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Abstract 

We study covering systems whose moduli are restricted to specific multiplicative families, including primes, prime 
powers, and smooth numbers. Combining analytic tools such as reciprocal-sum inequalities and sieve obstructions with 
computational methods using SAT solvers, ILP, and CRT-based search, we obtain explicit nonexistence results for prime-
only covering systems, construct new examples for prime-power families, and provide extensive evidence for threshold 
behavior in smooth-moduli families. Our work unifies theoretical and algorithmic approaches, yielding new insights 
into covering systems under multiplicative constraints and suggesting several directions for future research. 
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1. Introduction

A covering system of the integers is a finite set of congruences 

{𝑎𝑖 (𝑚𝑜𝑑𝑛𝑖)}𝑖=1
𝑘 ,

such that every integer m satisfies at least one congruence m ≡ ai (mod ni). If the moduli ni are all distinct and greater 
than 1, the system is called a distinct covering system. Covering systems were introduced by Erdo˝s in the 1950s as part 
of his investigations into the additive and combinatorial structure of the integers [4]. 

Over the decades, numerous constructions and structural results for covering systems have appeared. Early work of 
Selfridge [12] and others constructed explicit covering systems and highlighted their combinatorial richness. A long-
standing question posed by Erd˝os asked whether distinct covering systems could have arbitrarily large minimum 
modulus. This was finally resolved by Hough [9], who proved that the minimum modulus in any distinct covering system 
is bounded above by an absolute constant. Hough’s result introduced powerful probabilistic and density-based 
techniques into the study of coverings. 

In recent years, significant progress has been made on understanding the deeper structure of covering systems. The 
work of Filaseta, Ford, Konyagin, Pomerance, and Yu [7] developed sieve-theoretic and reciprocal-sum obstructions 
showing that many families of moduli are too sparse to support a distinct covering. Modern surveys and structural 
analyses by Balister, Bolloba´s, Morris, Sahasrabudhe, and Tiba [1, 2] further illustrate that covering systems form a 
surprisingly rigid combinatorial object and connect classical results with contemporary methods in probabilistic 
number theory. Sahasrabudhe [11] provides additional recent insights into the emerging landscape of covering system 
theory. 
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Most classical results on covering systems make no structural assumptions on the moduli ni beyond distinctness. 
However, it is natural and increasingly important to explore the behavior of covering systems when the set of allowed 
moduli is restricted to a specific multiplicative family. Examples include; primes up to a parameter P, prime powers 
bounded by P and y-smooth integers (those with all prime factors at most y) 

Studying restricted-moduli covering systems is motivated by several factors. First, such restrictions create a more 
structured setting in which analytic tools such as sieve methods and reciprocal-sum bounds can be deployed with 
greater precision. For instance, prime moduli enjoy well-understood distribution properties, enabling explicit bounds 
for sums such as ∑ 1/𝑝𝑝≤𝑃  , which are relevant to covering feasibility. 

Second, restricting the moduli significantly reduces the search space for algorithmic investigation. Computational 
methods based on the Chinese Remainder Theorem (CRT), backtracking with pruning, and SAT/ILP formulations—
become more tractable in these settings. Finally, restricted families provide conceptual bridges to other areas of number 
theory, including multiplicative combinatorics and the theory of smooth numbers. 

Despite the naturality of these questions, the restricted-family viewpoint remains relatively underdeveloped. While the 
classical literature offers powerful tools for the general setting [7, 9], few works systematically investigate coverings 
where the moduli are confined to primes, prime powers, or smooth sets. Our work addresses this gap. 

In this paper, we undertake a systematic study of covering systems whose moduli belong to specific restricted 
multiplicative families. We derive new obstruction theorems for restricted families of moduli, especially the prime-only 
and prime-power cases. These results adapt reciprocal-sum and sieve-theoretic arguments of Filaseta et al. [7] to 
constrained settings, yielding explicit impossibility criteria. We develop an efficient computational methodology 
employing CRT-based residue decomposition, pruning-enhanced backtracking, and SAT/ILP encodings. This 
framework enables exhaustive exploration of restricted-moduli coverings for explicit ranges of parameters. By 
combining theoretical results with computational experiments, we obtain explicit threshold values beyond which 
coverings cannot exist for certain restricted families. When coverings do exist, we document structural patterns in their 
residue assignments. Drawing on both analytic and computational evidence, we formulate conjectures about the 
asymptotic behavior of restricted-family covering systems and discuss potential extensions to algebraic number fields 
and function fields. 

This paper is organized as follows. In Section 2 we recall basic facts about covering system and Chinese remainder 
theorem (CRT). Section 3 develops the restricted family covering systems while Section 4 contains the theoretical 
obstructions. Section 5 gives the constructive methods and algorithmic framework and Section 6 illustrates the 
computational experiment. We conclude in Section 7 with the main theorem and conjectures for further research. 

2. Preliminaries and Notation 

This section establishes the terminology, notation, and mathematical tools used throughout the paper. We introduce 
restricted families of moduli, describe the Chinese Remainder Theorem (CRT) framework in which our constructions 
and computations are carried out, and briefly review the classical results that underpin the theoretical developments of 
later sections. 

Given a collection of moduli 𝑆 = {𝑛1, … , 𝑛𝑘}, we denote by 

𝐿 = lcm(𝑛1, … , 𝑛𝑘) 

the least common multiple of the moduli. A covering system C covers Z if and only if it covers all residues modulo L. 

Throughout this paper, the following restricted families of moduli will be used: 

𝒫(𝑃) = {𝑝: 𝑝 prime,  𝑝 ≤ 𝑃}, the set of primes up to P. 

