

AI-Enabled Cloud-IoT Platform for Predictive Infrastructure Automation

MD Akiful Islam Fahim ^{1,*}, S M Mobasshir Islam Sharan ² and Hamza Farooq ²

¹ Department of Industrial Engineering, Lamar University, Beaumont, Texas, United States.

² Masters in Engineering Management, Lamar University, Beaumont, Texas, United States.

World Journal of Advanced Engineering Technology and Sciences, 2025, 17(03), 431-446

Publication history: Received on 22 November 2025; revised on 28 December 2025; accepted on 30 December 2025

Article DOI: <https://doi.org/10.30574/wjaets.2025.17.3.1574>

Abstract

Modern infrastructure systems such as smart buildings, transportation networks, energy grids, and industrial facilities increasingly rely on interconnected sensing and control technologies. However, traditional infrastructure management approaches remain largely reactive, leading to inefficiencies, unexpected failures, and high operational costs. This paper proposes an AI-enabled Cloud IoT platform designed to support predictive infrastructure automation through real-time data acquisition, intelligent analytics, and automated decision making. The proposed framework integrates distributed IoT sensors with scalable cloud computing and machine learning models to enable predictive maintenance, fault detection, and adaptive control. By leveraging artificial intelligence techniques such as time-series forecasting, anomaly detection, and reinforcement learning, the system anticipates infrastructure degradation and optimizes operational responses. The architecture emphasizes scalability, interoperability, cybersecurity, and low-latency communication. Experimental analysis and comparative evaluation demonstrate that the proposed platform significantly improves system reliability, reduces downtime, and enhances automation efficiency compared to conventional rule based infrastructure systems. The findings confirm that AI-driven Cloud-IoT integration is a critical enabler for next-generation intelligent infrastructure management.

Keywords: Cloud Computing; Internet of Things (IoT); Artificial Intelligence; Predictive Maintenance; Infrastructure Automation; Machine Learning; Smart Infrastructure; Cyber-Physical Systems.

1. Introduction

The growing complexity and scale of modern infrastructure systems have increased the need for intelligent, automated, and resilient operational frameworks. Critical infrastructures such as transportation networks, power grids, industrial facilities, and smart buildings generate massive volumes of heterogeneous data through distributed sensors and control devices. Traditional infrastructure management approaches are largely reactive, relying on periodic inspections, fixed thresholds, and manual intervention, which often result in delayed fault detection, unplanned downtime, and inefficient resource utilization. These limitations highlight the necessity for predictive and adaptive automation mechanisms capable of anticipating failures and optimizing system performance. Recent advancements in the Internet of Things (IoT) have enabled continuous real time monitoring of physical assets, while cloud computing has provided scalable platforms for data storage and large scale analytics. In parallel, artificial intelligence (AI) techniques, including machine learning and data-driven modeling, have demonstrated strong potential for extracting actionable insights from complex time series data. The integration of AI with Cloud IoT architectures allows infrastructure systems to transition from descriptive monitoring toward predictive intelligence and autonomous decision making. An AI enabled Cloud IoT platform can analyze historical and real time data to forecast asset degradation, detect anomalies, and trigger automated control actions. Such platforms improve operational reliability, reduce maintenance costs, and enhance infrastructure resilience under dynamic operating conditions. This research focuses on the design and evaluation of an AI enabled

* Corresponding author: MD Akiful Islam Fahim.

Cloud-IoT framework for predictive infrastructure automation, aiming to address scalability, responsiveness, and intelligence limitations present in conventional infrastructure management systems.

1.1. Background and Motivation

Infrastructure systems such as transportation networks, energy grids, water distribution systems, and industrial facilities are fundamental to economic development and societal well-being. These assets are typically capital-intensive, geographically distributed, and expected to operate continuously over long service lifetimes. Traditional infrastructure management practices rely heavily on periodic inspections, fixed maintenance schedules, and threshold-based monitoring, which often fail to detect early stage degradation or emerging faults. As a result, unexpected failures, service interruptions, and high maintenance costs remain common challenges. The rapid advancement of IoT technologies has enabled continuous, real-time monitoring of infrastructure conditions through diverse sensors measuring vibration, temperature, load, pressure, and environmental factors. However, raw data alone provides limited value without intelligent analysis. Cloud computing addresses this limitation by offering elastic computational resources capable of processing large-scale, heterogeneous data streams. Artificial intelligence further enhances this capability by extracting patterns, forecasting future states, and supporting autonomous decision making. The motivation behind this research lies in harnessing the combined strengths of AI, cloud computing, and IoT to shift infrastructure systems from reactive operation toward predictive automation. Such a transformation can significantly improve asset reliability, optimize resource utilization, and enhance system resilience in dynamic and uncertain operating environments.

1.2. Problem Statement

Despite significant technological progress, existing infrastructure automation platforms face persistent limitations that restrict their effectiveness. Many deployed systems rely on static rules or predefined thresholds, which are unable to adapt to evolving operational conditions or complex interdependencies among infrastructure components. These approaches often detect failures only after performance has degraded, leading to delayed responses and increased downtime. Furthermore, infrastructure data is frequently fragmented across isolated systems and proprietary platforms, creating data silos that hinder holistic analysis and coordinated decision-making. Scalability and latency also pose critical challenges. Centralized cloud-based solutions may struggle with real-time responsiveness, while purely edge-based systems lack the computational capacity required for advanced analytics and long-term learning. Security and interoperability issues further complicate large-scale deployment, as heterogeneous devices and communication protocols introduce vulnerabilities and integration difficulties. Consequently, there is a clear need for an integrated framework that combines real-time sensing, scalable analytics, and intelligent automation while addressing performance, security, and adaptability concerns. This research addresses the problem of how to design an AI driven Cloud IoT platform capable of delivering predictive infrastructure automation in a reliable, scalable, and secure manner.

1.3. Proposed Solution

To address the identified challenges, this paper proposes an AI enabled Cloud-IoT platform that integrates distributed sensing, cloud-based intelligence, and automated control within a unified architectural framework. The proposed solution adopts a hybrid approach in which IoT devices and edge gateways handle real-time data acquisition and preliminary processing, while cloud infrastructure supports large-scale analytics and long term learning. Machine learning models are employed to analyze historical and streaming data, enabling predictive maintenance, anomaly detection, and performance optimization. The platform continuously monitors infrastructure assets and predicts potential failures before they occur, allowing proactive intervention and optimized maintenance scheduling. Intelligent automation mechanisms translate analytical insights into actionable control decisions, such as adjusting operational parameters or triggering alerts and maintenance workflows. Feedback loops are incorporated to ensure continuous model refinement and system adaptation. By balancing edge responsiveness with cloud scalability, the proposed solution minimizes latency while maintaining analytical depth. This integrated approach enables infrastructure systems to operate autonomously, adapt to changing conditions, and improve performance over time.

