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Abstract

This research outlines a novel approach to obtaining mathematical models from neural networks. The target scenario
is one where a response variable depends on a number of factors, each factor has an effect which is a function of the
factor and the response variable is the sum of the effects of the factors. A neural network was trained such that response
values were generated from factor values. It was assumed that each effect was zero when the underlying factor was set
to zero. The effect of a factor could be isolated by setting all other factors to zero, so that the response value became
equal to the effect of the factor being isolated. In that way each effect was isolated and then modelled as a function of
the factor. Thus, the technique was developed, for modelling a response variable as a function of its input factors.
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1. Introduction

Neural network research is a subfield of machine learning, concerned with replication of human brain function in
machines [1]. Machine learning procedures are designed to learn from empirical data [2]. Machine learning itself is a
subfield of artificial intelligence (AI). Al research is concerned with the replication of human actions, activities and
abilities in machines. Machines are designed to replicate human hearing, sight, touch, thinking and human activity
recognition (HAR). In HAR, machines are taught to monitor and analyse human movements using sensor or visual data
[3]- Al has transformed various sectors by integrating human-like abilities such as learning, reasoning, and perception
into software systems [4].

Artificial neural network research was developed in the 1940s, by researchers Warren McCulloh and Walter Pitts, who
proposed a mathematical model for brain neurons [5]. Over the decades since, neural network research has developed
tremendously and made valuable contributions to academia, mining, pharmaceutical, medical, financial and
geographical research among many other fields of study [6].

1.1. Neural networks

Neural networks are mathematical models were input variable data is propagated from the input layer neurons, through
hidden layer neurons and then response data is obtained at the output layer neurons. Neural networks are inspired by
the human brain, and they replicate the way real neurons communicate with one another [7]. Neural networks have
been studied under statistical mechanics since the 1980s [8], and have proven to be a highly effective tool for solving
complex problems in many areas of life [9]. A neuron calculates the weighted sum of its inputs and then applies an
activation function to obtain a signal that will be transmitted to the next neuron [10]. Neural networks reduce
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humanity’s burden to solve complex problems highly efficiently [11]. Figure 1 illustrates the basic structure of a
feedforward neural network.

Figure 1 Feedforward neural network

In this neural network the input layer (left) has four neurons and the output layer(right) has two neurons. Values from
input variables are set in the input layer. Values of the response variables are generated at the output layer. In general,
neuron layers between the input and the output layers are called hidden layers [12]. Here there is one hidden layer with
five neurons.

Input values are captured at the neurons in the input layer. Each neuron in the input layer passes its value to each
neuron in the hidden layer. All neurons in hidden layers collect values from each neuron in the preceding layer and pass
values to each neuron in the succeeding layer. The values coming into each hidden layer neuron are weighted and
summed.

1.2. Input

Equation (1) shows how the weighted sum of inputs yy, is calculated at each neuron H;.

yH,::Z;!':lWIjHixlj'lSiSS' (1)
were
e yy,=  weighted sum of inputs to neuron H;,
* Xx;= input from neuron [;,

* wyn= weight of the input from neuron /; to neuron H;.

e Each arrow connecting neurons has a weight associated with it.

The weighted sum is then transformed (activated) using an activation function. This is done in order to remove linearity.
If activation was not done, the final output would be a linear combination of the initial inputs. This would restrict the
neural network to modelling linear relationships. Activation removes linearity, allowing the neural network to model a
wider range of relationships including complicated functions. This widens the applicability of neural networks.

1.3. Activation

There are numerous functions that are used for activating neurons. Common activation functions include the sigmoid,
tanh, RELU and SOFTMAX among many others [13]. The choice of activation function can impact the accuracy of the
resulting neural network model [14]. The sigmoid function can be used to estimate any continuous function using the
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neural network [15]. Activation transforms the weighted sum y; into values which are then passed into the next layer.
Equation (2) shows how the result, x,, at a neuron, H; is calculated using the activation function, A.

X, = A(v,), @
were

® xy,=input from neuron H; to the next layer,
e A= activation function,
e yy,=  weighted sum of inputs to neuron H;.

e Activation occurs at each neuron in the hidden layer and output layer.

