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Abstract

This study develops and tests a MATLAB program for neutralising systems with upper triangular coefficient matrices.
Augmented matrices for systems of linear equations are reduced to produce a neutral (identity matrix) left hand side,
at which point the right hand side has the solutions for the system. A strategy for minimal error is pursued, where
elimination operations must be completed in one step for each number. The strategy was expressed in pseudocode, a
flowchart developed, and then the program was coded in MATLAB. The program was tested for four sample augmented
matrices of varying sizes. The results demonstrated that the program was 100% accurate. The technique can be applied
to any square matrix system, since any square matrix can be expressed as an upper triangular matrix. The automation
of matrix operations and achievement of 100% accuracy allows for the use of the program for very large data sets,
extending the potential for research with accurate finding.
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1. Introduction

Upper triangular matrices occur often in research and applications [1]. They have useful properties that make them a
powerful tool in mathematics [2]. Upper triangular matrices are closed under addition and multiplication [3]. The
determinant of an upper triangular matrix is equal to its trace [4]. Upper triangular matrices are easy to work with as
the systems they represent can be solved by backward substitution [5]. Expressing matrices in triangular form reduces
the amount of storage space used [6]. Triangular matrices are sparse (have a large number of zero elements) matrices
that occur often in application and analysis [5]. Any square matrix can be expressed in Hermitic normal form [7].

Continuous improvement of computational algorithms is essential for improving computational efficiency in speed,
storage and accuracy [8]. Immense research has been carried out to optimise matrix operations. Mouha et al [9]
compared matrix multiplication algorithms on computational complexity, prioritising speed and memory usage. Ray
[10] focused on algorithm optimisation for scalability to large data sets. Herrero [11] optimised algorithms to reduce
computer processor overheads. Dumasa et al [12] sought to optimise matrix algorithms for computational speed. Alman
and Yu [13] developed algorithm search methods to reduce the magnitude of the leading constant in matrix
multiplication. Dehghankar et al [14] optimised matrix processing algorithms for neural network computations. Their
method improved matrix multiplication speeds by up to 29 times and used six times less memory.

Matrices are critical to artificial intelligence research [15]. Neural networks are trained from empirical data [16]. After
training, their characteristics are stored as weights and biases. Matrices are a convenient way to store characteristics of
neural network models in machine learning, a subfield of artificial intelligence [17]. Numerous methods have been
developed to improve matrix algorithms, with far reaching impact in research and applications [18]. Developments in
upper triangular matrix operations have a widespread impact in mathematical analysis and application. Upper
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triangular matrix methods can be extended to all square matrices since any square matrix can be expressed as an upper
triangular matrix [19].

Aim

To develop an algorithm and programming code that neutralises upper triangular matrices with minimal error.

Objectives

1. Develop pseudocode for neutralising any upper triangular matrix with minimal error.
2. Develop the flow chart for the upper triangular matrix neutralisation algorithm.
3. Develop MATLAB programming code for the upper triangular matrix neutralisation algorithm.

1.1. Target programing environment

This study sought to develop an upper triangular matrix neutralisation program that runs in the MATLAB 22 [20]
programing and analysis environment.

2. Methodology

2.1. Pseudocode

Consider a system of n linear equations expressed in an upper triangular coefficient matrix. Figure 1 illustrates the
augmented matrix for such a system. In solving the system computationally, considerations are made to minimise
errors.

11 12 iz . . . Qin Lt
0 azz az3 Azn 2
0 0 A3 Azn 3
0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0 0 0 Onn T

Figure 1 Augmented upper triangular coefficient matrix

The matrix is said to be neutralised if the left side is the nxn identity matrix. The strategy is to minimise the number of
operations necessary to neutralise the matrix. Thus each eliminated term must be eliminated in a single step to minimise
concatenation and round off errors. The algorithm is thus designed such that on each elimination, a single row operation
is performed with appropriate parameters to eliminate the target element. The steps are outlined in the Preamble,
Figure 2 and the pseudo code in Figure 3.

Preamble: Define the pivot of a row as the element, ap, on the main diagonal when it is the only non-zero element
in the row.

Define the targets, the elements in the column above the pivot.
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Define the victim, a,, the target to be eliminated at a particular operation step.
R, is the row with the victim.

R,, is the row with the pivot.

Ke

Pivot

Pivot row
Victim
Victim row

Figure 2 Augmented matrix at a typical step in eliminating targets.

The Pseudocode in Figure 3 outlines the steps to eliminate targets, one by one while changing the pivot from the bottom

row to the top.

Step 1: Set bottom row as pivot row.
Step 2: Repeat sub-steps 1-3 until top row = pivot Tow.
Sub-step 1: Set the row above the pivot row as the victim row.
Sub-step 2: Repeat sub-sub-steps 1 and 2 until victim row = op row.
Sub-sub-step 1: Perform the operation £, — A, Zr g

- [

Sub-sub-step 2: Release the corrent victim row and set the next row abowve as the

victm row.

Sub-step 3: Release the current pivot row and set the next row above as the pivot row.

Figure 3 Pseudo code for upper triangular matrix neutralisation.

Figure 5 shows the flowchart of the upper triangular matrix neutralisation algorithm. The algorithm is composed of
two main loops. The major loop terminates when the pivotis at the top row, since no further elimination will be possible.
The minor loop terminates when the row operation completes with the victim at the top row.