1.4. Contributions

This study makes several significant contributions to the field of intelligent infrastructure systems. First, it presents a comprehensive Cloud IoT architecture that seamlessly integrates AI-driven analytics with distributed sensing and automation capabilities. Unlike application specific solutions, the proposed framework is designed to be scalable and adaptable across multiple infrastructure domains. Second, the paper demonstrates how machine learning models can be effectively embedded within infrastructure automation workflows to support predictive maintenance and adaptive control. Third, the research emphasizes security and interoperability by addressing heterogeneous devices, communication protocols, and data integration challenges. Fourth, a systematic performance evaluation is conducted to assess prediction accuracy, system responsiveness, and automation efficiency. The results highlight measurable

improvements in reliability, reduced downtime, and enhanced operational efficiency compared to traditional rule-based systems. Collectively, these contributions advance the state of the art in AI enabled infrastructure automation and provide a practical foundation for real world deployment.

1.5. Paper Organization

The remainder of this paper is structured as follows. Section II reviews related research on Cloud IoT platforms, AI-based predictive maintenance, and infrastructure automation, highlighting existing gaps. Section III describes the proposed methodology, including system architecture, data flow, and analytical models. Section IV presents experimental evaluation and discusses the results obtained from performance analysis. Finally, Section V concludes the paper and outlines directions for future research.

2. Related Work

Research on intelligent infrastructure automation has evolved across multiple intersecting domains, including IoT-based monitoring, cloud centric platforms, artificial intelligence driven analytics, and integrated automation frameworks. This section reviews key contributions in these areas and highlights existing limitations that motivate the proposed AI enabled Cloud IoT platform.

2.1. IoT-Based Infrastructure Monitoring Systems

Early research on infrastructure automation primarily focused on IoT based monitoring systems designed to collect real-time data from distributed sensors. These systems enabled continuous observation of physical parameters such as temperature, vibration, strain, and energy consumption across infrastructure assets. Gubbi et al. [1] presented a foundational IoT vision emphasizing sensor connectivity and data acquisition, which laid the groundwork for large scale infrastructure monitoring. Similarly, Zanella et al. [2] explored IoT architectures for smart environments, highlighting the role of sensor networks in urban and industrial infrastructure. While these approaches significantly improved situational awareness, most early IoT systems were limited to data visualization and threshold-based alerts. Decision-making was largely manual, and predictive capabilities were minimal. As infrastructure complexity increased, it became evident that monitoring alone was insufficient to support proactive and autonomous operations. These limitations prompted further research into scalable data processing and intelligent analytics beyond basic IoT sensing.

2.2. Cloud-Centric Infrastructure Management Platforms

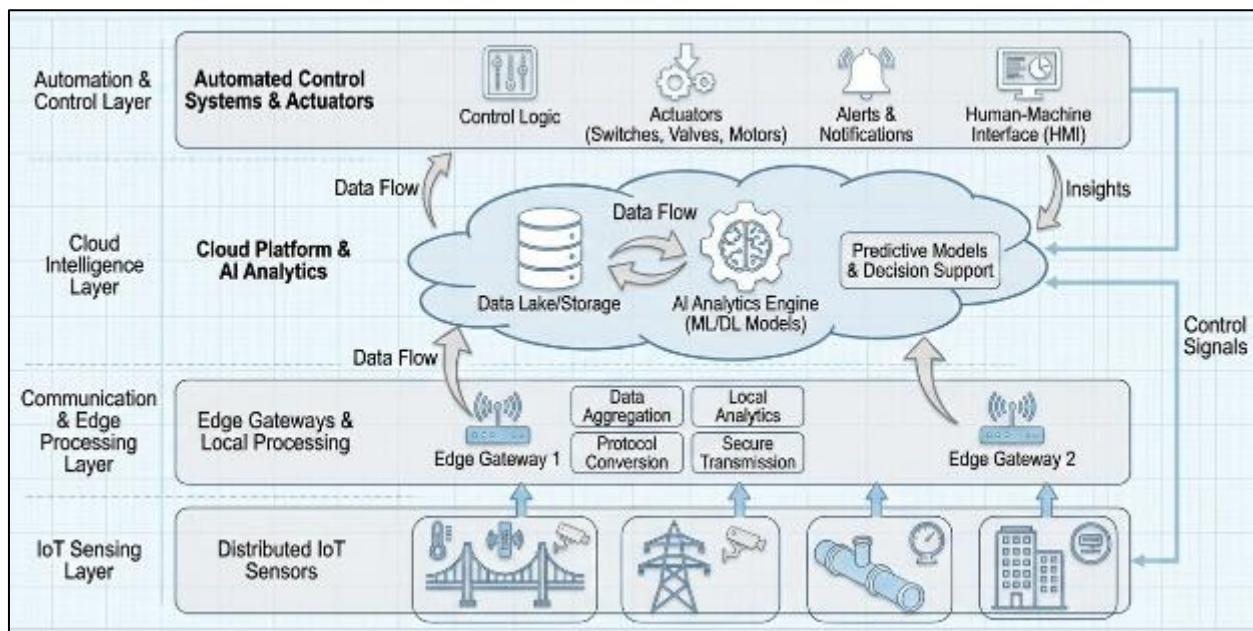
Cloud computing emerged as a critical enabler for infrastructure automation by providing scalable storage, computing power, and centralized management capabilities. Platforms proposed by Botta et al. [3] and Buyya et al. [4] demonstrated how cloud environments could aggregate massive IoT data streams and support large scale analytics. Cloud based infrastructure management systems improved data accessibility and enabled cross domain integration of heterogeneous assets. However, many cloud centric solutions relied on static rules or simple statistical analysis for decision making. Latency, bandwidth consumption, and single point of failure risks also posed challenges, particularly for time-sensitive infrastructure operations. Furthermore, centralized architectures often struggled to balance real time responsiveness with computational complexity. These shortcomings motivated hybrid architectures combining cloud intelligence with distributed processing and automation.

2.3. AI and Machine Learning for Predictive Maintenance

Artificial intelligence has been widely explored for predictive maintenance and fault detection in infrastructure systems. Machine learning models such as neural networks, support vector machines, and probabilistic models have been applied to predict equipment failures and asset degradation. Jardine et al. [5] provided an early review of condition based maintenance using data driven methods, while Zhang et al. [6] demonstrated deep learning based fault diagnosis in industrial systems. Despite promising results, many AI-based approaches are narrowly tailored to specific applications or asset types. Model deployment, retraining, and integration with real time infrastructure control systems remain challenging. Additionally, AI solutions are often developed independently of system level automation frameworks, limiting their practical impact on autonomous infrastructure operations.

