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Abstract 

As the frequency of natural disasters and cyberattacks increases, ensuring the reliability and resilience of power grid 
communication systems has become a critical concern. This paper explores the integration of Digital Mobile Radio 
(DMR) trunking communication systems into Supervisory Control and Data Acquisition (SCADA) systems to improve 
grid resilience during emergencies. The methodology, based on the work of Md. Shahiduzzaman Rabbi, presents an 
innovative approach for enhancing the reliability and performance of grid communication by incorporating DMR as a 
fallback mechanism. Through simulations based on a Texas microgrid testbed, this study demonstrates the effectiveness 
of DMR in reducing grid restoration times, improving command delivery success rates, and ensuring secure and reliable 
communication during network disruptions. The results highlight the potential of DMR trunking as a cost-effective, 
scalable solution for enhancing grid resilience in smart grid environments.  
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1. Introduction

The growing reliance on electricity in modern society has made the stability and resilience of power grids more critical 
than ever before. As power grids evolve into complex cyber-physical systems, ensuring their operational continuity 
during extreme events is paramount. In particular, the communication networks that support Supervisory Control and 
Data Acquisition (SCADA) systems are fundamental to real-time grid control. However, these networks face several 
vulnerabilities, such as susceptibility to cyber-attacks, equipment failures, and damage caused by natural disasters. The 
resulting communication disruptions can cause delays in grid restoration and jeopardize the safety of critical 
infrastructure. The need for reliable communication infrastructure in the face of these challenges has led to an increased 
focus on enhancing grid resilience. While traditional communication technologies, such as fiber optics and cellular 
systems, have been essential in grid control, they are often inadequate during extreme conditions. The failure of primary 
communication systems can severely hinder the ability of grid operators to issue commands for critical operations, such 
as load shedding, transformer adjustments, and emergency restoration. 

In light of these challenges, the integration of alternative communication technologies has emerged as a promising 
solution to bolster grid communication resilience. Among these, Digital Mobile Radio (DMR) systems, which have been 
widely used in public safety and industrial dispatch applications, offer significant advantages. DMR systems provide 
low-latency, secure communication through redundant channels, making them an ideal candidate for ensuring 
continuous communication when primary systems fail. By incorporating DMR trunking into SCADA systems, it is 
possible to create a robust, fail-safe communication layer that maintains real-time grid control during emergencies. 
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The methodology developed by Md. Shahiduzzaman Rabbi in his pioneering work on integrating DMR trunking systems 
into SCADA-controlled power grids provides a solid foundation for this approach. Rabbi's research highlights the 
potential of DMR systems in improving the resilience of communication infrastructure, ensuring secure and reliable 
communication during grid emergencies. This paper builds upon Rabbi's methodology and proposes an enhanced 
framework for the integration of DMR systems into SCADA networks. 

1.1. Background and Motivation 

The increasing complexity of modern power grids, coupled with the rising number of natural disasters and cyber 
threats, has underscored the importance of resilient communication infrastructures. Supervisory Control and Data 
Acquisition (SCADA) systems play a vital role in grid control, enabling operators to monitor and control the grid in real-
time. However, these systems are highly dependent on communication networks that can be vulnerable to disruptions 
caused by extreme weather events, equipment failures, or cyberattacks. Ensuring continuous, reliable communication 
during such disruptions is critical to maintaining grid stability and minimizing downtime.The integration of Digital 
Mobile Radio (DMR) systems, commonly used in public safety and industrial dispatch systems, offers a promising 
solution to bolster communication resilience in the face of emergencies. By integrating DMR trunking systems with 
SCADA, grids can benefit from a low-latency, reliable, and independent communication channel that provides secure 
transmission even during primary network failures. The methodology presented by Md. Shahiduzzaman Rabbi in his 
research lays the foundation for integrating DMR trunking into SCADA systems, which this paper builds upon and 
extends. 

1.2. Problem Statement 

Despite the efforts to enhance grid resilience, most existing SCADA systems remain heavily reliant on conventional 
communication infrastructures, such as fiber optics, LTE, and microwave systems. These systems are susceptible to 
failures during extreme events, which can severely impact grid operations. When primary communication links are 
disrupted, grid operators are often unable to send control signals for critical operations such as load shedding, 
transformer tap changes, or emergency restoration. There is a need for a robust, fallback communication system that 
ensures grid operators can maintain control, even when primary networks fail. 

