the weighted sum of inputs 𝑦𝐻𝑖
 is calculated at each neuron 𝐻𝑖. 

𝑦𝐻𝑖
= ∑ 𝑤𝐼𝑗𝐻𝑖

𝑥𝐼𝑗
4
𝑗=1 , 1 ≤ 𝑖 ≤ 5,   (1) 

were 

• 𝑦𝐻𝑖
=  weighted sum of inputs to neuron 𝐻𝑖, 

• 𝑥𝐼𝑗
= input from neuron 𝐼𝑗 , 

• 𝑤𝐼𝑗𝐻𝑖
= weight of the input from neuron 𝐼𝑗  to neuron 𝐻𝑖. 

• Each arrow connecting neurons has a weight associated with it. 

The weighted sum is then transformed (activated) using an activation function. This is done in order to remove linearity. 
If activation was not done, the final output would be a linear combination of the initial inputs. This would restrict the 
neural network to modelling linear relationships. Activation removes linearity, allowing the neural network to model a 
wider range of relationships including complicated functions. This widens the applicability of neural networks.  

1.3. Activation  

There are numerous functions that are used for activating neurons. Common activation functions include the sigmoid, 
tanh, RELU and SOFTMAX among many others [13]. The choice of activation function can impact the accuracy of the 
resulting neural network model [14]. The sigmoid function can be used to estimate any continuous function using the 



World Journal of Advanced Engineering Technology and Sciences, 2025, 17(03), 051-059 

53 

neural network [15]. Activation transforms the weighted sum 𝑦𝐻𝑖
 into values which are then passed into the next layer. 

Equation (2) shows how the result, 𝑥𝐻𝑖
, at a neuron, 𝐻𝑖 is calculated using the activation function, A. 

𝑥𝐻𝑖
= 𝐴(𝑦𝐻𝑖

),   (2) 

were 

• 𝑥𝐻𝑖
=input from neuron 𝐻𝑖 to the next layer, 

• 𝐴= activation function, 
• 𝑦𝐻𝑖

=  weighted sum of inputs to neuron 𝐻𝑖. 

• Activation occurs at each neuron in the hidden layer and output layer. 

1.4. Multilayer Perceptron 

The multilayer perceptron (MLP) is the most known and most frequently used type of neural network [16]. It is the 
most fundamental and important neural network model [17]. A perceptron has one neuron in the output layer. The MLP 
is very efficient for function approximation in high-dimensional spaces [18]. Perceptron neural networks produce 
efficient solutions to problems of overwhelming complexity [19]. 

1.5. Simulating clandestine functions 

Neural networks are trained using empirical data. Training algorithms adjust the weights accordingly so that the 
resulting neural network replicates the causality of input data to response data [20]. Neural networks are used to model 
unknown causality relationships where empirical values of input and response variables are known.  

1.6. Capturing Multiple influences 

This research focused on situations where a single response variable is known to depend on several factors. Neural 
networks can model systems where the particular effects (influences or contributions) of each factor are not known. In 
this study, the researchers developed a method to isolate and model those individual effects using a trained neural 
network. 

2. Methodology 

This study develops a method to derive a mathematical model from a neural network. We assume that the response 
variable (R), which is a function of n factors, is the sum of the individual effects (𝐸𝑖) of the factors, where each effect is 
a function of the underlying factor. Equation (3) illustrates this 

𝑅(𝐹1, 𝐹2, 𝐹3, . . . , 𝐹𝑛) = 𝐸1(𝐹1) + 𝐸2(𝐹2) + 𝐸3(𝐹3)+ . . . +𝐸𝑛(𝐹𝑛),  (3) 

were 

• 𝑅= the response variable which is a function of the factors 𝐹1, 𝐹2, 𝐹3, . . . , 𝐹𝑛, 
• 𝐸𝑖(𝐹𝑖)=the effect of factor 𝐹𝑖. 

We further assume that the factors are independent and the effects are independent of each other. We also assume that 
each factor has no effect when it is zero (Equation (4)). 

• 𝐸𝑖(0) = 0, ∀𝑖 ∈ {1, 2, 3, . . . , 𝑛}.   (4) 

A neural network is trained using empirical data. The neural network then replicates the effect of the factors on the 
response variable. To deduce the effect of an individual factor (𝐹𝑚), we set all other factors (𝐹𝑖) to zero, (where 𝑖 ≠ 𝑚). 
We then run the neural network, with only 𝐹𝑚 active. The result, thus only depends on 𝐹𝑚 and is equal to the individual 
effect of 𝐹𝑚,(Equations (5) and (6)). 