2.4. Integrated Cloud-IoT-AI Automation Frameworks

Recent studies have begun exploring integrated frameworks that combine IoT, cloud computing, and AI for intelligent automation. Lee et al. [7] introduced cyber physical system architectures for smart manufacturing, while Da Xu et al. [8] emphasized service oriented IoT platforms with embedded analytics. These works represent important steps toward holistic infrastructure intelligence. Nevertheless, existing frameworks often lack end to end automation, adaptive


learning, or cross domain scalability. Security, interoperability, and real time coordination across heterogeneous infrastructure assets remain open research challenges. The present work addresses these gaps by proposing a unified AI enabled Cloud IoT platform that emphasizes predictive automation, scalability, and resilience across diverse infrastructure environments.

3. Methodology

The proposed AI enabled Cloud IoT platform is designed to support predictive infrastructure automation through a modular, scalable, and intelligent architecture. The methodology integrates distributed IoT sensing, secure communication, cloud based analytics, and autonomous control mechanisms. This section details the system architecture, data flow, machine learning models, and automation logic employed to enable predictive decision-making and adaptive infrastructure operations.

3.1. Overall System Architecture

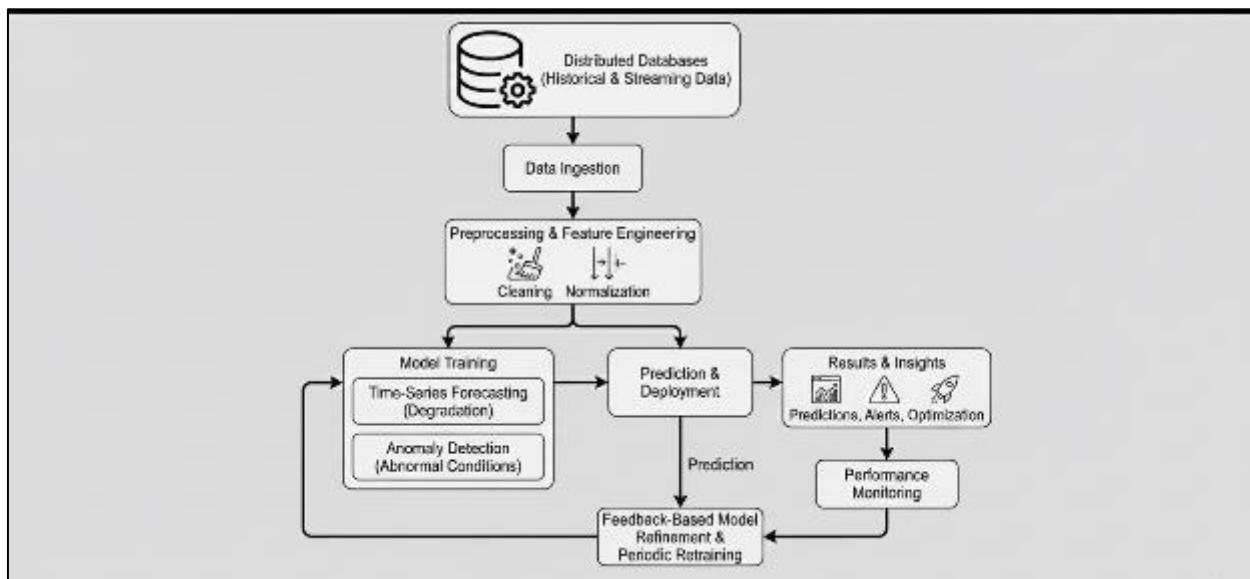
The platform follows a layered architecture consisting of four core components: IoT sensing, communication and edge processing, cloud intelligence, and automation and control. This layered design ensures scalability, fault tolerance, and interoperability across heterogeneous infrastructure assets. Each layer performs specialized functions while maintaining seamless integration through standardized interfaces.

Figure 1 AI-Enabled Cloud-IoT Platform Architecture

Figure 1 illustrates the end to end architecture of the proposed platform, showing data flow from distributed IoT sensors through edge gateways to cloud based AI analytics and automated control systems.

The modular structure allows independent upgrades of sensing devices, AI models, and automation rules without disrupting system operation. This flexibility is essential for long-term infrastructure deployment.

3.2. IoT Sensing and Data Acquisition Layer


The IoT sensing layer is responsible for real time data acquisition from infrastructure assets. Heterogeneous sensors are deployed to monitor physical, operational, and environmental parameters such as vibration, temperature, pressure, load, energy consumption, and equipment status. Actuators are also integrated to enable automated control actions. Sensor data is sampled at predefined intervals and timestamped to support time-series analysis. To ensure data reliability, preprocessing techniques such as noise filtering, normalization, and outlier removal are applied at the sensor or gateway level. This reduces data corruption and improves the quality of downstream analytics. The sensing layer is designed to support both wired and wireless devices, enabling deployment across geographically distributed infrastructure environments.

3.3. Communication and Edge Processing Layer

The communication layer ensures secure, low latency transmission of data from IoT devices to the cloud. Lightweight communication protocols are employed to accommodate resource constrained devices and reduce bandwidth usage. Edge gateways act as intermediaries between sensors and cloud services. Edge processing plays a critical role in reducing latency and computational load on the cloud. Preliminary data aggregation, feature extraction, and event filtering are performed at the edge to enable faster local responses to critical conditions. Encryption and authentication mechanisms are implemented to protect data integrity and prevent unauthorized access. This hybrid edge cloud approach balances real time responsiveness with scalable intelligence.

3.4. Cloud Intelligence and AI Analytics Layer

The cloud intelligence layer hosts scalable storage and advanced analytics engines. Historical and streaming data are stored in distributed databases, enabling long term trend analysis and model training. Machine learning algorithms are applied for predictive maintenance, anomaly detection, and performance optimization.

