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Abstract 

The integration of renewable energy sources, such as wind and solar power, into smart grids presents significant 
challenges due to their inherent variability and intermittency. Accurate forecasting of renewable energy generation is 
essential for maintaining grid stability, minimizing energy imbalance, and optimizing power distribution. This paper 
proposes a hybrid deep learning model that combines Convolutional Neural Networks (CNN) for spatial feature 
extraction and Long Short-Term Memory (LSTM) networks for temporal dependency modeling. The approach is applied 
to forecast wind and solar power generation using meteorological data from multiple geographical locations. The 
model's performance is compared to traditional forecasting methods such as ARIMA and standalone LSTM models. 
Experimental results show superior forecasting accuracy and improved error margins achieved by the hybrid CNN-
LSTM model, offering an enhanced solution for real-time energy management and integration into smart grid 
operations. This research follows the methodology proposed by Fozlur Rayhan in “A Hybrid Deep Learning Model for 
Wind and Solar Power Forecasting in Smart Grids” and builds upon it to demonstrate the practical application and 
effectiveness of hybrid deep learning models in renewable energy forecasting.  

Keywords: Renewable Energy; Wind Power; Solar Power; Forecasting; Deep Learning; Smart Grids; Hybrid Models; 
CNN; LSTM; Machine Learning 

1. Introduction

The global transition to sustainable energy sources is accelerating, with wind and solar power at the forefront of this 
transformation. These renewable energy sources offer vast potential for reducing reliance on fossil fuels and addressing 
climate change. However, their integration into the electrical grid presents challenges due to their intermittent nature. 
Wind and solar power generation depends heavily on weather conditions, which vary both spatially and temporally. 
This variability introduces uncertainties that must be addressed to ensure the stable operation of modern energy grids. 
The need for accurate forecasting of renewable energy generation has become more critical as the share of renewables 
in the energy mix increases. Smart grids, which use advanced sensors, communication systems, and data analytics, offer 
an ideal platform for integrating renewable energy sources into the grid. However, these grids require sophisticated 
forecasting models that can dynamically adjust to real-time data and predict energy generation from variable sources. 

Current forecasting models often struggle to accurately account for the complex spatial and temporal relationships in 
renewable energy generation. While statistical models such as ARIMA and machine learning approaches like LSTM 
networks have shown promise, they are typically limited in their ability to handle both spatial and temporal data 
simultaneously. To overcome these limitations, this paper proposes a hybrid deep learning model combining 
Convolutional Neural Networks (CNN) for spatial feature extraction and Long Short-Term Memory (LSTM) networks 
for temporal dependency modeling. This approach builds on the methodology introduced by Fozlur Rayhan in “A Hybrid 
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Deep Learning Model for Wind and Solar Power Forecasting in Smart Grids” and adapts it for use in real-world smart grid 
operations. 

1.1. Background and Motivation 

As the demand for renewable energy grows, integrating variable sources like wind and solar power into existing energy 
systems becomes more challenging. The intermittent nature of these energy sources requires advanced forecasting 
models that can accurately predict power generation, preventing energy shortages or surpluses and optimizing grid 
operations. Smart grids, which rely on real-time data to adjust energy distribution, require sophisticated models that 
can handle the complexities of renewable energy forecasting. Accurate forecasting plays a crucial role in grid stability, 
operational efficiency, and cost reduction. Current methods struggle with the non-linear, time-varying relationships 
between weather conditions and energy generation. Moreover, existing forecasting models tend to treat spatial and 
temporal data separately, which limits their effectiveness. By integrating CNNs for spatial feature extraction and LSTMs 
for temporal sequence modeling, the hybrid model proposed in this paper offers a more robust solution for forecasting 
renewable energy generation. 

1.2. Problem Statement 

Traditional statistical models, such as ARIMA, fail to capture the non-linear dynamics of renewable energy generation. 
Machine learning methods, including decision trees and support vector machines, are better suited for modeling 
complex relationships but often fall short in integrating spatial and temporal data effectively. LSTM networks, which 
are adept at modeling temporal dependencies in time-series data, struggle with spatial data, which is critical for 
understanding the geographic variability of renewable energy generation. To address these challenges, a hybrid deep 
learning model that combines CNNs and LSTMs is proposed. This model integrates the spatial feature extraction 
capabilities of CNNs with the temporal dependency modeling capabilities of LSTMs, enabling it to more accurately 
forecast wind and solar power generation. The proposed model aims to improve upon existing methods by handling 
both spatial and temporal data simultaneously, providing more accurate and reliable predictions. 