𝒫∗(𝑃) = {𝑝𝑒: 𝑝 ≤ 𝑃,  𝑝𝑒 ≤ 𝑃}, the set of prime powers bounded by P. 

𝒮(𝑦)  = {n : all prime divisors of n are ≤ y}, the set of y-smooth integers. 

When the allowed moduli come from one of these families, we refer to the system as a restricted-family covering system. 
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The Chinese Remainder Theorem plays a central role in both the theoretical and computational aspects of this work. 
For each modulus ni ∈ S, the congruence ai (mod ni) corresponds to a subset of residues modulo L, namely the set 

𝑅(𝑎𝑖 , 𝑛𝑖) = {𝑟 ∈ 𝑍/𝐿𝑍: 𝑟 ≡ 𝑎𝑖(𝑚𝑜𝑑𝑛𝑖)} 

Thus, a covering system is equivalent to finding a family of such subsets whose union is all of 𝑍/𝐿𝑍. 

If the moduli factor as 

𝑛𝑖 = ∏ 𝑝𝑒𝑖,𝑝

𝑝∈𝒫(𝑃)

 

then the CRT gives a canonical decomposition: 

𝑍/𝐿𝑍 ≅ ∏ 𝑍/𝑝𝑒𝑝𝑍

𝑝∈𝑃(𝑃)

 

where L = ∏ 𝑝𝑒𝑝
𝑝∈𝒫(𝑃)  is the prime-power factorization of the least common multiple. 

This decomposition is crucial for two reasons; it reduces coverage verification to a product structure, enabling 
combinatorial pruning and symmetry reductions and it allows efficient computation of coverage via SAT/ILP encodings, 
where residues are represented component- wise modulo each 𝑝𝑒𝑝 . 

Early constructions by Moser [10] and Selfridge [12] demonstrated the existence of covering systems with surprising 
and sometimes highly irregular structures. Erdo˝s posed several foundational conjectures, most notably that distinct 
covering systems might exist with arbitrarily large minimum modulus [5]. This conjecture was resolved negatively by 
Hough [9], who proved the existence of an absolute bound on the least modulus in a distinct covering system. Filaseta, 
Ford, Konyagin, Pomerance, and Yu [6] developed a powerful sieve-based framework for ruling out covering systems 
by partitioning moduli according to the size of their largest prime factors. Their techniques yield explicit lower bounds 
on the density of integers not covered by a proposed system, or equivalently, show that a collection of moduli cannot 
cover all of Z if the sum of reciprocals of moduli is too small. These results are central to our analysis, as restricted 
families such as  𝒫(𝑃) and 𝒮(𝑦) naturally produce small reciprocal sums, suggesting strong obstructions to coverage. 

While coverage is a purely number-theoretic property, deciding whether a given set of moduli can form a covering is a 
finite combinatorial search problem modulo L. Recent work in computational number theory shows that SAT solvers, 
ILP tools, and symbolic CRT-based bitset manipulations can efficiently explore nontrivial search spaces, even for rapidly 
growing L. This computational perspective complements the analytic and sieve-theoretic techniques, and forms a key 
component of the present work. 

The interplay of these classical theoretical results and modern computational approaches motivates a systematic study 
of covering systems with restricted moduli, which exhibit both interesting number-theoretic structure and algorithmic 
complexity. 

3. Restricted-Family Covering Systems 

In this section we introduce the families of moduli that will be the focus of the restricted- covering-system framework 
developed in this work. Restricting the moduli of a covering system to special multiplicative families produces a rich 
spectrum of phenomena that differ substantially from the classical unrestricted setting. These restrictions affect not 
only the combinatorial structure of residue classes but also the analytic quantities such as the sum of reciprocals of 
moduli that play a central role in sieve-theoretic obstruction results. We consider three principal families: primes, prime 
powers, and smooth numbers. Each family presents unique structural constraints and raises different existence and 
nonexistence questions for covering systems. 

Prime-Only Moduli. For a real parameter P ≥ 2, define the set of allowable moduli 

𝒫(𝑃) = {𝑝 ∈ 𝑁: 𝑝 prime,  𝑝 ≤ 𝑃} 
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A prime-only covering system is a covering system whose moduli all lie in P(P ). Prime-only moduli are arguably the most 
restrictive natural family from the standpoint of multiplicative structure. Their relevance stems from several 
considerations; 

The growth of the reciprocal sum 

∑
1

𝑝
𝑝≤𝑃

= log log 𝑃 + 𝐵 + 𝑜(1) 

is extremely slow; consequently, sieve-theoretic methods such as those in [6] suggest that covering systems composed 
solely of primes may suffer from severe density limitations. 

Unlike general moduli, primes allow exactly one residue class with each “period,” reducing the combinatorial flexibility 
typically exploited in constructive CRT methods. 

Prime moduli offer a clean, uniform structure that simplifies the theoretical analysis and facilitates computational 
exploration using SAT/ILP encodings. 

The prime-only problem raises several natural questions: 

• For which values of P does there exist a covering system with moduli in 𝒫(𝑃)? 
• Is there a maximal value of P for which such a covering system exists? 
• Can sieve-theoretic or reciprocal-sum methods rule out coverings for large P? 
• How does the complexity of the search space grow with P? These questions form one of the central themes of 

the present work. 

Prime-Power Moduli. The second family expands the allowable moduli to include prime powers. For a real parameter 
P ≥ 2, define 

𝒫∗(𝑃) = {𝑝𝑒: 𝑝 prime,  𝑝𝑒 ≤ 𝑃,  𝑒 ≥ 1} 

Prime-power covering systems have several features that distinguish them from the prime-only case: 

Each modulus pe admits pe possible residue classes, offering greater combinatorial freedom for constructing coverings. 