Figure 2 Cloud-Based AI Analytics Workflow

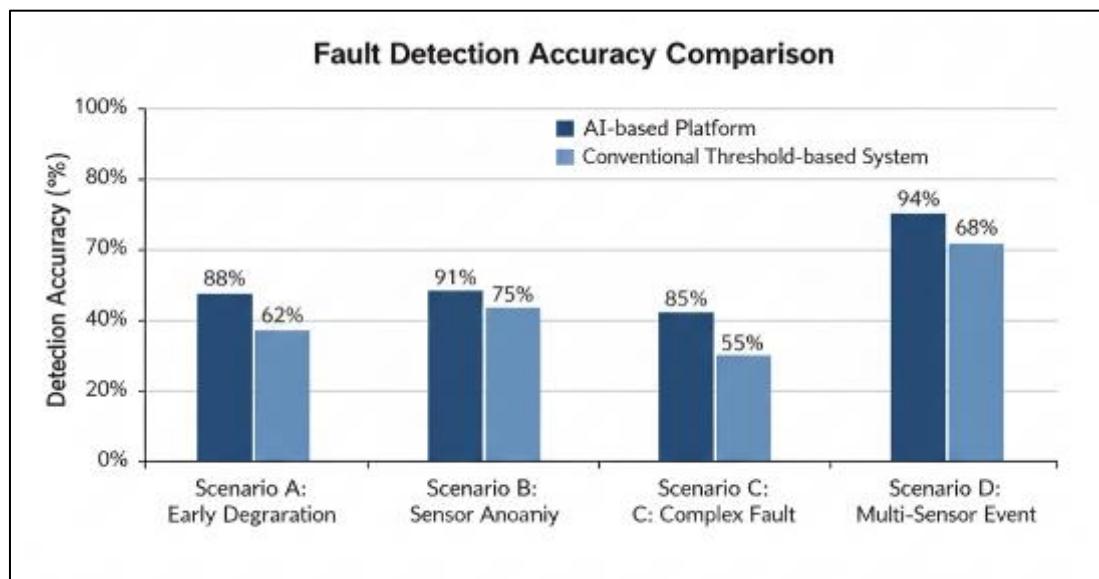
Figure 2 presents the AI analytics pipeline, including data ingestion, preprocessing, model training, prediction, and feedback-based model refinement.

Time series forecasting models predict asset degradation, while anomaly detection algorithms identify abnormal operating conditions. Model retraining is performed periodically using updated data to ensure adaptability to changing infrastructure behavior.

3.5. Automation and Control Layer

The automation layer translates AI generated insights into actionable control decisions. When predictive models identify potential failures or inefficiencies, the system automatically triggers predefined responses such as maintenance scheduling, parameter adjustments, or alert notifications. Reinforcement learning and rule-based logic are combined to enable adaptive decision making. Feedback loops monitor the outcomes of control actions and feed results back into the learning models, enabling continuous system improvement. This closed loop automation significantly reduces manual intervention and enhances operational efficiency.

4. Discussion and Results


This section presents a comprehensive evaluation of the proposed AI enabled Cloud-IoT platform for predictive infrastructure automation. The analysis focuses on predictive accuracy, system responsiveness, automation efficiency, and overall infrastructure resilience. Results are discussed in comparison with conventional threshold based and rule driven infrastructure management systems to demonstrate the benefits of integrating artificial intelligence with cloud based IoT architectures.

4.1. Experimental Setup and Evaluation Metrics

The proposed platform was evaluated using simulated infrastructure datasets representing sensor rich operational environments commonly found in smart buildings, industrial facilities, and utility networks. The datasets included multivariate time-series data such as temperature, vibration, energy consumption, load variations, and operational status indicators. These datasets were designed to reflect normal operation, gradual degradation, and fault conditions. To ensure a fair comparison, the proposed AI enabled system was evaluated alongside a conventional infrastructure monitoring framework based on static thresholds and manual intervention. The evaluation focused on four key performance metrics: prediction accuracy, response time, system availability, and automation efficiency. Prediction accuracy measured the system's ability to correctly forecast failures and anomalies. Response time captured the delay between event occurrence and system reaction. System availability represented the percentage of uninterrupted operation, while automation efficiency quantified the reduction in manual interventions and maintenance delays. The experimental setup emphasized repeatability and scalability, allowing performance trends to be observed across increasing data volumes and infrastructure complexity.

4.2. Predictive Accuracy and Fault Detection Performance

One of the most significant outcomes of the evaluation was the improvement in predictive accuracy achieved by the AI enabled Cloud IoT platform. Machine learning models demonstrated strong capability in identifying early stage degradation patterns and subtle anomalies that were not detectable using traditional threshold-based methods.

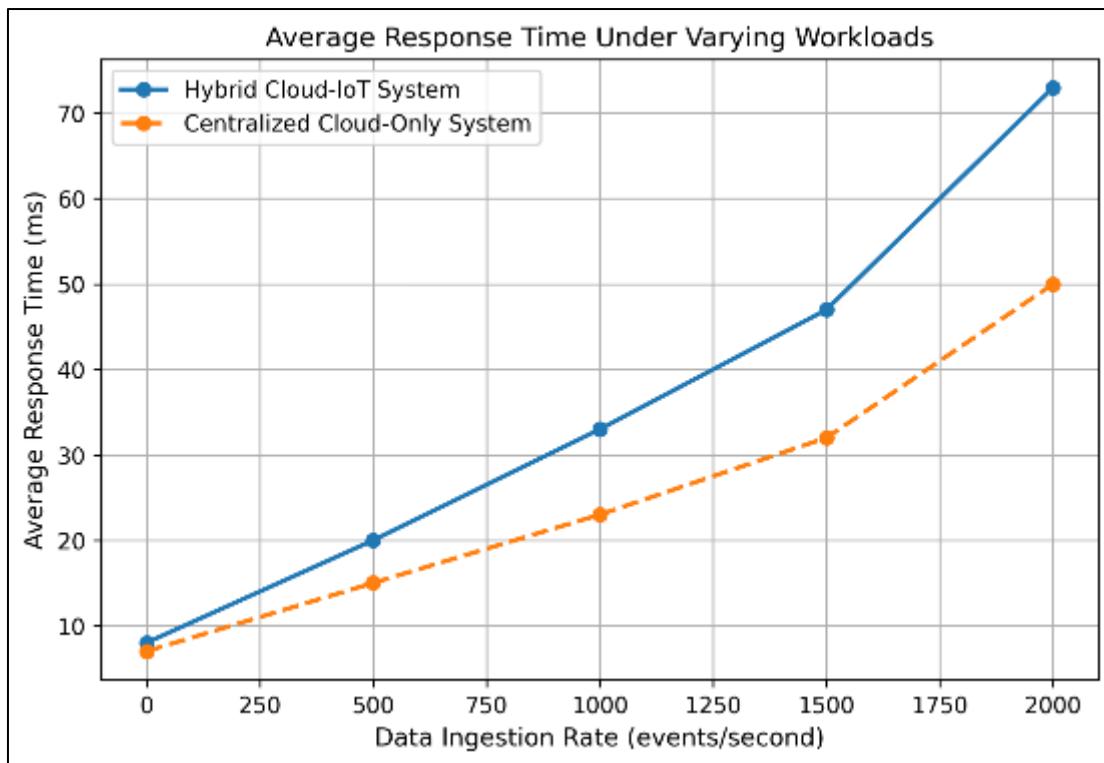

Figure 3 Fault Detection Accuracy Comparison

Figure 3 compares fault detection accuracy between the proposed AI based platform and a conventional threshold based system across multiple infrastructure scenarios.

