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Abstract 

Accurate prediction of methane yield is essential for optimizing anaerobic digestion (AD) systems and improving the 
efficiency of agricultural biomass-to-energy conversion. This study presents a machine learning–based predictive 
framework trained on a structured and experimentally derived dataset encompassing physicochemical feedstock 
properties, operational parameters, and biogas performance indicators. The dataset includes more than 500 labeled 
samples representing major agricultural residues, characterized by Total Solids (TS), Volatile Solids (VS), C/N ratio, 
lignocellulosic composition, temperature, pH, and Organic Loading Rate. Six supervised learning algorithms like 
Gradient Boosting Regressor (GBR), Light GBM, Cat Boost, Extra Trees, K-Nearest Neighbors (KNN), and Elastic Net were 
developed and evaluated using an 80/20 train–test split, five-fold cross-validation, and performance metrics including 
RMSE, MAE, and R². Results indicate that Light GBM achieved the highest predictive accuracy with an R² of 0.95 and the 
lowest RMSE, demonstrating the dataset’s strong feature representation and model suitability. Feature importance 
analysis revealed Volatile Solids, lignin content, and C/N ratio as the most influential predictors of methane yield. The 
findings confirm that machine learning models, when trained on well-structured AD datasets, can significantly enhance 
methane yield estimation and support intelligent, data-driven biogas plant optimization. This study establishes a 
scalable framework for predictive AD modeling and offers a foundation for integrating AI-driven decision-making into 
sustainable waste-to-energy systems.  
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1. Introduction

Anaerobic digestion (AD) has emerged as a key bioenergy pathway for transforming agricultural residues into 
renewable methane-rich biogas. With increasing global emphasis on sustainable waste management, circular 
bioeconomy practices, and energy security, optimizing methane yield from biomass has become a critical research focus 
[1]. Agricultural residues such as rice straw, wheat straw, maize stover, sugarcane bagasse, and paddy husk represent 
abundant, low-cost feedstocks with significant potential for biomethane generation. However, methane yield varies 
widely depending on physicochemical feedstock characteristics, operational conditions, reactor dynamics, and 
microbial activity. [2] This inherent variability poses a major challenge for designing efficient AD systems and achieving 
consistent biogas output. 

Traditional empirical and biochemical models struggle to fully capture the nonlinear and multivariate interactions that 
govern methane production [3]. Although multiple studies have attempted to correlate methane yield with parameters 
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such as lignocellulosic composition, C/N ratio, temperature, and Organic Loading Rate (OLR), these models often fall 
short due to limited dataset size, lack of structured metadata, and the inability to handle complex patterns within AD 
processes [4]. As a result, methane yield prediction remains uncertain, thereby limiting accurate reactor design, 
feedstock optimization, and intelligent control strategies in practical biogas plants. 

Recent advancements in machine learning (ML) have demonstrated strong capabilities in modeling complex 
environmental and biochemical systems with high predictive accuracy. ML techniques can effectively learn 
relationships among multiple interacting parameters and estimate methane yield more reliably than traditional 
methods [5]. However, the success of ML models depends heavily on the availability of structured, high-quality datasets 
containing comprehensive physicochemical and operational features. In anaerobic digestion research, such datasets 
have traditionally been fragmented, incomplete, or inconsistent, restricting the development of robust predictive 
models. 

To address this gap, the present study applies multiple supervised ML algorithms to a structured anaerobic digestion 
dataset comprising more than 500 experimentally derived and fully labeled samples. This dataset integrates feedstock 
composition, operational conditions, and methane performance indicators, enabling a robust platform for predictive 
modeling. The objective of this work is to evaluate the predictive strength of various ML models including Gradient 
Boosting Regressor, Light GBM, Cat Boost, Extra Trees, KNN, and Elastic Net—for methane yield estimation and to 
identify the most influential features contributing to biomethane production. The findings of this study not only 
highlight the superior performance of tree-based ensemble models but also provide insights into the key factors 
influencing methane generation. By establishing a reliable and scalable ML-based framework, this research contributes 
to data-driven optimization of AD processes and paves the way for intelligent, AI-enabled biogas plant control systems. 

2. Literature Review 

Research on AD has long emphasized the influence of feedstock characteristics and operational conditions on methane 
yield. Studies consistently highlight that parameters such as lignocellulosic composition, C/N ratio, volatile solids 
content, temperature regime, and organic loading rate strongly affect microbial activity and biogas production potential 
[6,7]. While conventional biochemical models and regression-based approaches have attempted to formulate predictive 
relationships among these parameters, their ability to capture the complex, nonlinear dynamics of AD systems remains 
limited [8]. This shortcoming is particularly evident when dealing with heterogeneous agricultural residues, where 
variability in chemical structure, moisture content, and degradability leads to significant fluctuations in methane yield. 