1.3. Proposed Solution 

This paper proposes a hybrid deep learning model that integrates CNNs for spatial feature extraction and LSTMs for 
temporal dependency modeling. The CNN component processes meteorological data, such as temperature, humidity, 
wind speed, and cloud cover, to extract spatial features that influence energy generation. These spatial features are then 
passed to the LSTM network, which captures temporal dependencies in power generation. By combining these two 
models, the proposed hybrid model can handle both spatial and temporal complexities, resulting in more accurate 
forecasts of renewable energy generation. The model is tested on real-world data and compared with traditional 
forecasting methods, such as ARIMA and standalone LSTM models, to demonstrate its superiority in forecasting 
accuracy. 

1.4. Contributions 

This paper makes several significant contributions to the field of renewable energy forecasting, specifically in the 
context of smart grid integration: 

1.4.1. Development of a Hybrid Deep Learning Model 

The paper introduces a novel hybrid model that integrates Convolutional Neural Networks (CNNs) for spatial feature 
extraction and Long Short-Term Memory (LSTM) networks for modeling temporal dependencies. This hybrid 
architecture allows the model to address the complexities of renewable energy generation, which is influenced by both 
spatial weather patterns and temporal fluctuations. 

1.4.2. Enhanced Forecasting Accuracy 

By combining CNNs and LSTMs, the proposed model demonstrates superior accuracy in forecasting wind and solar 
power generation compared to traditional methods, such as ARIMA and standalone LSTM models. The hybrid model is 
shown to capture both spatial and temporal dependencies more effectively, improving forecasting precision and 
reducing errors. 
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1.4.3. Improved Smart Grid Operations 

 The model contributes to the optimization of smart grid operations by providing more accurate forecasts of renewable 
energy generation. This is crucial for grid operators who rely on accurate predictions to balance energy supply and 
demand efficiently, minimize storage costs, and ensure grid stability. 

1.4.4. Real-World Data Validation: 

The proposed model is validated using real-world data from multiple geographical locations, including meteorological 
and energy production data. The validation demonstrates the model's practical applicability in diverse operational 
settings, ensuring its utility for smart grid applications. 

1.4.5. Advancement of Hybrid Deep Learning Approaches: 

This research extends the work of Fozlur Rayhan by applying the hybrid CNN-LSTM methodology in the context of 
renewable energy forecasting. It opens new avenues for future research into the integration of additional data sources, 
such as energy consumption patterns and real-time grid data, to further enhance forecasting accuracy. 

1.4.6. Scalability and Future Work: 

Future work will focus on improving the scalability of the model, expanding its applicability to other renewable energy 
sources, and integrating additional features such as energy storage levels and real-time grid data. This will further 
enhance the robustness of the model and its capacity to handle large-scale energy forecasting in diverse smart grid 
environments. 

2. Related work 

Renewable energy forecasting, particularly for wind and solar power, has garnered significant attention in recent years 
due to its critical importance in optimizing grid operations and ensuring energy stability. Various forecasting 
techniques, ranging from traditional statistical methods to advanced machine learning approaches, have been proposed 
to address the complexities of predicting renewable energy generation. This section reviews the existing literature, 
focusing on traditional methods, machine learning approaches, and hybrid deep learning models, highlighting their 
strengths, limitations, and how they compare to the proposed hybrid CNN-LSTM model. 

2.1. Traditional Forecasting Models 

Traditional forecasting models have been widely used for time-series prediction, including models like Auto-Regressive 
Integrated Moving Average (ARIMA), which capture linear trends in historical data. These models have been applied to 
renewable energy forecasting, but their ability to handle the non-linear, time-varying patterns of wind and solar energy 
generation is limited. ARIMA and similar models are often inadequate for modeling the complex relationships between 
meteorological data and energy production, especially when dealing with the spatial aspects of renewable energy 
generation [1] [2]. One common approach is the use of regression models to predict solar and wind power output based 
on weather forecasts. However, these models are limited by their inability to capture temporal dependencies and non-
linear relationships in the data, which are critical for accurate forecasting in renewable energy applications. As 
renewable energy penetration increases, there is a growing need for more sophisticated models that can handle the 
complexities of energy generation from variable sources [2] [3]. 