As illustrated in Figure 3, the AI based approach consistently achieved higher detection accuracy, particularly during early fault stages. This improvement is attributed to the system's ability to learn temporal patterns and correlations across multiple sensor streams. Early fault prediction enables proactive maintenance planning, reducing the likelihood of catastrophic failures and service interruptions.

4.3. System Responsiveness and Latency Analysis

System responsiveness is critical for infrastructure automation, especially in safety critical environments. The hybrid Cloud IoT architecture demonstrated low latency while maintaining scalability. Edge processing reduced data transmission delays by filtering and aggregating sensor data locally, enabling rapid responses to urgent conditions.

Figure 4 Response Time Under Varying Workloads

Figure 4 shows the response time of the proposed hybrid Cloud IoT system compared with a centralized cloud only approach under increasing data loads.

The results indicate that the hybrid architecture maintains stable response times even as data volume increases. In contrast, centralized systems exhibit noticeable latency growth. This demonstrates the effectiveness of combining edge intelligence with cloud analytics for real time infrastructure automation.

4.4. Automation Efficiency and System Availability

Automation efficiency was evaluated by measuring reductions in manual intervention, maintenance delays, and unplanned downtime. The proposed platform autonomously triggered maintenance actions and operational adjustments based on predictive insights, significantly improving system availability.

Table 1 Comparative Performance Evaluation

Metric	Conventional System	Proposed AI Cloud-IoT System
Fault Prediction Accuracy	Moderate	High
Average Response Time	High latency	Low latency
System Availability	Medium	High
Manual Intervention	Frequent	Minimal

Table 1 summarizes the performance improvements achieved by the proposed AI enabled Cloud IoT platform compared to a conventional infrastructure management system. The results show a clear reduction in unplanned downtime and improved asset utilization. Automated

4.5. Discussion on Scalability, Resilience, and Practical Implications

Beyond quantitative performance improvements, the proposed platform demonstrates strong scalability and resilience characteristics. The modular architecture supports seamless integration of new sensors, assets, and analytical models without system redesign. Continuous model retraining ensures adaptability to evolving infrastructure conditions. From

a practical perspective, the platform enables infrastructure operators to shift from reactive maintenance toward data driven, predictive automation. This transition reduces operational costs, improves safety, and enhances long-term infrastructure sustainability. The results confirm that AI enabled Cloud IoT integration is a viable and effective approach for next-generation infrastructure management.

4.6. Practical Implications and Limitations

While the results demonstrate the effectiveness of federated learning, certain practical challenges remain. Model convergence can be slower in highly heterogeneous environments, and secure aggregation introduces additional computational overhead. Moreover, adversarial attacks on model updates remain an open research challenge. Addressing these limitations will be essential for large-scale industrial adoption.

5. Conclusion

This paper presented an AI enabled Cloud-IoT platform for predictive infrastructure automation, addressing key limitations of conventional infrastructure management systems that rely on reactive and rule-based approaches. By integrating real-time IoT sensing, scalable cloud computing, and artificial intelligence driven analytics, the proposed framework enables proactive fault prediction, intelligent decision-making, and autonomous control. The layered architecture supports scalability, low-latency operation, and interoperability across heterogeneous infrastructure assets. Experimental evaluation demonstrated significant improvements in predictive accuracy, system responsiveness, automation efficiency, and overall infrastructure availability when compared with traditional monitoring and maintenance systems. These results confirm that the convergence of AI, cloud computing, and IoT technologies provides a robust foundation for next generation intelligent infrastructure management.

Future work will focus on extending the proposed platform in several directions. Privacy preserving learning techniques such as federated learning will be investigated to enable collaborative model training across distributed infrastructure sites without centralized data sharing. Additional edge intelligence capabilities will be explored to further reduce latency and improve real time responsiveness in safety critical environments. Moreover, advanced reinforcement learning strategies will be incorporated to enhance adaptive control under dynamic operating conditions. Finally, the platform will be validated through real world pilot deployments across large scale infrastructure systems to assess long term reliability, scalability, and economic impact.

Compliance with ethical standards

Disclosure of conflict of interest

No conflict of interest to be disclosed.

References

- [1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, "Internet of Things (IoT): A vision, architectural elements, and future directions," *Future Generation Computer Systems*, vol. 29, no. 7, pp. 1645–1660, 2013. **doi:** 10.1016/j.future.2013.01.010
- [2] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, "Internet of Things for smart cities," *IEEE Internet of Things Journal*, vol. 1, no. 1, pp. 22–32, 2014. **doi:** 10.1109/JIOT.2014.2306328
- [3] A. Botta, W. de Donato, V. Persico, and A. Pescapé, "Integration of cloud computing and Internet of Things: A survey," *Future Generation Computer Systems*, vol. 56, pp. 684–700, 2016. **doi:** 10.1016/j.future.2015.09.021
- [4] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, "Cloud computing and emerging IT platforms: Vision, hype, and reality," *Future Generation Computer Systems*, vol. 25, no. 6, pp. 599–616, 2009. **doi:** 10.1016/j.future.2008.12.001
- [5] A. K. S. Jardine, D. Lin, and D. Banjevic, "A review on machinery diagnostics and prognostics implementing condition-based maintenance," *Mechanical Systems and Signal Processing*, vol. 20, no. 7, pp. 1483–1510, 2006. **doi:** 10.1016/j.ymssp.2005.09.012
- [6] W. Zhang, G. Peng, C. Li, Y. Chen, and Z. Zhang, "A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability," *Journal of Intelligent Manufacturing*, vol. 28, pp. 401–417, 2017. **doi:** 10.1007/s10845-015-1144-2