• 𝑅(𝐹1, 𝐹2, 𝐹3, . . . , 𝐹𝑛) = 𝐸1(𝐹1) + 𝐸2(𝐹2) + 𝐸3(𝐹3)+ . . . +𝐸𝑛(𝐹𝑛)  (5) 
• 𝑅(0,0,0, . . . , 𝐹𝑚, . . . ,0) = 𝐸1(0) + 𝐸2(0) + 𝐸3(0)+ . . . +𝐸𝑚(𝐹𝑚). . . +𝐸𝑛(0) = 𝐸𝑚(𝐹𝑚) (6) 



World Journal of Advanced Engineering Technology and Sciences, 2025, 17(03), 051-059 

54 

Having isolated the effect of 𝐹𝑚 we then fit an appropriate function with 𝐹𝑚 as the input variable and 𝑅 as the response. 
In this way we model the individual effect of the factor. The method can then be repeated on other factors individually, 
allowing us to model all the effects of the factors. When added, the functions of the effects form a mathematical model 
of the response variable as a function of the factors (Equation (7)): 

• 𝑅(𝐹1, 𝐹2, 𝐹3, . . . , 𝐹𝑛) = 𝐸1(𝐹1) + 𝐸2(𝐹2) + 𝐸3(𝐹3)+ . . . +𝐸𝑛(𝐹𝑛)  (7) 

3. Analysis and Results 

3.1. Introduction  

An experiment was conducted to test the method. The experiment was conducted in the MATLAB online environment 
[21]. Three functions were used as effects: 

• A polynomial function(cubic),  
• a trigonometric function,  
• and an exponential function. 

The model used for testing is shown in Equation (8) 

𝑅(𝐹1, 𝐹2, 𝐹3) = 5𝐹1
3 − 11𝐹1

2 + 5𝐹1 + 20𝑠𝑖𝑛𝐹2 + 3𝐹3𝑒
𝐹3   (8) 

𝐹𝑖𝑔𝑢𝑟𝑒 2  shows the MATLAB script that was used to generate random data and train a neural network with the 
generated data. 

10 000 Random values of 𝐹1, 𝐹2 and 𝐹3 were generated within the following domains: 

−5 ≤ 𝐹1 ≤ 5 

0 ≤ 𝐹2 ≤ 10𝜋 

−10 ≤ 𝐹3 ≤ 10 

Corresponding values of 𝑅 were calculated using the model formula. 

The neural network was setup with 3 hidden layers of 10 neurons each and trained using the generated data. The input 
layer had three inputs (𝐹1, 𝐹2 and 𝐹3) and the output layer had one output (𝑅). The 𝑡𝑎𝑛𝑠𝑖𝑔 (sigmoid) activation function 
(Equation (9)) was used in hidden layers: 

𝑡𝑎𝑛𝑠𝑖𝑔(𝑥) =
1

1+𝑒−𝑥.   (9) 

The output layer was setup with the 𝑝𝑢𝑟𝑒𝑙𝑖𝑛 activation function (Equation (10)) 

𝑝𝑢𝑟𝑒𝑙𝑖𝑛(𝑥) = 𝑥.    (10) 

 

 



World Journal of Advanced Engineering Technology and Sciences, 2025, 17(03), 051-059 

55 

 

Figure 2 MATLAB script used for data generation and neural network training 

3.2. Effect of 𝑭𝟏 

The effect of 𝐹1was determined using the MATLAB script in Table 1. The script functioned as follows: 

The variables 𝐹2 and 𝐹3 were set to zero whilst 10 000 values were generated for 𝐹1 using the function in Equation (11) 

𝐹1 = −5 +
𝑖

1000
, 𝑖 ∈ {𝑥: 1 ≤ 𝑥 ≤ 10 000, 𝑥 ∈ 𝑁}.   (11) 

The neural network was simulated using the matrix of generated values (Equation (12)): 

𝑖𝑛𝑝𝑢𝑡 =

[
 
 
 
 
 
−4.999 0 0
−4.998 0 0
−4.997

..