1.3. Proposed Solution 

The proposed solution is the integration of DMR trunking communication systems into SCADA-controlled power grids 
as a backup communication layer. DMR systems offer several key benefits, including time-division multiple access 
(TDMA), redundant channels, and low-latency communication. These characteristics make DMR well-suited for 
mission-critical applications, especially in emergency scenarios. This paper builds upon Rabbi's work by proposing an 
architecture for seamlessly integrating DMR with SCADA systems, ensuring real-time control signal propagation during 
network disruptions. 

1.4. Contributions 

This paper makes the following contributions: 

• A detailed review of Md. Shahiduzzaman Rabbi’s methodology for integrating DMR trunking systems into 
SCADA for enhanced grid resilience. 

• An expanded framework for the integration of DMR systems with SCADA, including additional security features, 
communication protocols, and fallback mechanisms. 

• Simulation results from a Texas-based microgrid testbed, demonstrating the improved performance of the 
DMR-SCADA integrated system under emergency conditions, including faster grid restoration times and higher 
command delivery success rates. 

2. Related work 

The integration of alternative communication systems into SCADA networks has been an area of significant research, 
particularly in the context of improving grid resilience under emergency conditions. Much of the existing work focuses 
on enhancing communication infrastructure’s redundancy and fault tolerance. These systems, however, often rely 
heavily on conventional communication technologies such as fiber-optic, microwave, or cellular networks, which are 
vulnerable to environmental factors, cyberattacks, and other disruptions. This section reviews existing studies on 
communication systems for SCADA networks, discusses the gaps in current literature, and highlights the unique 
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contribution of Md. Shahiduzzaman Rabbi’s work on integrating Digital Mobile Radio (DMR) systems as a backup 
communication solution.[1] 

2.1. Redundancy and Fault Tolerance in SCADA Communication 

Redundancy is one of the key strategies to ensure continuous operation in SCADA systems, especially during 
emergencies. Many studies have focused on developing reliable communication networks by integrating multiple 
communication mediums. For instance, research by Metke and Ekl [2] discussed various security technologies that 
enhance the resilience of communication networks in smart grids, particularly focusing on physical and cyber 
redundancies. Other researchers have proposed hybrid communication systems, such as combining fiber-optic and 
wireless communication technologies, to mitigate the risk of failure due to environmental damage [3]. However, these 
solutions still rely on conventional communication infrastructure, which can be highly susceptible to large-scale 
disruptions during extreme weather events or cyberattacks. In addition to redundancy, fault tolerance plays a crucial 
role in maintaining SCADA operations. Studies by Gharavi and Hu [4] have explored the multi-tier communication 
architectures in smart grids, emphasizing the need for both spatial and temporal redundancy to ensure communication 
resilience. These solutions, though effective, often face limitations when the primary communication infrastructure fails 
completely, especially during large-scale disasters or network congestion. 

2.2. Hybrid Communication Systems for Smart Grids 

Recent research has explored the use of hybrid communication systems that combine different wireless technologies to 
enhance the robustness of grid communication networks. LoRaWAN, a low-power wide-area network technology, has 
gained attention for its potential to enhance communication in rural and remote areas, where traditional 
communication infrastructure is often lacking. For example, studies by Shinde et al. [5] and Mohapatra et al. [6] have 
explored the feasibility of using LoRaWAN for substation monitoring and data aggregation in smart grid applications. 
While these technologies offer reliable communication over long distances, they are primarily designed for monitoring 
applications and do not directly address the need for real-time, low-latency communication required for emergency 
control operations. Similarly, hybrid radio-cellular networks have been proposed to enhance grid resilience. Studies by 
Zhao and Wang [7] examined the integration of low-power radio frequency (RF) communication with cellular networks 
to provide backup communication for SCADA systems. These hybrid networks are designed to operate in environments 
where primary cellular or fiber-based systems are compromised. However, like LoRaWAN, these hybrid solutions often 
lack the necessary integration with SCADA protocols such as DNP3 or IEC 60870-5-104, which limits their applicability 
for real-time grid control during emergencies. 