1.4. Multilayer Perceptron

The multilayer perceptron (MLP) is the most known and most frequently used type of neural network [16]. It is the
most fundamental and important neural network model [17]. A perceptron has one neuron in the output layer. The MLP
is very efficient for function approximation in high-dimensional spaces [18]. Perceptron neural networks produce
efficient solutions to problems of overwhelming complexity [19].

1.5. Simulating clandestine functions

Neural networks are trained using empirical data. Training algorithms adjust the weights accordingly so that the
resulting neural network replicates the causality of input data to response data [20]. Neural networks are used to model
unknown causality relationships where empirical values of input and response variables are known.

1.6. Capturing Multiple influences

This research focused on situations where a single response variable is known to depend on several factors. Neural
networks can model systems where the particular effects (influences or contributions) of each factor are not known. In
this study, the researchers developed a method to isolate and model those individual effects using a trained neural
network.

2. Methodology

This study develops a method to derive a mathematical model from a neural network. We assume that the response
variable (R), which is a function of n factors, is the sum of the individual effects (E;) of the factors, where each effect is
a function of the underlying factor. Equation (3) illustrates this

R(Fy,Fy,Fs, ..., F) = E(F)) + E;(Fy) + E3(F3)+ ... +E, (), (3)
were

e R=theresponse variable which is a function of the factors Fy, F,, F5, ..., F,,
e  E;(F;)=the effect of factor F;.

We further assume that the factors are independent and the effects are independent of each other. We also assume that
each factor has no effect when it is zero (Equation (4)).

e FE(0)=0,Vie{1,23,...,n} (4
A neural network is trained using empirical data. The neural network then replicates the effect of the factors on the
response variable. To deduce the effect of an individual factor (£,), we set all other factors (F;) to zero, (where i # m).
We then run the neural network, with only F,, active. The result, thus only depends on F,, and is equal to the individual

effect of F,,,(Equations (5) and (6)).

o R(F,FyFs,...,E) = E;(F)) + Ey(Fy) + Es(F)+ ... +E,(E,) (5)
e R(0,00,...,E,...,0) = E;(0) + E5(0) + E5(0)+ ... +E,(Fy)... +E,(0) =E(E,)  (6)
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Having isolated the effect of F,, we then fit an appropriate function with F,, as the input variable and R as the response.
In this way we model the individual effect of the factor. The method can then be repeated on other factors individually,
allowing us to model all the effects of the factors. When added, the functions of the effects form a mathematical model
of the response variable as a function of the factors (Equation (7)):

o R(F,F,F;,...,E) =E (F) + E,(F,) + E5(F3)+ ... +E,(F) (7

3. Analysis and Results

3.1. Introduction

An experiment was conducted to test the method. The experiment was conducted in the MATLAB online environment
[21]. Three functions were used as effects:

e A polynomial function(cubic),
e atrigonometric function,
e and an exponential function.
The model used for testing is shown in Equation (8)

R(Fl,Fz,F3) = 5F13 - 11F12 + 5F1 + ZOSinFZ + 3F3€F3 (8)

Figure 2 shows the MATLAB script that was used to generate random data and train a neural network with the
generated data.

10 000 Random values of F;, F, and F; were generated within the following domains:
—-5<F <5
0<F <10m
-10<F; <10
Corresponding values of R were calculated using the model formula.
The neural network was setup with 3 hidden layers of 10 neurons each and trained using the generated data. The input

layer had three inputs (F;, F, and F;) and the output layer had one output (R). The tansig (sigmoid) activation function
(Equation (9)) was used in hidden layers:

1
1+e™x

(9)

tansig(x) =

The output layer was setup with the purelin activation function (Equation (10))

purelin(x) = x. (10)
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% Number of data points
Num Points = 10 000;

% Domains for F1, F2, and F3

F1 = rand (Num Points, 1) ¥ 10 - 5; % F1 in [-5, 5]

F2 = rand (Num Points, 1) * 10* pi; % F2 in [0, 10%pi]
F3 = rand (Num Points, 1) * 20 - 10; % F3 in [-10, 10]