.
5.000

0
..
.
0

0
..
.
0]
 
 
 
 
 

.   (12) 

The simulation generated corresponding values of 𝑅. The MATLAB 𝑝𝑜𝑙𝑦𝑓𝑖𝑡 function was then used to fit a polynomial 
of degree 5 with 𝐹1 as the sole input variable and 𝑅 as the response variable: 

𝑎𝑥5 + 𝑏𝑥4 + 𝑐𝑥3 + 𝑑𝑥2 + 𝑒𝑥 + 𝑓   (13) 

The resulting model is shown in Equation (14): 



World Journal of Advanced Engineering Technology and Sciences, 2025, 17(03), 051-059 

56 

𝑅(𝐹1, 0,0) = 0.0004𝐹1
5   +  0.0005𝐹1

4 + 4.9905𝐹1
3   − 11.0073𝐹1

2 +  5.0391𝐹1   − 0.0078 (14) 

Which was approximately equal to the actual effect of 𝐹1. The method thus succeeded in determining the effect of 𝐹1. 

Table 1 MATLAB script used to generate values of 𝑭𝟏, simulate the neural network and fit a polynomial of degree 5 to 
the resulting data 

MATLAB script Output 

%Generating values of F_1 in [-5,5] 

F_1=-5+(10/10000) *[1:10000]; 

%Setting up the input matrix 

input= [F_1' zeros (10000,1) zeros (10000,1)]; 

%Simulating the neural network to generate values of 
R_1 

R_1=net(in'); 

%Fitting a polynomial of degree 5 to F_1 against R_1 

polykite (F_1, R_1,5) 

Ans = 

 

    0.0004    0.0005    4.9905 -11.0073    5.0391   -0.0078 

3.3. Effect of 𝑭𝟐 

The effect of 𝐹2was determined using the MATLAB script in Table 2. The script functioned as follows: 

The variables 𝐹1 and 𝐹3 were set to zero whilst 10 000 values are generated for 𝐹2 using the function in Equation (15):  

𝐹2 =
10𝜋𝑖

10 000
, 𝑖 ∈ {𝑥: 1 ≤ 𝑥 ≤ 10 000, 𝑥 ∈ 𝑁}   (15) 

The neural network was simulated using the matrix of generated values (Equation (16)) 

𝑖𝑛𝑝𝑢𝑡 =

[
 
 
 
 
 
 
 0

1

1000
𝜋 0

0
2

1000
𝜋 0

0
..
.
0

3

1000
𝜋

..

.
10𝜋

0
..
.
0]
 
 
 
 
 
 
 

    (16) 

The simulation generated corresponding values of 𝑅. The MATLAB 𝑓𝑖𝑡𝑡𝑦𝑝𝑒 function was used with the general form 
𝑎𝑠𝑖𝑛(𝑏𝑥 +  𝑐) + 𝑑 specified for the function. 

The resulting function is shown in Equation (17) 

𝑅(0, 𝐹2, 0) = 19.99𝑠𝑖𝑛(𝐹2 −  0.00005935) − 0.02509   (17) 

This is approximately equal to the actual effect of 𝐹2. The method thus succeeded in determining the effect of 𝐹2. 

Table 2 MATLAB script used to generate values of 𝑭𝟐, simulate the neural network and fit a trigonometric model to the 
resulting data 

MATLAB script Output 

%Generating 10000 values of F_2 in [0,10*pi] 

F_2 = (10*pi/10000) *[1:10000]'; 

%Setting the input matrix with F_2 active and F_1 and F_3 zero 

input= [zeros (10000,1) F_2 zeros (10000,1)]; 

General model: 

     fit Result(x) = a*sin(b*x + c) + d 

     Coefficients (with 95% confidence bounds): 

       a =       19.99 (19.99, 20) 



World Journal of Advanced Engineering Technology and Sciences, 2025, 17(03), 051-059 

57 

%Simulating the neural network 

R_2=net(input')'; 

% Fit type for a trigonometric function 

ft = fittype ('a*sin (b*x + c) + d', 'independent','x','dependent','y'); 

 

% Fitting the model to the data 

initialGuess = [1, 1, 0, 0]; 

[fitResult, gof] = fit (F_2, R_2, ft, 'StartPoint', initialGuess); 

 