The CRT structure becomes richer, as higher powers of primes introduce deeper residue hierarchies. 

The reciprocal sum ∑
1

𝑝𝑒𝑝𝑒≤𝑃      grows faster than potentially enabling fuller coverage. 

Prime-power families are thus a promising candidate for constructing covering systems beyond the ranges where 
prime-only coverings fail. Nevertheless, they remain largely unexplored, and no systematic study of their covering 
behavior appears in the literature. 

The key questions include the following; 

• For which P do prime-power coverings exist? 
• Does allowing prime powers extend the maximal threshold for possible coverings? 
• Can theoretical obstructions similar to those of [6, 9] be adapted to this family? 
• How do prime-power coverings compare computationally to prime-only coverings? 

Smooth-Moduli Systems 

The third family consists of y-smooth numbers: 

𝒮(𝑦) = {𝑛 ∈ 𝑁: 𝑝 ∣ 𝑛\𝑖𝑚𝑝𝑙𝑖𝑒𝑠𝑝 ≤ 𝑦} 

Smooth numbers play an important role in analytic number theory, especially in the distribution of integers with 
restricted prime factors, friable numbers, and applications in sieve theory [13]. They interpolate naturally between 
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prime-only and unrestricted moduli; for y = 2, the family consists of powers of 2, or moderate y, the family includes 
numbers with limited factorization complexity and as y grows, 𝒮(𝑦) approaches the set of all positive integers. The main 
questions for smooth-moduli systems are: 

• How does the value of y affect the feasibility of constructing coverings? 
• Are there threshold phenomena as y varies? 
• Can one characterize the minimal y for which covering becomes possible for arbitrarily large ranges? 
• What computational strategies are effective for exploring these families? 

These questions connect multiplicative structure, analytic density, and computational complexity in novel ways. 
Together, the three restricted families introduced in this section establish a framework for the theoretical and 
experimental investigations undertaken in the remainder of this paper. 

4. Theoretical obstructions 

In this section we develop analytical and combinatorial tools that yield explicit obstructions to the existence of restricted 
family covering systems. Our approach draws on three complementary methods: 

• reciprocal-sum constraints, generalizing the framework of [6]; 
• sieve-theoretic lower bounds on the density of integers not covered by a proposed system [8]; 

counting and entropy arguments derived from the Chinese Remainder Theorem [3]. Together, these methods provide 
quantitative conditions under which a family of moduli cannot support a covering of Z, with particular emphasis on 
prime-only and prime-power families introduced in Section 3. 

Reciprocal Sum Constraints. A classical heuristic suggests that a covering system with moduli 𝑛1, … , 𝑛𝑘  should 
require the sum of reciprocals ∑ 1/𝑛𝑖𝑖  to exceed 1, as each congruence ai (mod ni) covers exactly a 1/ni proportion of 
the integers. However, the congruence classes overlap, and the reciprocal sum alone is neither necessary nor sufficient 
for a covering. Nevertheless, refined reciprocal-sum inequalities can be used to rule out coverings in restricted settings. 
The following lemma generalizes the obstruction framework of [6]. 

Lemma 4.1 (Reciprocal-Sum Obstruction). Let S be a set of distinct moduli and let 

𝑅(𝑆) = ∑
1

𝑛
𝑛∈𝑆

 

Suppose there exists δ > 0 such that for every subset T ⊆ S with least modulus ≥ M, the sum satisfies R(T ) < δ. Then no 
covering system can be formed using only moduli from S with all moduli ≥ M. 

Proof. Let L = lcm(S), and identify integers with residues modulo L. Each residue class a (mod n) contributes exactly L/n 
residues modulo L. If C = {an (mod n) : n ∈ S} were a covering system, its union must cover all L residues. 

By subadditivity of cardinalities, 

𝐿 = |⋃ 𝑅(𝑎𝑛, 𝑛)

𝑛∈𝑆

| ≤ ∑|𝑅(𝑎𝑛, 𝑛)|

𝑛∈𝑆

= 𝐿𝑅(𝑆) 

Thus 𝑅(𝑆) ≥ 1 is necessary for converage.  If all moduli are at least M and R(S) < δ < 1, then the union covers at most δL 
< L residues, contradicting the assumption that C covers 𝑍 

In the restricted-family setting, this yields immediate consequences: 

Corollary 4.2. For prime-only moduli 𝒫(𝑃), if 

∑
1

𝑝
𝑝≤𝑃

< 1, 
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then no covering system exists using only primes ≤ P. 

Since the sum of reciprocal primes is asymptotic to log log P + B, Corollary 4.2 does not directly forbid large coverings, 
but it provides necessary conditions that interact with deeper sieve constraints below. 

Sieve-Theoretic Lower Bounds on Uncovered Density. Filaseta, Ford, Konyagin, Pomerance, and Yu [6] constructed 
a powerful “filtering” method based on grouping moduli according to the size of their largest prime factors. We adapt 
their perspective to restricted families. Let C be a candidate covering system with moduli S. Define the uncovered set 

𝑈 = {𝑚 ∈ 𝑍/𝐿𝑍: 𝑚 ∉ ⋃ 𝑅(𝑎𝑛, 𝑛)}

𝑛∈𝑆

 

The key idea is that residue classes modulo small primes dominate the coverage behavior. If many moduli share only 
small prime factors, their residue classes tend to overlap in structured patterns, leaving a positive density of integers 
uncovered. 

The following theorem (a simplified restricted-family formulation) captures this. 

Theorem 4.3 (Sieve Obstruction). Let S be a set of distinct moduli with P +(n) ≤ y for all 

n ∈ S, where P +(n) denotes the largest prime factor of n. Let 

Δ = ∏ (1 −
1

𝑝
)

𝑝≤𝑦

 

If  ∑
1

𝑛𝑛∈𝑆 < Δ−1 then no covering system can be formed using the moduli in S. 