In recent years, ML has emerged as a powerful alternative for modeling environmental and biochemical processes. ML 
algorithms excel at detecting hidden patterns, managing multi-dimensional inputs, and learning nonlinear interactions 
without requiring explicit mechanistic equations [9-11]. Applications of ML in energy systems, waste treatment, and 
environmental prediction have demonstrated superior performance compared to traditional modeling methods. Within 
the AD domain, early ML-based studies have explored the use of regression trees, artificial neural networks, and support 
vector machines to estimate methane yield or assess process stability. These models have shown promise, but their 
performance has often been constrained by small datasets, inconsistent data quality, and incomplete feature 
representation [12]. 

A recurring challenge identified across prior research is the absence of large, structured, and standardized datasets for 
anaerobic digestion modeling. Existing datasets typically lack comprehensive metadata describing feedstock 
composition, operational parameters, and methane performance indices [13]. This fragmentation limits the ability of 
machine learning models to generalize effectively, hampers reproducibility, and restricts cross-study comparisons. 
Without well-defined labeling frameworks and uniform measurement protocols, training robust predictive models 
becomes difficult, leading to inconsistent methane yield predictions and reduced reliability. 

The emergence of ensemble learning techniques and gradient boosting algorithms has further expanded possibilities 
for accurate methane yield forecasting [14]. Such models are capable of handling feature heterogeneity, ranking variable 
importance, and offering interpretable insights into the biochemical factors controlling methane production [15]. 
Although these advancements present clear advantages, their integration into AD research remains underexplored due 
to the scarcity of well-structured datasets that support meaningful training and validation. 

Given these gaps, there is a strong need for methane prediction studies that utilize comprehensive, experimentally 
validated datasets and modern machine learning techniques. The present work addresses this need by applying 
advanced supervised learning models to a structured dataset containing detailed physicochemical and operational 
descriptors of major agricultural residues. By benchmarking multiple ML algorithms and analyzing key predictive 



World Journal of Advanced Engineering Technology and Sciences, 2025, 17(03), 112–120 

114 

features, this study provides a more reliable and scalable computational framework for methane yield estimation and 
supports the broader goal of optimizing anaerobic digestion systems through data-driven intelligence. 

3. Methodology 

The methodology adopted in this study integrates systematic dataset preparation, feature engineering, and machine 
learning model development to accurately predict methane yield from agricultural residues. The workflow consists of 
six main stages: data acquisition, preprocessing, feature engineering, model training, model validation, and performance 
evaluation as illustrated in figure 1  

 

Figure 1 Proposed Machine Learning Framework for Methane Yield Prediction 

3.1. Dataset Acquisition and Integration 

A structured AD dataset developed in the prior phase of this research served as the foundational input for model 
development. The dataset comprises more than 500 labeled records representing major agricultural residues including 
rice straw, wheat straw, maize stover, sugarcane bagasse, and paddy husk. Each sample was experimentally 
characterized for physicochemical properties such as Total Solids (TS), Volatile Solids (VS), C/N ratio, lignin, cellulose, 
and hemicellulose, while operational parameters such as temperature, pH, Organic Loading Rate (OLR), and Hydraulic 
Retention Time (HRT) were recorded during batch digestion experiments. Biogas production and methane content 
were measured using standardized BMP assays, and methane yield (mL CH₄/g VS) was taken as the target variable. 

3.2. Data Cleaning and Preprocessing 

To ensure the dataset was model-ready, a multi-step preprocessing pipeline was applied. Missing values were imputed 
using feature-specific statistical strategies, while outliers were removed through the Interquartile Range (IQR) method. 
All continuous variables were normalized using Min–Max scaling to maintain uniform ranges across features. 
Categorical parameters such as temperature regime (mesophilic/thermophilic) and feedstock type were encoded using 
one-hot encoding. The preprocessed dataset was further checked for class balance, data consistency, and noise 
reduction. 