% Display of the fit results 

disp(fitResult); 

disp(gof); 

       b =           1 (1, 1) 

       c = -5.935e-05 (-0.0004651, 0.0003464) 

       d =    -0.02509 (-0.02796, -0.02221) 

           sse: 214.3639 

       rsquare: 0.9999 

           dfe: 9996 

    adjrsquare: 0.9999 

          rmse: 0.1464 

3.4. Effect of 𝑭𝟑 

The effect of 𝐹3was determined using the MATLAB script in Table 3 . The script functioned as follows: 

The variables 𝐹1 and 𝐹2 were set to zero whilst 10 000 values were generated for 𝐹3 using the function in Equation (18): 

𝐹3 = −10 +
20𝑖

10 000
, 𝑖 ∈ {𝑥: 1 ≤ 𝑥 ≤ 10 000, 𝑥 ∈ 𝑁}  (18) 

The neural network was simulated using the matrix of generated values (Equation (19)) 

𝑖𝑛𝑝𝑢𝑡 =

[
 
 
 
 
 
0 0 −9.998
0 0 −9.996
0
..
.
0

0
..
.
0

−9.994
..
.

10.000]
 
 
 
 
 

.    (19) 

The simulation generated corresponding values of 𝑅. The MATLAB 𝑓𝑖𝑡𝑡𝑦𝑝𝑒 function was used with the general form 
𝑎𝑒𝑏𝑥 specified for the function. 

The resulting function is shown in Equation (20): 

𝑅(0,0, 𝐹3) = 3𝑒𝑏𝐹3 .    (20) 

Which is precisely equal to the actual effect of 𝐹3. 

 

Table 3 MATLAB script used to generate values of 𝑭𝟑, simulate the neural network and fit an exponential model to the 
resulting data 

MATLAB script Output 

%Generating 10000 values of F_3 in [-10,10] 

F_3 = -10+(20/10000) *[1:10000]'; 

%Setting the input matrix with F_3 active and F_1 and F_2 zero 

input= [zeros (10000,1) zeros (10000,1) F_3]; 

%Simulating the neural network 

R_3=net(input')'; 

% Fit type for an exponential function 

ft = fittype('a*x*exp(b*x)', 'independent','x','dependent','y'); 

General model: 

     fitResult(x) = a*x*exp(b*x) 

     Coefficients (with 95% confidence bounds): 

       a =           3 (3, 3) 

       b =           1 (1, 1) 

           sse: 6.8685e+04 

       rsquare: 1.0000 

           dfe: 9998 



World Journal of Advanced Engineering Technology and Sciences, 2025, 17(03), 051-059 

58 

 

% Fitting the model to the data 

initialGuess = [0,0]; 

[fitResult, gof] = fit (F_3, R_3, ft, 'StartPoint', initialGuess); 

 

% Display of the fit results 

disp(fitResult); 

disp(gof); 

    adjrsquare: 1.0000 

          rmse: 2.6210 

3.5. Identifying the General Form 

When using this technique, it is necessary to plot value of the factor against it’s the generated response (equal to the 
effect) values in order to identify the type of function and thus determine a suitable general form. 

4. Discussion  

In life there are systems in which a response variable results from the sum of effects of various factors. The aim of this 
study was to develop a technique that can isolate and model each individual effect in such systems as a function of the 
factor causing it. The researchers simulated one such scenario and the experimental results demonstrated the 
functionality of the technique. The technique can be used solve problems with similar objectives. 

This research demonstrated that neural network models replicate the true individual components of the system that 
they are trained for. An alternative hypothesis would have been that neural networks develop operations that replicate 
the attainment of similar responses from similar inputs as the systems they represent, without necessarily forming the 
true underlying causalities. In this study it was thus demonstrated that neural networks learn the actual operations of 
the systems that they are trained for. This proposes that neural networks hold within them, the secret operations of the 
systems they represent. It is thus up to researchers to derive those secrets from the neural networks. 

The technique was demonstrated for polynomial, trigonometric and exponential functions. Further research may be 
pursued to test the functionality for other types of functions. The technique can be used to deduce functions where it 
would be infeasible, hazardous or expensive to directly measure and analyse the effects in their real-life situations.  