% Calculating R using the model
R=5%*F1.~3-11 * F1. "2+ 5 *F1 + 20 * sin(F2) + 3*F3. * Exp(F3);

% Combining inputs info a single matrix

inputs = [F1 F2 F3];

% Creating a feedforward neural network with 3 hidden layers
Hidden Layers =[10, 10, 10]; % Each hidden layer has 10 neurons
net = feedforward net (hidden Layers);

% Activation function set to tensing (sigmoid)
for I = 1: length (hidden Layers)

net. layers{I}. transfer Fan = 'tensing';
end

% Output layer activation function set to 'purlin’
net. layers{end|}. transfer Fan = 'purlin’;

% Preparing the data for training
inputs = inputs'; % Transpose inputs to 3xN
targets = R'; % Transpose targets to IXN

% Train the network
net = train (net. inputs, targets):

Figure 2 MATLAB script used for data generation and neural network training

3.2. Effect of F,
The effect of F;was determined using the MATLAB script in Table 1. The script functioned as follows:

The variables F, and F; were set to zero whilst 10 000 values were generated for F; using the function in Equation (11)

F,=-5+4+—, i€ {x:1<x<10000,x € N}. (11)

1000

The neural network was simulated using the matrix of generated values (Equation (12)):

—4999 0 O
—4998 0 O
—-4997 0 O
input = . (12)
l 5000 O 0J

The simulation generated corresponding values of R. The MATLAB polyfit function was then used to fit a polynomial
of degree 5 with F; as the sole input variable and R as the response variable:

ax® +bx*+cx® +dx?>+ex+f (13)

The resulting model is shown in Equation (14):
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R(F;,0,0) = 0.0004F,°> + 0.0005F,* + 4.9905F,®> — 11.0073F,% + 5.0391F, —0.0078  (14)
Which was approximately equal to the actual effect of F;. The method thus succeeded in determining the effect of F;.

Table 1 MATLAB script used to generate values of F4, simulate the neural network and fit a polynomial of degree 5 to
the resulting data

MATLAB script Output

%Generating values of F_1 in [-5,5] Ans =

F_1=-5+(10/10000) *[1:10000];

%Setting up the input matrix 0.0004 0.0005 4.9905-11.0073 5.0391 -0.0078

input= [F_1' zeros (10000,1) zeros (10000,1)];

%Simulating the neural network to generate values of
R_1

R_1=net(in");
%Fitting a polynomial of degree 5 to F_1 against R_1
polykite (F_1,R_1,5)

3.3. Effect of F,

The effect of F,was determined using the MATLAB script in Table 2. The script functioned as follows:

The variables F; and F; were set to zero whilst 10 000 values are generated for F, using the function in Equation (15):

__1omi
~ 10000’

A i€ {x:1<x<10000,x € N} (15)

The neural network was simulated using the matrix of generated values (Equation (16))

[0 —m 0]
1000
0 —m 0
1000
input o T (16)
10 107 O

The simulation generated corresponding values of R. The MATLAB fittype function was used with the general form
asin(bx + c) + d specified for the function.

The resulting function is shown in Equation (17)
R(0,F,,0) = 19.99sin(F, — 0.00005935) — 0.02509 17

This is approximately equal to the actual effect of F,. The method thus succeeded in determining the effect of F,.

Table 2 MATLAB script used to generate values of F,, simulate the neural network and fit a trigonometric model to the
resulting data

MATLAB script Output

%Generating 10000 values of F_2 in [0,10*pi] General model:

F_2 = (10*pi/10000) *[1:10000]'; fit Result(x) = a*sin(b*x + c) + d

%Setting the input matrix with F_2 active and F_1 and F_3 zero Coefficients (with 95% confidence bounds):
input= [zeros (10000,1) F_2 zeros (10000,1)]; a=  19.99(19.99,20)
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%Simulating the neural network b= 1(1,1)
R_2=net(input’)’; ¢ =-5.935e-05 (-0.0004651, 0.0003464)
% Fit type for a trigonometric function d= -0.02509 (-0.02796,-0.02221)
ft = fittype (‘a*sin (b*x + ) + d', 'independent’,'x’,'"dependent’,'y"); sse: 214.3639
rsquare: 0.9999
% Fitting the model to the data dfe: 9996
initialGuess = [1, 1, 0, 0]; adjrsquare: 0.9999
[fitResult, gof] = fit (F_2, R_2, ft, 'StartPoint’, initialGuess); rmse: 0.1464
% Display of the fit results
disp(fitResult);
disp(gof);