3.3. Feature Engineering and Selection 

Advanced feature engineering was performed to enhance model interpretability and predictive capability. Derived 
indices such as VS/TS ratio, lignocellulosic index, temperature stability index, and pH deviation factor were computed 
to better represent AD process behavior. Feature correlation analysis using Pearson’s r and Mutual Information (MI) 
scores was conducted to identify the most influential predictors. Additionally, Principal Component Analysis (PCA) was 
used to assess feature redundancy and data separability without compromising interpretability. The final feature set 
included 15 physicochemical and operational parameters contributing significantly to methane yield prediction. 
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3.4. Train–Test Split and Cross-Validation 

The dataset was randomly divided into an 80:20 train–test split to ensure unbiased evaluation. To further strengthen 
model reliability and reduce variance, five-fold cross-validation was applied during training. This approach ensured 
that each model was trained and validated across multiple subsets, improving generalization and preventing overfitting. 

3.5. Machine Learning Model Development 

A series of six supervised machine learning models were developed to accurately predict methane yield from the 
structured anaerobic digestion dataset. The selected algorithms included Gradient Boosting Regressor (GBR), Light 
Gradient Boosting Machine (Light GBM), Cat Boost Regressor, Extra Trees Regressor, KNN, and Elastic Net Regression, 
representing a diverse range of ensemble-based, instance-based, and regularized linear modeling approaches. To 
ensure optimal performance, each model underwent hyperparameter tuning using grid search, which systematically 
optimized parameters such as learning rate, tree depth, number of estimators, regularization coefficients, and nearest-
neighbor settings. All models were trained on a standardized feature matrix derived from physicochemical and 
operational variables, with methane yield serving as the target output. This comprehensive model development process 
ensured robust learning of nonlinear relationships within the dataset and facilitated reliable comparative evaluation 
across different ML techniques. 

3.6. Model Evaluation and Performance Metrics 

Model performance was evaluated using three widely accepted regression metrics: Root Mean Squared Error (RMSE) 
to assess overall prediction accuracy, Mean Absolute Error (MAE) to quantify the average magnitude of deviation 
between predicted and actual values, and the Coefficient of Determination (R²) to measure the predictive strength and 
explanatory capability of each model. In addition to numerical evaluation, predicted vs. Actual plots and boxplots were 
generated to visually examine model behavior, detect bias, and assess error distribution. Feature importance analysis 
was also performed to identify the most influential variables governing methane yield, enabling deeper insight into the 
underlying biochemical and operational drivers. Across all models, LightGBM demonstrated the highest predictive 
accuracy and consistency, confirming the suitability and robustness of tree-based ensemble algorithms for methane 
yield estimation using structured AD datasets. 

4. Results and Discussion 

The Results and Discussion section presents a detailed analysis of the dataset characteristics, feature behavior, machine 
learning model performance, and methane yield prediction outcomes. The findings highlight the complex interplay 
between physicochemical biomass properties, operational digestion parameters, and their collective influence on 
methane production. Statistical summaries reveal substantial variability among agricultural residues, emphasizing the 
importance of using advanced modeling techniques capable of capturing nonlinear relationships. Through a series of 
visualization plots, correlation analyses, and comparative model evaluations, this study demonstrates the effectiveness 
of machine learning—particularly gradient boosting–based algorithms in achieving highly accurate methane yield 
prediction. The following subsections discuss the dataset trends, feature contributions, and model behaviors in greater 
detail, supported by tables and figures that illustrate key insights from the predictive framework. 

Table 1 Statistical Summary of Input Features in the Dataset 

Feature Min Max Mean Std. Dev 

TS (%) 42.3 68.4 51.7 6.3 

VS (%) 38.9 61.0 46.5 5.8 

C/N Ratio 17.8 32.9 27.1 3.9 

Lignin (%) 9.8 27.3 17.4 4.9 

Cellulose (%) 25.4 41.8 33.7 4.1 

Temperature (°C) 30 55 41.2 7.8 

OLR (g VS/L/day) 1.0 6.0 3.4 1.1 

pH 6.2 8.1 7.18 0.23 
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The statistical summary of the key physicochemical and operational features used as input variables for methane yield 
prediction is given in table 1. The values highlight the inherent variability among agricultural residues, which directly 
influences their biodegradability and methane generation potential. Total Solids (TS) and Volatile Solids (VS) show 
moderate variability, with TS ranging from 42.3% to 68.4% and VS from 38.9% to 61.0%, indicating substantial 
differences in moisture content and organic matter availability across feedstocks. The C/N ratio, which plays a crucial 
role in microbial metabolism, also exhibits noticeable variation, spanning from 17.8 to 32.9; this range reflects both 
nitrogen-rich and carbon-dominant substrates, potentially affecting digestion stability. Lignin and cellulose contents 
show wide dispersion, with lignin varying between 9.8% and 27.3% and cellulose between 25.4% and 41.8%, 
underscoring the structural heterogeneity of biomass and its influence on anaerobic hydrolysis rates. 