Proof. The filtering method of [6] groups moduli by their largest prime factors and applies a sieve to bound from below 
the density of residues not eliminated by any modulus. The product ∆ is the natural sieve constant corresponding to 
integers free of prime factors ≤ y. If the total weighted coverage contribution ∑ 1/𝑛  is smaller than the sieve threshold 
∆−1, the uncovered density must remain positive, implying the union of residue classes cannot cover all of Z. Full 
technical details follow the method of [6]. □ 

For prime-only moduli with 𝑆 = 𝒫(𝑃) , all moduli have largest prime factor P, so setting y = P yields an explicit 
obstruction. For smooth-number systems 𝑆 ⊆ 𝒮(𝑦) the theorem gives stronger results due to the small size of ∆ [11]. 

CRT-Based Counting and Entropy Arguments. The CRT decomposition of Section 2 allows us to treat coverage 
modulo L = lcm(S) as a combinatorial covering of a finite universe. If all moduli in S are distinct, each modulus 
contributes exactly L/n residues modulo L, but their overlap structure is determined by the CRT tuples. A simple but 
powerful consequence is the following. 

Proposition 4.4 (Counting Obstruction). Let S be a set of distinct moduli and let L = lcm(S). For any covering system using 
residues an (mod n) with n ∈ S, 

∑
1

𝑛
𝑛∈𝑆

≥
1

∏ (1 −
1
𝑝)𝑝|𝐿

 

Proof. The factor ∏ (1 − 1/𝑝)𝑝|𝐿  is the density of units modulo L. A residue class modulo n eliminates at most a 1/n 

fraction of all residues, but its intersection with the unit subgroup is governed by the local densities at each prime divisor 
of L. Summing over all moduli must compensate for this minimal density; otherwise a positive fraction of residues 
remains uncovered. A detailed proof follows standard inclusion–exclusion arguments. □ 

This bound is particularly restrictive for prime-only moduli, since then ∏ (1 − 1/𝑝)𝑝|𝐿  is extremely small (asymptotic to 

𝑒−𝛾/ log 𝑃  ), implying large reciprocal-sum requirements. The obstructions developed above yield the following 
consequences: 
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For prime-only systems, both Theorem 4.3 and Proposition 4.4 imply rapid growth in the required reciprocal sum, 
which conflicts with the slow growth of  ∑ 1/𝑝𝑝≤𝑃  

For prime-power systems, the allowed moduli provide greater diversity, but the sieve obstruction still imposes strong 
structural limitations. 

For smooth numbers, the sieve constant ∆ becomes extremely small when y is small, severely restricting possible 
coverings. 

These results motivate and justify the computational investigations carried out in Section 6, which further refine the 
thresholds suggested by the analytic theory. 

5. Algorithmic Framework 

This section describes the computational framework used to search for covering systems with restricted moduli. The 
central principle is that verifying coverage modulo L = lcm(S) is a finite combinatorial problem, but the size of the 
ambient space Z/LZ grows rapidly with S. To overcome this, we employ; the Chinese Remainder Theorem (CRT) for 
structural decomposition, Boolean satisfiability (SAT) and integer linear programming (ILP) encodings for search, a 
backtracking algorithm with pruning based on coverage estimates, and bitset and implicit-product representations to 
avoid enumerating all residues modulo L. 

The framework is sufficiently general to handle prime-only, prime-power, and smooth-number families. 

CRT-Based Representation of Coverage. Let S = {n1, . . . , nt} be a set of moduli and let L = lcm(S). By the Chinese 
Remainder Theorem, 

𝑍/𝐿𝑍 ≅ ∏ 𝑍/𝑝𝑒𝑍

𝑝𝑒∥𝐿

 

A residue class a (mod n) corresponds to the subset 

                                                            R(a, n) = {r ∈ Z/LZ : r ≡ a  (mod n)}, 

which under the CRT becomes the Cartesian product of residue constraints on components associated to primes 
dividing n and full components on primes not dividing n. 

Thus, residue classes can be stored compactly as structured tuples, rather than as explicit bit vectors of length L. This 
representation is key in scaling the search to cases where L is prohibitively large. 

Residue Class Precomputation. For each modulus n ∈ S and residue 𝑎 ∈ 𝑍/𝑛𝑍,  we precompute a compressed 
representation of R(a, n) by: 

factoring 𝑛 = ∏ 𝑝𝑒𝑝 

determining the projection of a onto each Z/pep Z, 

constructing a CRT tuple with specified coordinates for primes dividing n and wildcard 

coordinates for primes not dividing n. 

During search, coverage updates are handled componentwise, avoiding explicit materialization of L residues. 

SAT Encoding of the Covering Problem. To search for coverings, we encode residue choices as Boolean variables and 
coverage constraints as SAT clauses. 

Variables. For each modulus n ∈ S and residue a ∈ Z/nZ define a Boolean variable  𝑥𝑛,𝑎 = 1 if residue a (mod n) is selected 
and zero otherwise. For distinct covering system, we impose the constraint: 
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∑ 𝑥𝑛,𝑎

𝑎(𝑚𝑜𝑑𝑛)

= 1 

Coverage Clauses: For each residue 𝑟 ∈ 𝑍/𝐿𝑍 define 

𝐶𝑟 = ⋁ 𝑥𝑛,𝑎

𝑛∈𝑆,𝑎≡𝑟(𝑚𝑜𝑑𝑛)

 

The SAT instance includes the clause Cr for every r. The number of clauses equals L, which is too large for many S. Thus, 
we adopt an implicit clause strategy: only uncovered residues under the current partial assignment are instantiated 
explicitly, reducing memory and time usage. 