5. Conclusion 

This study successfully developed a novel technique for isolating and modelling the individual effects of various factors 
in complex systems. It was demonstrated that neural networks replicate the actual underlying processes of the systems 
they are trained on. When analytic models of underlying processes are deduced, further insights can be drawn on the 
form and manner of the influences determining the system. The ability to accurately deduce individual contributions 
from aggregate effects opens new avenues for research, particularly in scenarios where direct measurement is 
challenging or impractical. Future research should aim to test the technique on additional types of functions, potentially 
expanding its reach and enhancing our understanding of complex systems. Ultimately, the findings suggest a promising 
direction for the application of neural networks in data analysis, offering researchers a powerful tool to unlock the 
secrets of intricate causal relationships in various domains. 

Compliance with ethical standards 

Disclosure of conflict of interest 

All authors declared they have no conflicts of interest related to this research. 

References 

[1] Goodfellow I., Bengio Y., and Courville A. (2016). Deep Learning. MIT Press.  

[2] Musora, T. (2023). Application of Panel Data Analysis and Modelling to Economic Data: A Case of Determinants 
of Economic Growth for SADC and Zimbabwe. Chinhoyi University of Technology. 



World Journal of Advanced Engineering Technology and Sciences, 2025, 17(03), 051-059 

59 

[3] Sennan, S., Somula, R., Cho, Y., Pandey, B. K. (2025). A hybrid multi-layer perceptron with selective stacked 
ensemble learning approach for recognizing human activity using sensor dataset. Scientific Reports. 

[4] Przybyla-Kasperek, M., Marfo, K. F. (2024). A multi-layer perceptron neural network for varied conditional 
attributes in tabular dispersed data. PLoS ONE. 

[5] McCulloch W., and Pitts W. (1943). A logical calculus of the ideas immanent in nervous activity.  

[6] The Bulletin of Mathematical Biophysics.  

[7] LeCun Y., Bengio Y., and Haffner P. (2015). Gradient-based learning applied to document recognition. Proceedings 
of the Institute of Electrical and Electronics Engineers. 

[8] Qamar, R., Zardari, B. A. (2023). Artificial Neural Networks: An Overview. Mesopotamia Journal of Computer 
Science. 

[9] Gabrie, M., Ganguli, S., Lucibello, C., Zecchina, R. (2023). Neural Networks: from the perceptron to deep nets. 
Replica Symmetry Breaking and Far Beyond. 

[10] Kunc, V., Klema, J. (2024). Three decades of activation. A comprehensive survey of 400 activation functions for 
neural networks. Machine Learning. Cornell University. 

[11] Castro, W., Oblitas, J., Santa-Cruz, R., Avilla-George, H. (2017). Multilayer perceptron architecture optimization 
using parallel computing techniques. PLoS ONE.  

[12] Madhiarasan, M., Louzazni, M. (2022). Analysis of Artificial Neural Network: Architecture, Types, and Forecasting 
Applications. Journal of Electrical and Computer Engineering. Wiley. 

[13] Apicella, A., Donnarumma, F., Isgro, F., Prevete, R. (2021). A survey on modern trainable activation functions. 
Neural Networks. Elsevier. 

[14] Bishop C. (2006). Pattern Recognition and Machine Learning. Springer.  

[15] Ding, B., Qian, H., Zhou, J. (2018). Activation functions and their characteristics in deep neural networks. 2018 
Chinese Control and Decision Conference. 

[16] Kamalov, F., Nazir, A., Safaraliev, M., Cherukuri, A. K., Zgheib, R. (2021). Comparative analysis of activation 
functions in neural networks. International Conference on Electronics, Circuits and Systems. IEEE. 

[17] Popescu, M. C., Balas, V. E., Popescu, L. P., Mastorakis, N. (2009). Multilayer Perceptron and Neural Networks. 
WSEAS Transactions on Circuits and Systems. 

[18] Du, K. L., Leung, C. S., Mow, W. H., Swamy, M. N. S. (2022). Perceptron: Learning, Generalization, Model Selection, 
Fault Tolerance, and Role in the Deep Learning Era. Mathematics. MDPI. 

[19] Du, K. L., Swamy, M. N. S. (2013). Neural Networks and Statistical Learning. Concordia University, Canada. 

[20] Calude, C. S., Heidari, S., Sifakis, J. (2022). What perceptron neural networks are (not) good for? Information 
Sciences. Elsevier. 

[21] Rumelhart D. E., Hinton G. E., and Williams R. J. (1986). Learning representations by back-propagating errors. 
Nature. 

[22] MathWorks (2025). MATLAB. Accessed at: www.mathworks.com  