Operational parameters also reveal diverse experimental conditions. Temperature ranges from 30°C to 55°C, covering 
both mesophilic and thermophilic regimes, while OLR values between 1.0 and 6.0 g VS/L/day represent different 
loading intensities that can impact reactor performance and microbial activity. The pH values show relatively narrow 
variation, remaining within the optimal range (6.2–8.1) for methanogenic activity, indicating that digestion conditions 
were well controlled. Overall, the variability observed across these features highlights the complexity of anaerobic 
digestion systems and justifies the need for machine learning models capable of capturing nonlinear and multi-
dimensional interactions to accurately predict methane yield. 

 

Figure 2 Distribution of Methane yield (BMP) 

The distribution of methane yield across all samples in the dataset, providing a comprehensive overview of the 
variability in Biochemical Methane Potential (BMP) among different agricultural residues. The distribution shows a 
broad range of BMP values, indicating significant differences in biodegradability and organic matter conversion 
efficiency across feedstocks is shown in figure 2. The histogram reveals a slightly right-skewed pattern, suggesting that 
while a majority of samples produce moderate methane yields, a smaller number achieve exceptionally high methane 
output. This variation reflects intrinsic feedstock factors such as lignocellulosic composition, C/N ratio, and volatile 
solids content, as well as operational influences including temperature and OLR during digestion. The presence of 
multiple peaks within the distribution also suggests that the dataset contains distinct clusters corresponding to different 
biomass categories, each with characteristic biochemical properties. Overall, the distribution confirms the 
heterogeneity of the input samples and underscores the need for advanced predictive models capable of handling wide-
ranging methane yield patterns. 
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Figure 3 Correlation heatmap of digestion features 

The correlation heatmap of the physicochemical and operational features used for methane yield prediction. The 
heatmap provides clear insights into how different variables interact and influence the anaerobic digestion process is 
illustrated in figure 3. Notably, Volatile Solids (VS) and C/N ratio exhibit strong positive correlations with methane yield, 
highlighting their role as primary contributors to improved digestion efficiency. Lignin content shows a pronounced 
negative correlation, which is expected due to lignin’s complex and recalcitrant structure that limits microbial 
accessibility and slows hydrolysis. Moderate correlations are observed for cellulose, temperature, and OLR, indicating 
their supportive but less dominant contributions to methane production. The heatmap also reveals inter-feature 
relationships, such as the inverse association between lignin and cellulose and the mild positive relationship between 
temperature and pH stability. These correlations validate existing biochemical principles of anaerobic digestion and 
demonstrate that the dataset captures meaningful patterns necessary for robust machine learning modeling. 

 

Figure 4 Feature importance (Light GBM) 

The ranked of feature importance derived from the Light GBM model, highlighting the most influential predictors of 
methane yield is presented in figure 4. Volatile Solids emerge as the most critical feature, reinforcing their direct role in 
determining the amount of degradable organic matter available for microbial conversion. Lignin content ranks second, 
reflecting its strong inhibitory effect on biodegradability due to its rigid, aromatic polymer structure. The C/N ratio also 
shows high importance, emphasizing the need for nutrient balance to support the synergistic functioning of hydrolytic, 
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acidogenic, and methanogenic microorganisms. Cellulose, temperature, and OLR collectively contribute to methane 
yield variability, indicating that structural carbohydrate content and process loading significantly influence digestion 
kinetics. pH, although important for microbial stability, shows comparatively lower feature importance due to its lower 
variability across samples, as reactors were maintained near optimal conditions. Overall, the feature importance plot 
confirms that both biochemical composition and operational conditions play essential roles in methane production, 
while also demonstrating the capability of Light GBM to capture complex nonlinear dependencies within the dataset. 

 

Figure 5 Predicted vs actual Methane yield (Light GBM) 

The Predicted vs. Actual methane yield plot for the best-performing machine learning model is shown in figure 5. The 
distribution of points closely aligning along the 45° reference line indicates strong agreement between model 
predictions and experimentally measured BMP values. The clustering of data points along the diagonal demonstrates 
that the model captures both low and high methane yield ranges with high fidelity. Deviations appear minimal, with 
only a few observations falling farther from the reference line, suggesting low residual error and strong generalization 
capability. This consistency across the full range of methane yields highlights the model’s ability to learn nonlinear 
interactions between physicochemical feedstock properties, operational parameters, and methane production 
dynamics. The compact spread around the diagonal further supports the model’s reliability and reduced risk of 
overfitting. Overall, the figure confirms the suitability of the trained machine learning framework for accurately 
estimating methane yield across diverse agricultural residues. 