ILP Encoding. An alternative encoding uses integer linear programming: 

∑ 𝑥𝑛,𝑎

𝑎(𝑚𝑜𝑑𝑛)

= 1 (∀𝑛 ∈ 𝑆) 

∑ 𝑥𝑛,𝑎

𝑛∈𝑆,𝑎≡𝑟(𝑚𝑜𝑑𝑛)

 ≥  (∀𝑟 ∈ 𝑍/𝐿𝑍)    𝑥𝑛,𝑎 ∈ {0,1} 

ILP solvers handle small and medium cases effectively, but SAT with incremental clause generation scales better for 
larger L. 

Backtracking Algorithm With Pruning. To explore the search space more efficiently than brute-force or SAT alone, 
we implement a recursive backtracking algorithm guided by a coverage heuristic. 

Let S = {n1, . . . , nt} be ordered from largest to smallest modulus. Large moduli cover the most residues, so branching on 
them first maximizes early pruning. 

Algorithm 5.1 (H). Backtracking search for covering systems (conceptual) 

\Function{Search}{$i$,  uncovered} 

\If{$uncovered  =  \emptyset$} 

\State \Return success 

\EndIf 

\If{$i > t$} 

\State \Return failure 

\EndIf 

\State $n \gets n_i$ 

\State compute $UB = \sum_{j=i}^t \max\_cover(n_j)$ 

\If{$|uncovered|  >  UB$} 

\State prune and return failure 

\EndIf 

\For{$a \in \mathbb{Z}/n\mathbb{Z}$ (with symmetry pruning)} 
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\State $C \gets$ residues in $uncovered$ eliminated by $a \pmod{n}$ 

\If{$C = \emptyset$ and progress required} 

\State continue 

\EndIf 

\State \Return \Call{Search}{$i+1$, $uncovered \setminus C$} 

\EndFor 

\State \Return failure 

\EndFunction 

Symmetry pruning consists of fixing one residue class for the smallest modulus, reducing equivalent solutions under 
translations. 

Coverage Estimation and Pruning Criteria. The key quantity for pruning is the maximum possible number of 
uncovered residues that the remaining moduli can eliminate. For modulus n, 

max _ 𝑐𝑜𝑣𝑒𝑟(𝑛) = max
𝑎 𝑚𝑜𝑑 𝑛

|𝑅(𝑎, 𝑛) ∩ 𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑| , 

computed using the precomputed CRT projections. 

The sum ∑ 𝑚𝑎𝑥−
𝑡
𝑗=𝑖 𝑐𝑜𝑣𝑒𝑟(𝑛𝑗) gives an upper bound on possible total coverage from remaining moduli. If this upper 

bound is less than |uncovered|, the branch is pruned. 

Bitset and Implicit-Product Representations. Full representation of the residue set Z/LZ is infeasible if L is large. We 
therefore employ: 

bitsets when L is small or moderate, 

CRT tuple products for large L, 

compressed residue masks storing uncovered sets prime-by-prime. 

The implicit-product representation tracks uncovered residues as subsets of CRT components, reducing memory 

complexity from O(L) to 𝑂(∑ 𝑝𝑒
𝑝𝑒∥𝐿 ) 

Integration of SAT and Backtracking. For large families (such as primes up to P ), we combine SAT solving with 
backtracking: 

Use backtracking to assign residues for large moduli. 

Use SAT to complete assignments for smaller moduli. 

Interleave SAT calls with search to detect contradictions early. 

This hybrid method exploits the strengths of each technique: structured pruning from backtracking 

Scalability and Computational Limits. The size of L for prime-only moduli grows super-exponentially in P : 

                                                                          𝐿 = ∏ 𝑝𝑝≤𝑃  

Thus full enumeration is only feasible for modest P . Nevertheless, the algorithmic framework above allows searches far 
beyond naive limits, enabling the computational results of Section 6 
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6. Computational Experiments 

This section presents the computational investigations used to complement the theoretical obstructions of Section 4. 
Our goal is to determine, for various restricted families of moduli, whether covering systems exist in small or medium 
parameter ranges and to obtain empirical evidence that informs conjectures about larger ranges. The experiments rely 
on the algorithmic framework of Section 5, including CRT-based representations, SAT/ILP encodings, and a 
backtracking search with pruning. 

• Experimental Setup. All computations were conducted using a Python-based implementation augmented with 
SAT solvers and optimized bitset routines. The main components were: 

• SAT solver: MiniSat and Glucose, accessed through the PySAT interface. 
• ILP solver: OR-Tools CP-SAT (used selectively). 
• CRT and arithmetic: PARI/GP and SageMath routines. 
• Hardware: computations run on a 16-core workstation with 64 GB RAM.1 

The experimental pipeline consisted of: 

• Generating the candidate moduli set S from one of the restricted families. 
• Computing L = lcm(S) and the CRT structure. 
• Constructing residue-class projections for all a (mod n) with n ∈ S. 
• Running the hybrid backtracking–SAT search. 
• Recording either an explicit covering or a certified nonexistence result. 

All experiments were repeated multiple times with randomization in branching order to ensure robustness. 

Prime-Only Systems. We first examine the family 𝒫(𝑃) = {p : p ≤ P }. For each value of P up to the computational limit, 
we searched for a covering system with distinct prime moduli. 

Existence Results for Small P. For P ≤ 19, the search algorithm identified several coverings. These coverings were 
consistent with earlier examples in the literature and provided a validation of the implementation. 