2.2. Machine Learning Approaches for Renewable Energy Forecasting 

Machine learning techniques have gained popularity in renewable energy forecasting due to their ability to model 
complex, non-linear relationships in large datasets. Models such as Support Vector Machines (SVM), Random Forests, 
and k-Nearest Neighbors (k-NN) have been applied to forecast wind and solar power generation by learning from 
historical data. These methods can capture non-linear patterns and interactions between meteorological variables more 
effectively than traditional statistical methods [4] [5]. SVM, for example, has been used to classify and predict wind and 
solar power production based on weather data. Random Forests and k-NN models have also been utilized for their 
ability to handle large datasets and account for complex, non-linear interactions. However, while these machine learning 
models have shown improvements over traditional approaches, they still face challenges in integrating both spatial and 
temporal data simultaneously, which limits their accuracy in dynamic environments like smart grids [6] [7] 
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2.3. Hybrid Deep Learning Models 

Hybrid deep learning models that combine the strengths of different neural network architectures, such as 
Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks, have emerged as a promising 
solution for renewable energy forecasting. CNNs excel at capturing spatial features, such as weather patterns and 
geographic influences, while LSTMs are adept at modeling temporal dependencies in time-series data. By integrating 
these two techniques, hybrid models are able to better capture the complexities of both spatial and temporal factors, 
offering superior forecasting accuracy [8] [9]. Fozlur Rayhan's work, “A Hybrid Deep Learning Model for Wind and Solar 
Power Forecasting in Smart Grids”, proposed a CNN-LSTM hybrid model for renewable energy forecasting, 
demonstrating its superior performance compared to traditional methods. This model leverages CNNs to extract spatial 
features from weather-related data and LSTMs to capture temporal dependencies in energy production, significantly 
improving forecasting accuracy for both wind and solar power. The success of Rayhan's approach has inspired further 
research into hybrid models for renewable energy forecasting, showcasing their potential to optimize smart grid 
operations and enhance renewable energy integration into power systems [1]. Recent advancements in hybrid deep 
learning for renewable energy forecasting have demonstrated promising results. For example, hybrid models that 
combine CNNs and LSTMs have been applied to predict wind and solar power generation with high accuracy, allowing 
for real-time energy management and grid optimization. These models have outperformed traditional statistical and 
machine learning approaches in terms of both accuracy and efficiency [10]. 

3. Methodology 

Accurate forecasting of renewable energy sources like wind and solar power is crucial for optimizing smart grid 
operations and ensuring grid stability. The methodology outlined in this paper employs a hybrid deep learning model 
that integrates Convolutional Neural Networks (CNNs) for spatial feature extraction and Long Short-Term Memory 
(LSTM) networks for temporal dependency modeling. The overall process includes data collection, preprocessing, 
spatial feature extraction using CNNs, temporal dependency modeling with LSTMs, and the integration of both 
components into a hybrid architecture. This section provides a detailed explanation of each step in the methodology. 

3.1. Data Collection and Preprocessing 

The first step in the methodology is the collection of historical data on wind and solar power generation from multiple 
geographical locations. The dataset includes meteorological variables such as temperature, humidity, wind speed, and 
cloud cover, sourced from publicly available weather stations and grid operators. This data provides the necessary input 
features for the forecasting model. The raw data is preprocessed to standardize and normalize the features, ensuring 
efficient model training. Normalization helps scale the data within a specific range, making the training process more 
stable and effective. Preprocessing also involves cleaning the data by removing any missing or outlier values, which 
could otherwise distort the model's learning process. To facilitate proper evaluation and avoid overfitting, the data is 
divided into three subsets: training, validation, and testing sets. The training set is used to train the model, the validation 
set is used for tuning hyperparameters, and the testing set evaluates the model’s performance on unseen data. Since the 
model handles time-series data, the preprocessing step includes reshaping the dataset to preserve both spatial and 
temporal aspects. Each sequence represents a time window of historical weather data and corresponding energy 
generation, which is used for making future predictions. This is critical for ensuring that both spatial (geographical) and 
temporal (time-dependent) features are preserved during training. 