2.3. DMR Trunking Systems for SCADA Networks 

In contrast to the aforementioned solutions, Md. Shahiduzzaman Rabbi’s work provides a novel approach by 
incorporating Digital Mobile Radio (DMR) trunking systems as a reliable backup communication system for SCADA 
networks. DMR systems, traditionally used in public safety, transportation, and industrial applications, offer several key 
advantages for power grid communication.[1] They operate independently of conventional IT or cellular infrastructure, 
making them less susceptible to the disruptions that affect fiber-optic or cellular-based communication systems. Rabbi’s 
research is one of the few to explore the use of DMR systems as a communication backbone for SCADA systems, 
particularly during network disruptions. In his paper, Rabbi proposes a layered integration model that combines 
SCADA’s existing protocols with DMR trunking capabilities. This integration ensures that grid control commands, such 
as load shedding, breaker trips, and emergency restorations, can still be transmitted even when primary communication 
channels fail. Rabbi’s work also addresses the issue of protocol interoperability, which has been a key challenge in 
integrating alternative communication systems into SCADA environments. By developing a protocol interoperability 
module, Rabbi’s framework enables seamless communication between DMR trunking systems and SCADA protocols, 
including DNP3, IEC 60870-5-104, and Modbus. 

2.4. Gaps in Existing Research 

Despite the promising potential of hybrid and DMR-based communication systems, several gaps remain in the current 
literature. While much of the research focuses on redundancy and fault tolerance, few studies have directly explored 
how DMR systems can be integrated with SCADA networks to enhance emergency grid control. Most existing work on 
hybrid communication systems, such as LoRaWAN and radio-cellular networks, has not adequately addressed the need 
for low-latency, high-reliability communication for real-time control signals. Furthermore, these systems often lack the 
necessary scalability and robustness required to support complex grid operations during large-scale emergencies. 
Rabbi’s work fills a significant gap in the literature by providing a detailed framework for integrating DMR trunking 
systems into SCADA networks. By focusing on low-latency, high-reliability communication that operates independently 
of primary networks, Rabbi’s research offers a cost-effective, scalable solution for enhancing grid resilience. This paper 
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builds on Rabbi’s work by enhancing the integration framework with additional security measures, more robust 
protocol mapping strategies, and performance metrics, such as grid restoration times and command delivery success 
rates. 

3. Methodology 

This study adopts the integration framework proposed by Md. Shahiduzzaman Rabbi for incorporating Digital Mobile 
Radio (DMR) trunking communication systems into Supervisory Control and Data Acquisition (SCADA) networks to 
enhance grid resilience. Rabbi’s approach provides a robust communication backbone by integrating DMR systems as a 
secondary communication channel during emergencies, enabling seamless data exchange and real-time control 
operations when primary communication systems fail. The methodology follows a layered architecture consisting of 
three primary layers: the Control Layer, the Communication Layer, and the Device Layer. These layers work in unison 
to ensure continuous communication between control centers and field devices, even during network disruptions. 

The core methodology is elaborated through several key components, which are further broken down into subsections: 

 

Figure 1 Layered Architecture for DMR-SCADA Integration 

3.1. Control Layer (SCADA/EMS Integration) 

The Control Layer serves as the backbone of grid monitoring and operation. In the proposed methodology, this layer 
involves the integration of DMR trunking systems with SCADA (Supervisory Control and Data Acquisition) and EMS 
(Energy Management Systems) to ensure seamless real-time monitoring and control of the grid. The SCADA system 
continuously sends control signals and receives data from field devices, such as protective relays, circuit breakers, and 
distributed energy resources (DERs). This layer operates in tandem with the Communication and Device Layers, 
leveraging a combination of primary and secondary communication paths. 

 



World Journal of Advanced Engineering Technology and Sciences, 2025, 17(03), 197-212 

201 

3.2. SCADA Protocol Mapping 

In order to maintain compatibility between the existing SCADA system and the DMR network, SCADA messages are 
encapsulated into DMR-compatible payloads. This enables the smooth transition of control signals, like breaker trips or 
load shedding commands, from SCADA systems to DMR radio signals, ensuring that real-time actions can be taken 
despite failures in primary communication channels. Protocols such as DNP3, IEC 60870-5-104, and Modbus are 
supported and encapsulated to maintain communication integrity. 

3.3. Priority-Based Communication 

One of the key innovations in this methodology is the prioritization of control commands based on urgency. Critical grid 
operations, such as load shedding or fault isolation, are assigned higher priority to ensure they are transmitted with 
minimal delay. Using DMR’s time-division multiple access (TDMA) system, these high-priority messages are allocated 
dedicated time slots for transmission, minimizing the risk of delays during emergencies. 

3.4. Communication Layer (DMR Trunking Network) 

The Communication Layer is where the DMR system operates. DMR provides a fallback communication channel, 
ensuring reliable data exchange when primary communication systems such as fiber optics, LTE, or microwave links 
fail. This layer is designed to deliver real-time data and control signals between control centers and field devices without 
relying on conventional communication infrastructures. 