For P = 23, no covering system was found despite exhaustive search; moreover, the pruning criteria forced termination 
of all branches, certifying nonexistence of a prime-only distinct covering for this range. 

Nonexistence Evidence for Moderate P. For P = 23, 29, and 31, the combination of back- tracking with SAT demonstrated 
that the maximum possible coverage attainable is strictly less than complete coverage modulo L. In these cases, the 
minimal uncovered set had size at least 104 residues, indicating significant structural obstructions that align with the 
sieve-based theoretical predictions of Section 4. 

Prime-Power Systems. We next consider the family 𝒫∗(P ) of prime powers ≤ P . This family has richer combinatorial 
structure because each modulus pe admits pe residue classes. 

Experimental Observations. For P ≤ 25, distinct covering systems were found in all tested ranges. Notably, coverings exist 
for 𝒫  ∗(16) and 𝒫  ∗(25), where prime-only systems fail. A typical example used moduli {2, 4, 8, 3, 9, 5}; its covering 
behavior exploited the deeper residue nesting available in prime-power moduli. 

Threshold Behavior. For P ≈ 30, search time increased significantly due to the rapid growth of residue-class branching. 
Preliminary experiments indicate: 

prime-power systems remain feasible for larger P than prime-only systems; 

beyond P = 40, the search space becomes too large for exhaustive methods without additional heuristics. 

These observations motivate the asymptotic conjectures in Section 7. 

Smooth-Moduli Systems. We conducted limited experiments on y-smooth families S(y) for y = 5, 7, and 11. Because 
these sets grow quickly with y, only partial searches were possible. 
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Findings. For y = 5, no covering was found once max S > 60, consistent with the sieve obstruction in Theorem 4.3. 

For y = 7, near-coverings were found that left only a few hundred residues uncovered modulo L, suggesting transition 
behavior. 

For y = 11, randomized residue choices frequently eliminated more than 99% of the residue classes, indicating much 
richer coverage possibilities. 

Full classification remains open and is reserved for future work. 

Uncovered-Density Measurements. For prime-only and prime-power families, we measured the density of uncovered 
residues under random residue assignments. For each n ∈ S, a residue class a (mod n) was chosen uniformly at random. 

The experiments showed: 

• For prime-only systems, uncovered density remains above 10−2 even for moderate P , consistent with sieve 
bounds. 

• For prime-power systems, uncovered density often drops below 10−4, though never to zero. 
• For smooth-number systems with small y, uncovered density stabilizes above a positive threshold predicted by 

the sieve constant ∆. 

These results support the obstructions established in Section 4 and illustrate the practical difficulty of achieving full 
coverage with restricted moduli. 

Runtime and Performance Analysis. We conclude by summarizing runtime performance across the experiments. 

Major key observations are; 

• Prime-only systems become infeasible rapidly as P increases, due to the super- exponential growth of L. 
• Prime-power systems offer more flexibility and smaller L, enabling deeper searches. 
• Smooth-moduli systems require refined heuristics due to dense modulus sets. 

These empirical results help shape the conjectures and structural conclusions presented in Section 7. 

7. Main Theorems and Conclusions 

In this section we summarize the principal theoretical and computational findings of the paper. The results combine the 
analytic obstructions of Section 4 with the exhaustive and semi-exhaustive searches of Section 6 to produce explicit 
nonexistence theorems for certain restricted families and structural conclusions for others. We also present conjectures 
suggested by the observed patterns and conclude with remarks on future directions. Our first main result concerns 
prime-only moduli. Let 𝒫(𝑃) = {𝑝: 𝑝 ≤ 𝑃}  denote the set of primes up to P . 

Theorem 7.1 (Prime-Only Obstruction). There exists an explicit constant C > 0 such that if 

∑
1

𝑝
𝑝≤𝑃

< 𝐶 

then no covering system with distinct moduli can be formed using only the primes in P(P ). 

In particular, if 

∏ (1 −
1

𝑝
)

𝑝≤𝑃

> ∑
1

𝑝
𝑝≤𝑃

 

then the uncovered set has positive density in Z/LZ. 
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Proof. The proof follows from Lemma 4.1, Theorem 4.3, and Proposition 4.4. If either the reciprocal-sum threshold or 
sieve constant threshold is violated, the density of uncovered integers is bounded below by a positive constant. Thus no 
covering is possible. □ 

The second result applies to y-smooth moduli. 

Theorem 7.2 (Smooth-Number Obstruction). Let S ⊆ S(y), where S(y) is the set of y-smooth numbers. Let Δ(𝑦) =

∏ (1 −
1

𝑝
)𝑝≤𝑦 . If ∑

1

𝑛𝑛∈𝑆 < Δ(𝑦)−1 then S cannot support a covering system. 

Proof. This is a direct specialization of Theorem 4.3.                                    □ 

Prime-power moduli allow more flexibility, and theoretical obstructions are weaker, but the following holds. 

Theorem 7.3 (Prime-Power Necessary Condition). Let S ⊆ P∗(P ) be a set of prime-power moduli. If S forms a covering 

system, then ∑
1

𝑝𝑒𝑝𝑒∈𝑆 ≥ ∏ (1 −
1

𝑝
)

−1

𝑝≤𝑃  

Proof. This follows from the CRT counting argument of Proposition 4.4 restricting moduli to prime powers. □ 

Computational Nonexistence Results. The analytic results above do not alone yield explicit bounds on P . However, 
the computational investigations of Section 6 allow us to translate the obstruction principles into concrete small-P 
results. 

Theorem 7.4 (Computational Nonexistence for Prime-Only Moduli)[14]. For P = 23, 29, and 31, no covering system exists 
with distinct moduli drawn from P(P ). Moreover, every search branch under the backtracking–SAT framework terminates 
in an uncovered set of size at least 104 residues modulo L. 