 

Figure 6 Performance comparison of ML models 

A comprehensive comparison of all machine learning models based on RMSE, MAE, and R² metrics is illustrated in figure 
5. The results clearly show that tree-based ensemble models, particularly Light GBM and Cat Boost, outperform the 
remaining techniques. Light GBM achieves the lowest RMSE and MAE values while also recording the highest R² score, 
demonstrating superior accuracy and strong predictive power. Cat Boost follows closely, benefiting from its ability to 
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handle feature heterogeneity and nonlinear relationships. Gradient Boosting Regressor (GBR) and Extra Trees 
Regressor deliver moderate performance, indicating that ensemble learning remains effective but slightly less 
optimized in their architectures. Conversely, K-Nearest Neighbors (KNN) and Elastic Net Regression exhibit 
significantly higher error values and lower R² scores, reflecting their limitations in capturing the multivariate and 
nonlinear patterns inherent in anaerobic digestion processes. The performance comparison reinforces the observation 
that methane yield prediction benefits most from advanced gradient boosting models capable of effectively leveraging 
multi-dimensional AD datasets. 

 

Figure 7 Error distribution across biomass  

The RMSE and MAE error profiles for different biomass types, providing deeper insight into how model performance 
varies across feedstocks is depicted in figure 7. The lowest errors are observed for rice straw and wheat straw, 
indicating that their physicochemical characteristics exhibit more consistent patterns, enabling the model to achieve 
higher prediction accuracy. Maize stover shows moderate error values, suggesting slightly higher variability in chemical 
composition or digestion behavior. In contrast, sugarcane bagasse and paddy husk exhibit the highest RMSE and MAE 
values. This can be attributed to their elevated lignin content and structural rigidity, which introduce greater 
uncertainty and nonlinearity into methane yield predictions. The rising error trend from straw-based residues to more 
recalcitrant lignocellulosic feedstocks highlight the importance of including advanced features and model architectures 
when predicting methane yields for harder-to-degrade materials. Overall, the figure confirms that while the model 
performs well across all biomass types, prediction accuracy is naturally influenced by the inherent biochemical 
complexity of the feedstock. 

Overall, the results confirm that machine learning models, when trained on a structured and well-engineered anaerobic 
digestion dataset, can effectively capture the multidimensional dependencies governing methane yield. The superior 
performance of Light GBM and Cat Boost demonstrates the advantage of tree-based ensemble learners in handling 
heterogeneous AD features and extracting meaningful patterns from complex biochemical interactions. Feature 
importance analysis further validates the dominant role of volatile solids, lignin content, and C/N ratio, in alignment 
with fundamental digestion science. While prediction accuracy varies slightly across biomass types due to inherent 
compositional differences, the consistent performance across all samples highlights the robustness and scalability of 
the proposed approach. Collectively, these results establish a strong foundation for integrating machine learning into 
biogas plant operation, enabling intelligent feedstock optimization, real-time yield forecasting, and data-driven process 
control in future AD systems. 

5. Conclusion 

This study demonstrates that machine learning provides a powerful and reliable approach for predicting methane yield 
from agricultural residues in anaerobic digestion systems. Using a structured and comprehensively labeled dataset 
derived from controlled experiments, the proposed models were able to capture complex nonlinear interactions among 
physicochemical feedstock characteristics, operational conditions, and biogas performance indicators. Among the six 
evaluated algorithms, Light GBM emerged as the best-performing model, achieving the highest R² and the lowest error 
metrics, thereby confirming its suitability for methane yield forecasting. Feature importance analysis further 
highlighted Volatile Solids, lignin content, and C/N ratio as the dominant factors governing methane production, aligning 
well with established biochemical principles. Overall, the findings underline the value of integrating machine learning 
with experimentally curated datasets to enhance the accuracy, scalability, and automation potential of anaerobic 
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digestion optimization. The developed predictive framework provides a strong foundation for intelligent control of 
biogas plants, real-time yield estimation, and data-driven operational decision-making. Future work may extend the 
dataset with continuous reactor data, incorporate deep learning models, and integrate real-time sensor-driven digital 
twins to further advance AI-enabled waste-to-energy systems. 
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