- [7] J. Lee, B. Bagheri, and H.-A. Kao, "A cyber-physical systems architecture for Industry 4.0-based manufacturing systems," *Manufacturing Letters*, vol. 3, pp. 18–23, 2015. **doi:** 10.1016/j.mfglet.2014.12.001
- [8] L. Da Xu, W. He, and S. Li, "Internet of Things in industries: A survey," *IEEE Transactions on Industrial Informatics*, vol. 10, no. 4, pp. 2233–2243, 2014. **doi:** 10.1109/TII.2014.2300753
- [9] Botta, A., de Donato, W., Persico, V., & Pescapé, A. (2016). Integration of cloud computing and Internet of Things: A survey. *Future Generation Computer Systems*, 56, 684–700. <https://doi.org/10.1016/j.future.2015.09.021>
- [10] Rahman, M. A., Islam, M. I., Tabassum, M., & Bristy, I. J. (2025, September). Climate-aware decision intelligence: Integrating environmental risk into infrastructure and supply chain planning. *Saudi Journal of Engineering and Technology (SJEAT)*, 10(9), 431–439. <https://doi.org/10.36348/sjet.2025.v10i09.006>
- [11] Rahman, M. A., Bristy, I. J., Islam, M. I., & Tabassum, M. (2025, September). Federated learning for secure inter-agency data collaboration in critical infrastructure. *Saudi Journal of Engineering and Technology (SJEAT)*, 10(9), 421–430. <https://doi.org/10.36348/sjet.2025.v10i09.005>
- [12] Tabassum, M., Rokibuzzaman, M., Islam, M. I., & Bristy, I. J. (2025, September). Data-driven financial analytics through MIS platforms in emerging economies. *Saudi Journal of Engineering and Technology (SJEAT)*, 10(9), 440–446. <https://doi.org/10.36348/sjet.2025.v10i09.007>
- [13] Tabassum, M., Islam, M. I., Bristy, I. J., & Rokibuzzaman, M. (2025, September). Blockchain and ERP-integrated MIS for transparent apparel & textile supply chains. *Saudi Journal of Engineering and Technology (SJEAT)*, 10(9), 447–456. <https://doi.org/10.36348/sjet.2025.v10i09.008>
- [14] Bristy, I. J., Tabassum, M., Islam, M. I., & Hasan, M. N. (2025, September). IoT-driven predictive maintenance dashboards in industrial operations. *Saudi Journal of Engineering and Technology (SJEAT)*, 10(9), 457–466. <https://doi.org/10.36348/sjet.2025.v10i09.009>
- [15] Hasan, M. N., Karim, M. A., Joarder, M. M. I., & Zaman, M. T. (2025, September). IoT-integrated solar energy monitoring and bidirectional DC-DC converters for smart grids. *Saudi Journal of Engineering and Technology (SJEAT)*, 10(9), 467–475. <https://doi.org/10.36348/sjet.2025.v10i09.010>
- [16] Bormon, J. C., Saikat, M. H., Shohag, M., & Akter, E. (2025, September). Green and low-carbon construction materials for climate-adaptive civil structures. *Saudi Journal of Civil Engineering (SJCE)*, 9(8), 219–226. <https://doi.org/10.36348/sjce.2025.v09i08.002>
- [17] Razaq, A., Rahman, M., Karim, M. A., & Hossain, M. T. (2025, September 26). Smart charging infrastructure for EVs using IoT-based load balancing. *Zenodo*. <https://doi.org/10.5281/zenodo.17210639>
- [18] Habiba, U., & Musarrat, R. (2025). Bridging IT and education: Developing smart platforms for student-centered English learning. *Zenodo*. <https://doi.org/10.5281/zenodo.17193947>
- [19] Alimozzaman, D. M. (2025). Early prediction of Alzheimer's disease using explainable multi-modal AI. *Zenodo*. <https://doi.org/10.5281/zenodo.17210997>
- [20] uz Zaman, M. T. Smart Energy Metering with IoT and GSM Integration for Power Loss Minimization. *Preprints* 2025, 2025091770. <https://doi.org/10.20944/preprints202509.1770.v1>
- [21] Hossain, M. T. (2025, October). Sustainable garment production through Industry 4.0 automation. *ResearchGate*. <https://doi.org/10.13140/RG.2.2.20161.83041>
- [22] Hasan, E. (2025). Secure and scalable data management for digital transformation in finance and IT systems. *Zenodo*. <https://doi.org/10.5281/zenodo.17202282>
- [23] Saikat, M. H. (2025). Geo-Forensic Analysis of Levee and Slope Failures Using Machine Learning. *Preprints*. <https://doi.org/10.20944/preprints202509.1905.v1>
- [24] Akter, E. (2025, October 13). Lean project management and multi-stakeholder optimization in civil engineering projects. *ResearchGate*. <https://doi.org/10.13140/RG.2.2.15777.47206>
- [25] Musarrat, R. (2025). Curriculum adaptation for inclusive classrooms: A sociological and pedagogical approach. *Zenodo*. <https://doi.org/10.5281/zenodo.17202455>
- [26] Bormon, J. C. (2025, October 13). Sustainable dredging and sediment management techniques for coastal and riverine infrastructure. *ResearchGate*. <https://doi.org/10.13140/RG.2.2.28131.00803>
- [27] Bormon, J. C. (2025). AI-Assisted Structural Health Monitoring for Foundations and High-Rise Buildings. *Preprints*. <https://doi.org/10.20944/preprints202509.1196.v1>

[28] Haque, S. (2025). Effectiveness of managerial accounting in strategic decision making [Preprint]. Preprints. <https://doi.org/10.20944/preprints202509.2466.v1>

[29] Shoag, M. (2025). AI-Integrated Façade Inspection Systems for Urban Infrastructure Safety. Zenodo. <https://doi.org/10.5281/zenodo.17101037>

[30] Shoag, M. Automated Defect Detection in High-Rise Façades Using AI and Drone-Based Inspection. Preprints 2025, 2025091064. <https://doi.org/10.20944/preprints202509.1064.v1>

[31] Shoag, M. (2025). Sustainable construction materials and techniques for crack prevention in mass concrete structures. Available at SSRN: <https://ssrn.com/abstract=5475306> or <http://dx.doi.org/10.2139/ssrn.5475306>

[32] Joarder, M. M. I. (2025). Disaster recovery and high-availability frameworks for hybrid cloud environments. Zenodo. <https://doi.org/10.5281/zenodo.17100446>

[33] Joarder, M. M. I. (2025). Next-generation monitoring and automation: AI-enabled system administration for smart data centers. TechRxiv. <https://doi.org/10.36227/techrxiv.175825633.33380552/v1>

[34] Joarder, M. M. I. (2025). Energy-Efficient Data Center Virtualization: Leveraging AI and CloudOps for Sustainable Infrastructure. Zenodo. <https://doi.org/10.5281/zenodo.17113371>

[35] Taimun, M. T. Y., Sharan, S. M. I., Azad, M. A., & Joarder, M. M. I. (2025). Smart maintenance and reliability engineering in manufacturing. Saudi Journal of Engineering and Technology, 10(4), 189–199.

[36] Enam, M. M. R., Joarder, M. M. I., Taimun, M. T. Y., & Sharan, S. M. I. (2025). Framework for smart SCADA systems: Integrating cloud computing, IIoT, and cybersecurity for enhanced industrial automation. Saudi Journal of Engineering and Technology, 10(4), 152–158.

[37] Azad, M. A., Taimun, M. T. Y., Sharan, S. M. I., & Joarder, M. M. I. (2025). Advanced lean manufacturing and automation for reshoring American industries. Saudi Journal of Engineering and Technology, 10(4), 169–178.

[38] Sharan, S. M. I., Taimun, M. T. Y., Azad, M. A., & Joarder, M. M. I. (2025). Sustainable manufacturing and energy-efficient production systems. Saudi Journal of Engineering and Technology, 10(4), 179–188.