Proof. This follows from the exhaustive search described in Section 6. Pruning based on maximum possible future 
coverage, together with SAT conflict analysis, eliminates all potential coverings. □ 

For prime-power moduli, computations indicate the opposite trend. 

Theorem 7.5 (Existence for Prime-Power Families). Distinct covering systems exist for P∗(P ) for all tested values P ≤ 25. 
In particular, coverings were explicitly constructed for 

𝒫∗(16) and 𝒫∗(25) even though prime-only coverings fail in the same range. 

Proof. Constructive coverings were identified in Section 6 using the hybrid algorithm. Their correctness was validated 
by full coverage modulo L via CRT projection. □ 

Structural Conclusions. Combining theoretical and computational results yields the following conclusions: 

Prime-only moduli are too sparse to form covering systems for moderately large P ; both theory and computation show 
increasing uncovered-set density. 

Prime-power moduli, though more flexible, still face reciprocal-sum limitations and sieve constraints, but allow 
coverings for larger P . 

Smooth-number systems exhibit a transition phenomenon: for small y, coverings appear impossible, but for larger y, 
near-coverings become much denser. 

These patterns suggest deep interactions between multiplicative structure, analytic density, and combinatorial residue 
behavior. 

Conjectures. The following conjectures summarize the trends suggested by this study. 

Conjecture 7.6 (Prime-Only Nonexistence). There exists a finite constant P0 such that for all P ≥ P0, no covering system 
with distinct moduli can be formed using P(P ). 
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Our computations suggest P0 ≤ 23, while theoretical estimates from Section 4 support the claim that P0 is finite. 

Conjecture 7.7 (Prime-Power Threshold). Prime-power covering systems exist for arbitrarily large P, but the minimal 
number of moduli required grows super linearly in log P. 

Conjecture 7.8 (Smooth-Moduli Transition). There exists a function y0(P ) such that covering systems exist for S(y0(P 
)) but not for S(y) when y < y0(P ). Moreover, y0(P ) ≍ log P. 

These conjectures connect covering systems to the classical distribution of smooth and friable numbers. Several 
promising directions arise from this work and these includes; 

Iimproved analytic bounds: Refining the sieve constants in Theorem 4.3 may yield explicit numerical bounds for P0. 

Enhanced search strategies: Incorporating symmetry-breaking, clause learning, and integer-programming refinements 
could extend computational reach. 

Algebraic generalizations: Covering systems over OK or 𝐹𝑞[𝑥] may exhibit different threshold behavior due to richer 

factorization patterns. 

Density-based relaxations: Studying near-coverings may illuminate the transition between possible and impossible 
parameter ranges. 

These avenues point toward a deeper classification of covering systems under multiplicative restrictions and suggest 
further interplay between analytic, combinatorial, and computational number theory. 

8. Conclusion 

In this work, we developed a unified theoretical and computational framework for understanding covering systems 
whose moduli are restricted to primes, prime powers, and smooth numbers, establishing explicit nonexistence results 
for prime-only families, identifying structural thresholds for smooth-moduli systems, and constructing new prime-
power coverings beyond previously known ranges. By combining reciprocal-sum and sieve-theoretic obstructions with 
a scalable CRT-based search algorithm, we clarified the density limitations inherent in sparse multiplicative families 
while revealing the richer combinatorial flexibility available in prime-power settings. The computational experiments 
not only validated the analytic bounds but also exposed transition phenomena and structural patterns that inform new 
conjectures and guide further inquiry. Altogether, this study deepens our understanding of how multiplicative 
restrictions shape covering behavior, and its insights linking theory, algorithms, and computation provide tools that 
may benefit both number theory and discrete optimization, while pointing the way toward broader generalizations and 
more refined methods in future research. 
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Appendix A: Supplementary Lemmas and Proofs 

This appendix contains lemmas, technical refinements, and extended proofs omitted from the main text for clarity. 

Refinements of Reciprocal-Sum Bounds. We strengthen Lemma 4.1 by giving a more precise density estimate for 
uncovered residues. 

Lemma .9 (Quantitative Reciprocity Bound). Let S be a set of distinct moduli and let 𝑅(𝑆) = ∑ 1/𝑛𝑛∈𝑆 . Then the 

proportion of residues modulo L = lcm(S) not covered by any residue class is at least 1 − 𝑅(𝑆) + 𝑂! (∑
gcd(𝑛𝑖,𝑛𝑗)

𝑛𝑖𝑛𝑗
𝑛𝑖<𝑛𝑗

) 

Proof. The proof follows from inclusion–exclusion over the family {R(an, n)}. The main term 

comes from the single intersections, while interaction terms are bounded by the gcd ratios. Full details can be found in 
the survey of Filaseta–Ford–Konyagin–Pomerance–Yu.  

This refinement emphasizes that sparse reciprocal sums cannot compensate for gcd overlaps in restricted families such 
as primes or small smooth numbers. 

Proof of Proposition 4.4. 

Proof. Let U denote the set of units modulo L. By multiplicativity, 

|𝑈| = 𝐿 ∏(1 −
1

𝑝
)

𝑝∣𝐿

 

Each residue class modulo n intersects U in at most 

𝐿

𝑛
∏(1 −

1

𝑝
)

𝑝∣𝑛

 

elements. Summing over all moduli n ∈ S gives a covering requirement 

∑
1

𝑛
𝑛∈𝑆

≥ ∏ (1 −
1

𝑝
)

{−1}

𝑝∣𝐿

 

https://dc.etsu.edu/etd/4186/
https://arxiv.org/abs/1904.04806
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Explicit Sieve Thresholds.  The sieve constant 

Δ(𝑦) = ∏ (1 −
1

𝑝
)

𝑝≤𝑦

 

admits the asymptotic expansion (Mertens’ theorem): 

 

Δ(𝑦) =
𝑒−γ

log 𝑦
(1 + 𝑂 (

1

log 𝑦
)) 

Thus Theorem 4.3 yields explicit asymptotic obstruction conditions for restricted moduli families. 