 

Figure 1 A flow diagram illustrating the data collection and preprocessing steps 
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3.2. CNN Component: Spatial Feature Extraction 

The CNN component is designed to capture spatial dependencies in the meteorological data, which plays a significant 
role in predicting renewable energy production. Unlike traditional time-series models, CNNs are particularly well-suited 
for extracting features from grid-like data, such as weather maps or sensor arrays, which have spatial dependencies. In 
this study, several convolutional layers are applied to the input data to scan for patterns in the weather conditions. 
These patterns include variations in temperature, wind speed, and cloud cover, which are critical for determining the 
potential of wind and solar power generation in specific regions. The convolutional layers apply filters to detect local 
features such as high wind speeds, temperature fluctuations, or clear skies, which have a direct impact on energy 
generation. After the convolutional layers, pooling layers are used to reduce the dimensionality of the data while 
retaining the most important features. Pooling helps the model focus on the significant patterns and eliminates less 
important details. This makes the CNN component highly efficient in extracting relevant spatial features from the 
meteorological data. 

 

Figure 2 CNN feature extraction 

3.3. LSTM Component: Temporal Dependency Modeling 

The LSTM component of the model is responsible for capturing the temporal dependencies in the energy generation 
data. Wind and solar power generation exhibit seasonal cycles and daily fluctuations that are critical for accurate 
forecasting. The LSTM network is well-suited for capturing these time-dependent patterns, making it an ideal choice for 
time-series data, where past observations influence future predictions. LSTM networks have a memory cell that allows 
the network to retain information over extended periods, which is crucial for learning long-term dependencies in time-
series data. In the context of renewable energy forecasting, LSTMs can learn patterns such as seasonal changes in wind 
and solar power generation, as well as irregular fluctuations caused by specific weather conditions. The LSTM network 
processes the spatial features extracted by the CNN and learns how these features evolve over time. By retaining 
memory of past weather and energy generation, the LSTM can predict future energy production based on the historical 
data. This ability to capture temporal dependencies is key to improving the forecasting accuracy of renewable energy 
generation. 

 

Figure 3 Diagram illustrating the LSTM architecture 
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3.4. Hybrid CNN-LSTM Architecture 

The CNN and LSTM components are integrated into a hybrid architecture that enables the model to handle both spatial 
and temporal dependencies. The CNN component extracts relevant spatial features from the weather data, which are 
then passed to the LSTM component for temporal processing. This hybrid model allows the system to leverage the 
strengths of both CNNs and LSTMs, making it highly effective for renewable energy forecasting. The architecture is 
designed to enhance the forecasting of wind and solar power generation in real-time, which is essential for smart grid 
optimization. By capturing both the spatial patterns in weather data and the temporal trends in energy production, the 
hybrid model offers a robust solution for forecasting renewable energy generation, which is inherently variable. 

 

Figure 4 Overview of the hybrid CNN-LSTM model architecture 

4. Data Analysis and Results 

Accurate evaluation of forecasting models is crucial to determining their effectiveness in real-world applications, 
particularly when dealing with renewable energy sources like wind and solar power. The performance of the proposed 
hybrid CNN-LSTM model is assessed using several standard evaluation metrics, which provide a quantitative measure 
of the model’s ability to predict future energy generation based on historical data. This section presents the evaluation 
of the hybrid model, compares its performance to traditional forecasting methods, and visualizes the results to highlight 
its effectiveness. The evaluation involves comparing the hybrid CNN-LSTM model with conventional forecasting 
methods, including Auto-Regressive Integrated Moving Average (ARIMA), Support Vector Machines (SVM), and 
standalone LSTM models. These models are tested on real-world datasets, and the results are analyzed to provide a 
clear comparison of their forecasting accuracy. The following subsections present the detailed evaluation metrics, 
followed by a comparison of the forecasting accuracy of each model. 

4.1. Model Evaluation 

The primary metrics used to evaluate the performance of the models are: 

4.1.1. Mean Absolute Error (MAE) 

This metric measures the average magnitude of the errors in a set of predictions, without considering their direction. It 
is a straightforward metric for understanding the model’s overall accuracy. 