3.4.1. Fallback Mechanism 

The system continuously monitors the status of primary communication links. In the event of failure, the system 
automatically transitions to DMR trunking for data transmission. This quick transition reduces downtime and ensures 
that essential grid control messages are not missed. Rabbi’s integration framework uses a fallback activation algorithm 
that seamlessly detects failure and triggers the DMR system within a few seconds. 

3.4.2. Channel Redundancy and Load Balancing 

DMR operates with multiple time slots and redundant trunk channels. Each DMR channel supports simultaneous voice 
and data transmission, offering fault tolerance even under network congestion. Load balancing techniques are 
employed to dynamically allocate communication resources across the system, ensuring optimal usage of available 
bandwidth during high-load periods, such as disaster recovery scenarios. 

3.5. Device Layer (Field Devices/Substations) 

The Device Layer consists of field devices and substations that interface directly with the SCADA system. These devices 
are responsible for executing control commands and relaying real-time status updates back to the control center. 

3.5.1. Dual Communication Paths 

Field devices and substations are equipped with dual communication interfaces—primary (e.g., fiber optics or LTE) and 
secondary (DMR radio). In the event of primary communication failure, the secondary DMR radio interface takes over 
communication duties, ensuring continued control and monitoring. 

3.5.2. Interoperability Module 

A key challenge in integrating DMR with SCADA systems is ensuring the interoperability of different communication 
protocols. To address this, an interoperability module is implemented in the Device Layer to handle protocol mapping 
between SCADA and DMR. This module ensures that control messages in standard SCADA protocols (DNP3, IEC 60870-
5-104, etc.) are encapsulated and transmitted over the DMR system without requiring modifications to existing field 
device firmware. 

3.6. Security Mechanisms 

Security is a major concern when integrating alternative communication systems into critical infrastructure. The 
methodology incorporates several security measures to safeguard communication and prevent unauthorized access or 
tampering with control signals. 
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3.6.1. AES-128 Encryption 

All communications transmitted via the DMR system are encrypted using the AES-128 encryption standard. This 
ensures that control signals are securely transmitted and protected from potential cyberattacks. 

3.6.2. Message Integrity and Authentication 

To prevent message manipulation during transmission, control messages are authenticated using device-level CRC 
checks. Additionally, a token validation mechanism ensures that each command is authentic and originates from a 
trusted source within the control network. 

3.6.3. Fallback Detection and Logging 

Every transition from primary communication to DMR is logged, and the system continuously monitors for anomalies 
or unauthorized attempts to interfere with the communication. This fallback detection ensures that the integrity of the 
system is maintained, and all transitions are traceable for audit purposes. 

3.7. System Evaluation: Simulation Setup 

To validate the proposed system’s effectiveness, a series of simulations were conducted based on a Texas-based 
microgrid model. The simulation environment consists of a set of substations, control centers, and field devices 
representing typical grid operations. Performance metrics such as fallback activation time, command delivery success 
rate, and grid restoration time were used to assess the system’s effectiveness under emergency conditions. 

3.7.1. Fallback Activation Time 

The simulation demonstrated that the system could activate DMR communication in response to primary 
communication failure within 3 seconds, ensuring rapid failover to a reliable secondary channel. 

3.7.2. Command Delivery Success Rate 

With DMR integration, the success rate for delivering critical commands under emergency conditions increased to 
83.9%, compared to 64.1% with primary LTE-only systems. This improvement highlights the effectiveness of DMR as a 
fallback system for emergency grid control. 

3.7.3. Grid Restoration Time 

The system was able to restore normal grid operations 30% faster when using the DMR fallback system compared to 
conventional communication systems without DMR integration. 

3.8. Performance Metrics 

The following performance metrics were used to evaluate the effectiveness of the integrated DMR-SCADA system: 

3.8.1. Fallback Activation Time 

The average time between detecting a failure in primary communication and switching to DMR. 

3.8.2. Command Delivery Success Rate 

The percentage of successfully transmitted control commands during communication disruptions. 

3.8.3. Grid Restoration Time 

The time taken to restore normal grid control after communication failure. 

3.8.4. Latency 

The round-trip time for control messages transmitted over the DMR system, especially under high-load conditions. 
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Figure 2 Communication Workflow During Failure 

3.9. Data Analysis and Results 

The integration of DMR trunking into the SCADA system was evaluated using simulations conducted on a Texas-based 
microgrid model. The simulation focused on the system’s performance during emergency scenarios, such as 
communication disruptions caused by natural disasters or cyberattacks. The model incorporated real-world conditions, 
including primary communication failures and subsequent transition to backup DMR channels. 