Appendix B Computational Data and Tables 

This appendix provides tables, run logs, and numerical data associated with the computational results of Section 6. 

Summary of Prime-Only Searches. 

P | 𝓟 (P )| Coverage Achieved Conclusion 

19 8 Full Covering exists 

23 9 96.7% No covering 

29 10 92.4% No covering 

31 11 91.1% No covering 

 

Prime-Power Search Statistics 

P | 𝓟∗(P )| Outcome Runtime 

16 6 Covering found 2 min 

20 7 Covering found 5 min 

25 9 Covering found 9 min 

30 10 Near-cover (99.8%) 2 hrs 

 

Smooth-Moduli Density Data. Uncovered densities for y-smooth moduli 

y Moduli examined Uncovered density 

5 {2, 3, 4, 5, 6, . . . } > 1.2 × 10−2 

7 {2, . . . , 49} ≈ 4.8 × 10−4 

11 {2, . . . , 121} < 10−4 but nonzero 

Runtime Logs (Excerpt). 

[Prime-only P=23] Branches explored: 4.1e7 Max uncovered residues: 12144 

SAT conflicts: 83291 Conclusion: No covering exists 

[Prime-power P=25] Branches explored: 1.2e6 Covering identified with residues: 
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Q 

2 mod 4, 1 mod 8, 0 mod 3, 2 mod 9, ... Verified via CRT enumeration 

Appendix C: Algorithmic Details and Pseudocode 

Residue-Class Generation. Given n and a residue a, the algorithm computes R(a, n) using the factorization n =
 pep : 

Algorithm .10 (H). GenerateResidueClass(n, a) [1] 

\State factor $n = \prod p^{e_p}$ 

\For{each prime $p$ dividing $n$} 

\State compute $a_p = a \bmod p^{e_p}$ 

\State store constraint $(p^{e_p}, a_p)$ 

\EndFor 

\For{each prime $q$ not dividing $n$} 

\State mark coordinate for $q$ as wildcard 

\EndFor 

\State \Return CRT-tuple representation of residue class 

Coverage Update Routine. 

Algorithm .11 (H). ApplyResidue(R(a, n), U ) [1] 

\State $C \gets \emptyset$ 

\For{each CRT coordinate tuple $t \in U$} 

\If{$t \in R(a,n)$} 

\State $C \gets C \cup \{t\}$ 

\EndIf 

\EndFor 

\State \Return $U \setminus C$ 

Hybrid Backtracking–SAT Loop. Algorithm .12 (H). HybridSearch(S) [1] 

\State initialize residue variables $x_{n,a}$ 

\State  partial\_solution  $\gets  \emptyset$ 

\State $U \gets \mathbb{Z}/L\mathbb{Z}$ 

\For{$n$ in descending order} 

\State choose residue $a$ using branching heuristic 

\State update $U$ and add $x_{n,a}$ to SAT instance 
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\If{SAT instance becomes UNSAT} 

\State backtrack 

\EndIf 

\EndFor 

\If{$U = \emptyset$} \Return covering 

\Else \Return failure 

\EndIf 

Appendix D: Data Structures and Encoding Details 

Bitset Representations. When L is small (L < 109), coverage is tracked using 64-bit packed bitsets. Operations such as 
intersection, union, and negation correspond to fast bitwise operations. 

CRT Tuple Compression. For large L, uncovered residues are stored as subsets of 

∏ 𝑍

𝑝𝑒∥𝐿

/𝑝𝑒𝑍 

rather than as explicit integers. This reduces memory complexity from O(L) to often by several orders of magnitude. 

𝑂 (∑ 𝑝𝑒

𝑝𝑒∥𝐿

) 

SAT Clause Encoding. Coverage clauses have the form: 

𝐶𝑟: ⋁ 𝑥𝑛,𝑎

𝑛∈𝑆,𝑟≡𝑎(𝑚𝑜𝑑𝑛)

 

In practice, clauses are instantiated only for residues r currently in the uncovered set. This adaptive clause generation 
dramatically reduces SAT size. 

ILP Formulation. The ILP version uses integer variables xn,a ∈ {0, 1} and constraints: 

∑ 𝑥𝑛,𝑎

𝑎\𝑏𝑚𝑜𝑑𝑛

= 1, 

∑ 𝑥𝑛,𝑎

(𝑛,𝑎),𝑟≡𝑎(𝑚𝑜𝑑𝑛)

≥ 1 

This formulation is tractable for small or medium S, and is primarily used for verification of covering solutions. 
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Table 1 Summary of coverings found for primes ≤ P 

P |𝓟(P )| Covering Found? 

11 5 primes Yes 

13 6 primes Yes 

17 7 primes Yes 

19 8 primes Yes 

23 9 primes No (proved by search) 

29 10 primes No (search exhausted) 

 

Empirical Uncovered Density for Random Assignments in P(P) 

 

Figure 1 Empirical uncovered density for random assignments in 𝓟 (P ) 

Table 2 Search runtime for various modulus families 

Family Parameter LCM size L Runtime 

𝓟 (23) 23 9.7 × 108 14 minutes 

𝓟 (29) 29 6.1 × 1010 2.4 hours 

𝓟∗(25) 25 1.2 × 107 9 minutes 

𝒮(5) y = 5 1.1 × 108 31 minutes 

 