3.4. Effect of F5
The effect of F;was determined using the MATLAB script in Table 3 . The script functioned as follows:
The variables F; and F, were set to zero whilst 10 000 values were generated for F; using the function in Equation (18):

20i
10000’

Fy=—-10+ i €{x:1<x<10000,x € N} (18)

The neural network was simulated using the matrix of generated values (Equation (19))

0 0 —9.998
[O 0 —9.996]
0 0 —9.994
input =| . (19)
l0 0 10.000J

The simulation generated corresponding values of R. The MATLAB fittype function was used with the general form
aeb* specified for the function.

The resulting function is shown in Equation (20):
R(0,0,F;) = 3ePfs, (20)

Which is precisely equal to the actual effect of F;.

Table 3 MATLAB script used to generate values of F3, simulate the neural network and fit an exponential model to the
resulting data

MATLAB script Output

%Generating 10000 values of F_3 in [-10,10] General model:

F_3=-10+(20/10000) *[1:10000]"; fitResult(x) = a*x*exp(b*x)

%Setting the input matrix with F_3 active and F_1 and F_2 zero Coefficients (with 95% confidence bounds):
input= [zeros (10000,1) zeros (10000,1) F_3]; a= 3(3,3)

%Simulating the neural network b= 1(1,1)

R_3=net(input")’; sse: 6.8685e+04

% Fit type for an exponential function rsquare: 1.0000

ft = fittype(‘a*x*exp(b*x)’, 'independent’,'x’,'dependent’,'y"); dfe: 9998
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adjrsquare: 1.0000
% Fitting the model to the data rmse: 2.6210
initialGuess = [0,0];

[fitResult, gof] = fit (F_3, R_3, ft, 'StartPoint’, initialGuess);

% Display of the fit results
disp(fitResult);

disp(gof);

3.5. Identifying the General Form

When using this technique, it is necessary to plot value of the factor against it’s the generated response (equal to the
effect) values in order to identify the type of function and thus determine a suitable general form.

4. Discussion

In life there are systems in which a response variable results from the sum of effects of various factors. The aim of this
study was to develop a technique that can isolate and model each individual effect in such systems as a function of the
factor causing it. The researchers simulated one such scenario and the experimental results demonstrated the
functionality of the technique. The technique can be used solve problems with similar objectives.

This research demonstrated that neural network models replicate the true individual components of the system that
they are trained for. An alternative hypothesis would have been that neural networks develop operations that replicate
the attainment of similar responses from similar inputs as the systems they represent, without necessarily forming the
true underlying causalities. In this study it was thus demonstrated that neural networks learn the actual operations of
the systems that they are trained for. This proposes that neural networks hold within them, the secret operations of the
systems they represent. It is thus up to researchers to derive those secrets from the neural networks.

The technique was demonstrated for polynomial, trigonometric and exponential functions. Further research may be
pursued to test the functionality for other types of functions. The technique can be used to deduce functions where it
would be infeasible, hazardous or expensive to directly measure and analyse the effects in their real-life situations.

5. Conclusion

This study successfully developed a novel technique for isolating and modelling the individual effects of various factors
in complex systems. It was demonstrated that neural networks replicate the actual underlying processes of the systems
they are trained on. When analytic models of underlying processes are deduced, further insights can be drawn on the
form and manner of the influences determining the system. The ability to accurately deduce individual contributions
from aggregate effects opens new avenues for research, particularly in scenarios where direct measurement is
challenging or impractical. Future research should aim to test the technique on additional types of functions, potentially
expanding its reach and enhancing our understanding of complex systems. Ultimately, the findings suggest a promising
direction for the application of neural networks in data analysis, offering researchers a powerful tool to unlock the
secrets of intricate causal relationships in various domains.
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