4.1.2. Root Mean Square Error (RMSE) 

RMSE is used to measure the average magnitude of the error, giving more weight to larger errors. This is especially 
useful when large errors are more detrimental to grid operations. 

4.1.3. Mean Absolute Percentage Error (MAPE) 

This metric measures the prediction accuracy as a percentage, which is useful for comparing the accuracy of the models 
across different datasets and time periods. 

These metrics allow for a comprehensive assessment of the model's accuracy, reliability, and robustness in forecasting 
renewable energy generation. A lower value for MAE, RMSE, and MAPE indicates better performance and higher 
forecasting accuracy. 
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4.2. Comparison of Forecasting Accuracy 

The forecasting accuracy of the hybrid CNN-LSTM model is compared to that of traditional models, including ARIMA, 
Support Vector Machines (SVM), and standalone LSTM models. The results indicate that the hybrid CNN-LSTM model 
significantly outperforms the traditional models in terms of MAE, RMSE, and MAPE. The CNN component of the hybrid 
model plays a critical role in improving the model's performance by extracting relevant spatial features from weather 
data, such as temperature, wind speed, and cloud cover. These spatial features are then passed to the LSTM network, 
which models the temporal dependencies in power generation. This combined approach allows the hybrid model to 
capture both spatial and temporal complexities in renewable energy generation, which contributes to its superior 
forecasting accuracy. 

Table 1 Performance Comparison of Models 

Model MAE RMSE MAPE (%) 

Hybrid CNN-LSTM 3.5 4.2 5.6 

ARIMA 6.8 7.5 11.2 

SVM 5.9 6.7 10.1 

Standalone LSTM 4.3 5.1 7.3 

As shown in Table 2, the hybrid CNN-LSTM model achieves the lowest values for MAE, RMSE, and MAPE, indicating that 
it provides the most accurate predictions of renewable energy generation. The ARIMA and SVM models, while effective 
in some cases, demonstrate higher error rates, especially when compared to the hybrid deep learning approach. The 
standalone LSTM model performs better than ARIMA and SVM, but still lags behind the hybrid CNN-LSTM model, 
highlighting the importance of integrating CNNs with LSTMs to improve forecasting accuracy. The graph below clearly 
shows that the hybrid CNN-LSTM model consistently outperforms the other models across all three-evaluation metrics. 
The significant reduction in MAE, RMSE, and MAPE demonstrates the superiority of the hybrid approach. 

4.3. Results discussion 

The results of the experiments demonstrate that the hybrid CNN-LSTM model provides a substantial improvement in 
forecasting accuracy compared to traditional models. The CNN's ability to extract spatial features from the 
meteorological data and the LSTM's ability to model temporal dependencies in energy generation contribute to the 
model’s superior performance. This hybrid approach is especially beneficial in the context of renewable energy 
forecasting, where both spatial and temporal data are essential for accurate predictions. Furthermore, the hybrid CNN-
LSTM model’s low error rates in MAE, RMSE, and MAPE indicate its robustness and reliability for real-time energy 
forecasting in smart grid environments. As renewable energy sources like wind and solar power continue to play an 
increasingly important role in energy systems, models like the hybrid CNN-LSTM offer an effective solution for 
optimizing grid operations and ensuring energy stability.   

5. Conclusion 

This paper presents a hybrid deep learning model that combines Convolutional Neural Networks (CNN) and Long Short-
Term Memory (LSTM) networks for forecasting wind and solar power generation. The proposed model improves 
forecasting accuracy by capturing both spatial and temporal dependencies in weather data and power generation 
patterns. Experimental results show that the hybrid CNN-LSTM model outperforms traditional forecasting methods in 
terms of accuracy and reliability. This approach offers a robust solution for renewable energy forecasting, contributing 
to the optimization of smart grid operations.  

While the proposed model shows strong performance, it is limited by the availability and quality of real-time weather 
and energy generation data, which can affect accuracy.  

Future work 

Future work will focus on expanding the model to incorporate additional meteorological parameters and real-time grid 
data, as well as improving its scalability for larger datasets and diverse geographical regions.  
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