3.9.1. Performance Metrics 

The following performance metrics were analyzed during the simulations: 

• Fallback Activation Time: This metric measures how quickly the system switches to DMR when the primary 
communication system fails. The faster the fallback activation, the less time grid operators experience 
communication disruption. A quicker transition is crucial for minimizing downtime and maintaining grid 
control during emergencies. 

• Command Delivery Success Rate: This metric tracks the percentage of commands that successfully reach 
their intended destination during periods of communication failure. High success rates indicate that the system 
is effectively transmitting critical control commands, even when the primary communication system is down. 

• Grid Restoration Time: This metric evaluates the time required to resume normal grid operations after a 
failure. Reducing restoration time is essential for minimizing grid downtime and ensuring rapid recovery. 

• Latency: Latency refers to the time taken for a control message to travel from the SCADA system to the field 
device and back. In an emergency, low latency ensures real-time command execution and improves the 
responsiveness of grid operations. 

• Throughput: Throughput measures the number of control commands successfully transmitted over a given 
time period. This metric is essential for understanding how well the system can handle high communication 
loads during emergencies. 
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Table 1 Performance Metrics of DMR-SCADA Integration 

Metric Value (DMR Integration) Value (LTE-Only) Improvement 

Fallback Activation Time 3.12 seconds N/A Faster transition 

Command Delivery Success Rate 83.9% 64.1% +19.8% 

Grid Restoration Time Reduced by 30% N/A Faster recovery 

Latency (Average) 670 ms 300 ms Acceptable latency 

Throughput (Commands/min) 58 commands/min 42 commands/min +38% 

 

 

Figure 3 Command Delivery Success Rate Comparison 

This bar graph compares the command delivery success rate between the DMR-SCADA integrated system and the LTE-
only system under emergency conditions. The DMR integration shows a clear improvement in command delivery 
success rate. 
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Figure 4 Grid Restoration Time Comparison 

3.10. Simulation Results 

The simulation results highlighted the following key findings: 

3.10.1. Fallback Activation Time 

The average fallback activation time for the system was found to be 3.12 seconds, significantly reducing the time 
required to switch to the DMR trunking system in case of communication failure. This quick transition ensures minimal 
downtime and maintains system integrity during emergencies. 

3.10.2. Command Delivery Success Rate 

With the integration of DMR trunking, the success rate for delivering critical commands increased to 83.9% under 
emergency conditions. In comparison, without DMR, the success rate was only 64.1% with LTE-only systems. This 
improvement demonstrates that DMR trunking significantly enhances the reliability of command delivery during 
communication disruptions. 

3.10.3. Grid Restoration Time 

The integration of DMR reduced grid restoration time by over 30%, as compared to conventional communication 
systems without DMR. This means that the grid was able to recover from a failure faster, ensuring continuous operations 
during high-stress conditions. 

The data analysis and results from the simulations confirm that the integration of DMR trunking into SCADA systems 
significantly enhances the resilience of power grids during emergency scenarios. The faster fallback activation time, 
increased command delivery success rate, and reduced grid restoration time underscore the importance of DMR as a 
backup communication system. The system’s ability to handle high-throughput and low-latency operations under peak 
loads further demonstrates its effectiveness in ensuring continuous grid operations during critical situations. These 
findings validate the proposed methodology and provide a solid foundation for deploying DMR-based communication 
solutions in real-world grid control environments.  

4. Conclusion 

This study demonstrates the potential of DMR trunking communication systems to enhance grid resilience during 
emergency operations. By integrating DMR systems into SCADA-controlled grids, it is possible to ensure uninterrupted 
communication and faster recovery during network failures. The results from the Texas-based microgrid testbed show 
that DMR integration can significantly reduce grid restoration times, improve command delivery success rates, and 
enhance overall system stability. Building on the work of Md. Shahiduzzaman Rabbi, this paper extends the 
methodology for DMR-SCADA integration, incorporating additional security features and performance metrics. Future 
work will focus on real-world deployments and further optimization of the system for large-scale utility environments.  
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Limitations 

Limitations include the reliance on simulated environments, which may not fully capture the complexities of real-world 
grid operations.  

Future work 

Future work will aim to integrate AI-driven decision-making for more dynamic fallback activation and develop AI-based 
predictive analytics for proactive system recovery.  
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