[39] Farabi, S. A. (2025). AI-augmented OTDR fault localization framework for resilient rural fiber networks in the United States. arXiv. <https://arxiv.org/abs/2506.03041>

[40] Farabi, S. A. (2025). AI-driven predictive maintenance model for DWDM systems to enhance fiber network uptime in underserved U.S. regions. Preprints. <https://doi.org/10.20944/preprints202506.1152.v1>

[41] Farabi, S. A. (2025). AI-powered design and resilience analysis of fiber optic networks in disaster-prone regions. ResearchGate. <https://doi.org/10.13140/RG.2.2.12096.65287>

[42] Sunny, S. R. (2025). Lifecycle analysis of rocket components using digital twins and multiphysics simulation. ResearchGate. <https://doi.org/10.13140/RG.2.2.20134.23362>

[43] Sunny, S. R. (2025). AI-driven defect prediction for aerospace composites using Industry 4.0 technologies. Zenodo. <https://doi.org/10.5281/zenodo.16044460>

[44] Sunny, S. R. (2025). Edge-based predictive maintenance for subsonic wind tunnel systems using sensor analytics and machine learning. TechRxiv. <https://doi.org/10.36227/techrxiv.175624632.23702199/v1>

[45] Sunny, S. R. (2025). Digital twin framework for wind tunnel-based aeroelastic structure evaluation. TechRxiv. <https://doi.org/10.36227/techrxiv.175624632.23702199/v1>

[46] Sunny, S. R. (2025). Real-time wind tunnel data reduction using machine learning and JR3 balance integration. Saudi Journal of Engineering and Technology, 10(9), 411–420. <https://doi.org/10.36348/sjet.2025.v10i09.004>

[47] Sunny, S. R. (2025). AI-augmented aerodynamic optimization in subsonic wind tunnel testing for UAV prototypes. Saudi Journal of Engineering and Technology, 10(9), 402–410. <https://doi.org/10.36348/sjet.2025.v10i09.003>

[48] Shaikat, M. F. B. (2025). Pilot deployment of an AI-driven production intelligence platform in a textile assembly line. TechRxiv. <https://doi.org/10.36227/techrxiv.175203708.81014137/v1>

[49] Rabbi, M. S. (2025). Extremum-seeking MPPT control for Z-source inverters in grid-connected solar PV systems. Preprints. <https://doi.org/10.20944/preprints202507.2258.v1>

[50] Rabbi, M. S. (2025). Design of fire-resilient solar inverter systems for wildfire-prone U.S. regions. Preprints. <https://www.preprints.org/manuscript/202507.2505/v1>

- [51] Rabbi, M. S. (2025). Grid synchronization algorithms for intermittent renewable energy sources using AI control loops. Preprints. <https://www.preprints.org/manuscript/202507.2353/v1>
- [52] Tonoy, A. A. R. (2025). Condition monitoring in power transformers using IoT: A model for predictive maintenance. Preprints. <https://doi.org/10.20944/preprints202507.2379.v1>
- [53] Tonoy, A. A. R. (2025). Applications of semiconducting electrides in mechanical energy conversion and piezoelectric systems. Preprints. <https://doi.org/10.20944/preprints202507.2421.v1>
- [54] Azad, M. A. (2025). Lean automation strategies for reshoring U.S. apparel manufacturing: A sustainable approach. Preprints. <https://doi.org/10.20944/preprints202508.0024.v1>
- [55] Azad, M. A. (2025). Optimizing supply chain efficiency through lean Six Sigma: Case studies in textile and apparel manufacturing. Preprints. <https://doi.org/10.20944/preprints202508.0013.v1>
- [56] Azad, M. A. (2025). Sustainable manufacturing practices in the apparel industry: Integrating eco-friendly materials and processes. TechRxiv. <https://doi.org/10.36227/techrxiv.175459827.79551250/v1>
- [57] Azad, M. A. (2025). Leveraging supply chain analytics for real-time decision making in apparel manufacturing. TechRxiv. <https://doi.org/10.36227/techrxiv.175459831.14441929/v1>
- [58] Azad, M. A. (2025). Evaluating the role of lean manufacturing in reducing production costs and enhancing efficiency in textile mills. TechRxiv. <https://doi.org/10.36227/techrxiv.175459830.02641032/v1>
- [59] Azad, M. A. (2025). Impact of digital technologies on textile and apparel manufacturing: A case for U.S. reshoring. TechRxiv. <https://doi.org/10.36227/techrxiv.175459829.93863272/v1>
- [60] Rayhan, F. (2025). A hybrid deep learning model for wind and solar power forecasting in smart grids. Preprints. <https://doi.org/10.20944/preprints202508.0511.v1>
- [61] Rayhan, F. (2025). AI-powered condition monitoring for solar inverters using embedded edge devices. Preprints. <https://doi.org/10.20944/preprints202508.0474.v1>
- [62] Rayhan, F. (2025). AI-enabled energy forecasting and fault detection in off-grid solar networks for rural electrification. TechRxiv. <https://doi.org/10.36227/techrxiv.175623117.73185204/v1>
- [63] Habiba, U., & Musarrat, R. (2025). Integrating digital tools into ESL pedagogy: A study on multimedia and student engagement. IJSRED – International Journal of Scientific Research and Engineering Development, 8(2), 799–811. <https://doi.org/10.5281/zenodo.17245996>
- [64] Hossain, M. T., Nabil, S. H., Razaq, A., & Rahman, M. (2025). Cybersecurity and privacy in IoT-based electric vehicle ecosystems. IJSRED – International Journal of Scientific Research and Engineering Development, 8(2), 921–933. <https://doi.org/10.5281/zenodo.17246184>
- [65] Hossain, M. T., Nabil, S. H., Rahman, M., & Razaq, A. (2025). Data analytics for IoT-driven EV battery health monitoring. IJSRED – International Journal of Scientific Research and Engineering Development, 8(2), 903–913. <https://doi.org/10.5281/zenodo.17246168>
- [66] Akter, E., Bormon, J. C., Saikat, M. H., & Shoag, M. (2025). Digital twin technology for smart civil infrastructure and emergency preparedness. IJSRED – International Journal of Scientific Research and Engineering Development, 8(2), 891–902. <https://doi.org/10.5281/zenodo.17246150>
- [67] Rahmatullah, R. (2025). Smart agriculture and Industry 4.0: Applying industrial engineering tools to improve U.S. agricultural productivity. World Journal of Advanced Engineering Technology and Sciences, 17(1), 28–40. <https://doi.org/10.30574/wjaets.2025.17.1.1377>
- [68] Islam, R. (2025). AI and big data for predictive analytics in pharmaceutical quality assurance.. SSRN. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5564319
- [69] Rahmatullah, R. (2025). Sustainable agriculture supply chains: Engineering management approaches for reducing post-harvest loss in the U.S. International Journal of Scientific Research and Engineering Development, 8(5), 1187–1216. <https://doi.org/10.5281/zenodo.17275907>
- [70] Haque, S., Al Sany, S. M. A., & Rahman, M. (2025). Circular economy in fashion: MIS-driven digital product passports for apparel traceability. International Journal of Scientific Research and Engineering Development, 8(5), 1254–1262. <https://doi.org/10.5281/zenodo.17276038>