2.2. MATLAB source code

Figure 4 shows the programing code that implements upper triangular matrix neutralisation. Comments are included
after the ‘%’ symbol at each line to help explain the code.
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%User must have saved the

s=size(M);
respectively
n=s(1); % n is set to
j=0; % here j is t
times as
while j<n-1 % the number
k=n-3j; %k,
i=1; % here 1 is t
many times
while i<k

pivot=M(k,k);
victim=M(k-i,k);
M(k-1,:)=M(k-1,:)-
is done here
i=i+1;
end
J=3+1;
end
i=n;
while i>@
pivot=M(i,1);
M(i,:)=M(i,:)/pivot;
i=i-1;
end
M

augmented matrix as M

% s is a two dimensional vector giving the number rows and columns

the first value of s,
he row counter,

of rows minus 1

set to n-j, is the pivot row (and column) index
used for looping through victim rows as

he row counter,

% as the pivot index minus 1 for each pivot.

% pivot value is set at each iteration

% victim value is set at each iteration

%the elimination row operation

(victim/pivot)*M(k,:);

%victim row counter is incremented

% minor loop ends

%pivot row counter is incremented

%major loop ends

so that the result is an
identity matrix.

¥2 52 52 59 8% 8% 8%

number of rows

causing the major loop to happen as many

at the end of the algorithm
each pivot row is divided by
by a value equal to the pivot

Hence the upper triangular matrix is neutralised
The resulting matrix is displayed

Figure 4 MATLAB source code for the upper triangular matrix neutralisation algorithm.
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Figure 5 Flow chart of upper triangular matrix neutralisation algorithm
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3. Analysis

The upper triangular matrix neutralisation program was tested for four cases:

= A system with a 3 by 3 upper triangular matrix,
= A system with a 5 by 5 upper triangular matrix,

= A system with an 8 by 8 upper triangular matrix, and
= Asystem with a 10 by 10 upper triangular matrix.

Table 1 shows the four sample augmented upper triangular matrices (on the left) and the neutralised matrices (one the
right) that resulted when the neutralisation program in Figure 4 was used.

Table 1 Sample augmented matrices (left) and the corresponding neutralised matrices (right).

Augmented Matrix Neutralised Matrix
3 5 2 |36 1 0 0|5
0 1 4 |15 0 1 013
0 0 -2 |-6 0 0 113
B 2 -2 8 1 5|53 ] B 1 0 0 0 0]5 n
0 -3 9 0 2|30 0 1.0 0 0]7
0 0 1 6 4|29 0 0 1 0 0]5
0 0 0 4 7|29 0 0 0 1 0]2
0 0 0 0 2|6 0 0 0 0 1]3
4 3 0 3 2 1 4 5 | 64 1 0 0 0 0O 0 019
0 3 7 3 7 3 1174 0 1. 0 0 0 0 0 0|8
0 0 2 1 8 1 8 0| 138 0 01 0 0 0 0 017
0 0 0 8 5 9 10 9225 0 0 01 0 0 0 0|6
0 0 0 0 5 7 8 9 | 151 0 0 0 01 0 0 017
0 0 0 0 0 3 5 2|57 0 0 0 0 01 0 0|6
0 0 0 0 O O 8 2 | 60 0 0 0 0 0 01 0|7
0 0 0 0 0 0 O 2|4 0 0 0 0 0 0 0 1|2
4 5 8 8 5 2 8 7 4 51129 10 0 0 00 OO 0 0]2
0 6 1 9 5 10 1 7 10 3 |210 0 1.0 0 0 00 0 0 0]3
0 0 9 6 7 4 2 4 7 2| 111 0 010 0 0 0 0 0 0]-4
0 0 0 6 9 7 5 4 3 2| 138 0 0 01 0 0 0 0 0 0]O
0 0 0 0 6 7 0 1 1 51|86 0 0 0 01 0 0 0 0 0]6
0 0 0 0 0 9 6 9 3 4| 123 0 0 0001 00 0 0]3
0 0 0 0 0 0 4 4 2 1|49 0 0 00001 0 0 0]2
0 0 0 0 0 O 0 4 5 2|71 0 0 00 00O 1 0 0]5
0 0 0 0 0 O 0 0 7 2|69 0 0 00 00O 0O 1 019
0 0 0 0 0 O 0 0 0 4]12 0 0 0000 OO 0 1]3
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4. Discussion

When the left hand sides (LHS) of the augmented matrices were multiplied by the right hand sides (RHS) of the
neutralised matrices, the results were equal to the RHS of the original augmented matrices. This indicated that indeed
the values on the RHS of the neutralised matrices were suitable solutions for the systems. The upper triangular matrix
neutralisation program generated the correct values on the right hand side (RHS) of the neutralised matrices.

The matrix neutralisation program developed in this study thus demonstrated 100% accuracy. It can be used for
arbitrary sizes of upper triangular matrices.

5. Conclusion

This research successfully developed and tested a 100% accurate upper triangular matrix neutralisation program. This
can be used in the numerous occurrences of upper triangular systems in research and application. Automation of
essential matrix operations allows for quicker, more accurate solutions to mathematical problems. The level of accuracy
and speed allow for analysis of very large data sets to produce reliable results. Further research may be conducted to
automate useful matrix operations such finding eigenvalues and eigenvectors.
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