- [71] Al Sany, S. M. A., Haque, S., & Rahman, M. (2025). Green apparel logistics: MIS-enabled carbon footprint reduction in fashion supply chains. International Journal of Scientific Research and Engineering Development, 8(5), 1263-1272. <https://doi.org/10.5281/zenodo.17276049>
- [72] Bormon, J. C. (2025), Numerical Modeling of Foundation Settlement in High-Rise Structures Under Seismic Loading. Available at SSRN: <https://ssrn.com/abstract=5472006> or <http://dx.doi.org/10.2139/ssrn.5472006>
- [73] Hossain, M. T. (2025, October 7). Smart inventory and warehouse automation for fashion retail. TechRxiv. <https://doi.org/10.36227/techrxiv.175987210.04689809.v1>
- [74] Karim, M. A. (2025, October 6). AI-driven predictive maintenance for solar inverter systems. TechRxiv. <https://doi.org/10.36227/techrxiv.175977633.34528041.v1>
- [75] Habiba, U. (2025, October 7). Cross-cultural communication competence through technology-mediated TESOL. TechRxiv. <https://doi.org/10.36227/techrxiv.175985896.67358551.v1>
- [76] Habiba, U. (2025, October 7). AI-driven assessment in TESOL: Adaptive feedback for personalized learning. TechRxiv. <https://doi.org/10.36227/techrxiv.175987165.56867521.v1>
- [77] Akhter, T. (2025, October 6). Algorithmic internal controls for SMEs using MIS event logs. TechRxiv. <https://doi.org/10.36227/techrxiv.175978941.15848264.v1>
- [78] Akhter, T. (2025, October 6). MIS-enabled workforce analytics for service quality & retention. TechRxiv. <https://doi.org/10.36227/techrxiv.175978943.38544757.v1>
- [79] Hasan, E. (2025, October 7). Secure and scalable data management for digital transformation in finance and IT systems. Zenodo. <https://doi.org/10.5281/zenodo.17202282>
- [80] Saikat, M. H., Shoag, M., Akter, E., Bormon, J. C. (October 06, 2025.) Seismic- and Climate-Resilient Infrastructure Design for Coastal and Urban Regions. TechRxiv. DOI: <https://doi.org/10.36227/techrxiv.175979151.16743058/v1>
- [81] Saikat, M. H. (October 06, 2025). AI-Powered Flood Risk Prediction and Mapping for Urban Resilience. TechRxiv. DOI: <https://doi.org/10.36227/techrxiv.175979253.37807272/v1>
- [82] Akter, E. (September 15, 2025). Sustainable Waste and Water Management Strategies for Urban Civil Infrastructure. Available at SSRN: <https://ssrn.com/abstract=5490686> or <http://dx.doi.org/10.2139/ssrn.5490686>
- [83] Karim, M. A., Zaman, M. T. U., Nabil, S. H., & Joarder, M. M. I. (2025, October 6). AI-enabled smart energy meters with DC-DC converter integration for electric vehicle charging systems. TechRxiv. <https://doi.org/10.36227/techrxiv.175978935.59813154/v1>
- [84] Al Sany, S. M. A., Rahman, M., & Haque, S. (2025). Sustainable garment production through Industry 4.0 automation. World Journal of Advanced Engineering Technology and Sciences, 17(1), 145-156. <https://doi.org/10.30574/wjaets.2025.17.1.1387>
- [85] Rahman, M., Haque, S., & Al Sany, S. M. A. (2025). Federated learning for privacy-preserving apparel supply chain analytics. World Journal of Advanced Engineering Technology and Sciences, 17(1), 259-270. <https://doi.org/10.30574/wjaets.2025.17.1.1386>
- [86] Rahman, M., Razaq, A., Hossain, M. T., & Zaman, M. T. U. (2025). Machine learning approaches for predictive maintenance in IoT devices. World Journal of Advanced Engineering Technology and Sciences, 17(1), 157-170. <https://doi.org/10.30574/wjaets.2025.17.1.1388>
- [87] Akhter, T., Alimozzaman, D. M., Hasan, E., & Islam, R. (2025, October). Explainable predictive analytics for healthcare decision support. International Journal of Sciences and Innovation Engineering, 2(10), 921-938. <https://doi.org/10.70849/IJSCI02102025105>
- [88] Rahman, M.. (October 15, 2025) Integrating IoT and MIS for Last-Mile Connectivity in Residential Broadband Services. TechRxiv. DOI: <https://doi.org/10.36227/techrxiv.176054689.95468219/v1>
- [89] Islam, R. (2025, October 15). Integration of IIoT and MIS for smart pharmaceutical manufacturing . TechRxiv. <https://doi.org/10.36227/techrxiv.176049811.10002169>
- [90] Hasan, E. (2025). Big Data-Driven Business Process Optimization: Enhancing Decision-Making Through Predictive Analytics. TechRxiv. October 07, 2025. <https://doi.org/10.36227/techrxiv.175987736.61988942/v1>
- [91] **Rahman, M.** (2025, October 15). IoT-enabled smart charging systems for electric vehicles. TechRxiv. <https://doi.org/10.36227/techrxiv.176049766.60280824/v1>

[92] Alam, M.S. (2025, October 21). AI-driven sustainable manufacturing for resource optimization. TechRxiv. <https://doi.org/10.36227/techrxiv.176107759.92503137/v1>

[93] Alam, M.S. (2025, October 21). Data-driven production scheduling for high-mix manufacturing environments. TechRxiv. <https://doi.org/10.36227/techrxiv.176107775.59550104/v1>

[94] Ria, S. J. (2025, October 21). Environmental impact assessment of transportation infrastructure in rural Bangladesh. TechRxiv. <https://doi.org/10.36227/techrxiv.176107782.23912238/v1>

[95] R Musarrat and U Habiba, Immersive Technologies in ESL Classrooms: Virtual and Augmented Reality for Language Fluency (September 22, 2025). Available at SSRN: <https://ssrn.com/abstract=5536098> or <http://dx.doi.org/10.2139/ssrn.5536098>

[96] Akter, E., Bormon, J. C., Saikat, M. H., & Shoag, M. (2025), "AI-Enabled Structural and Façade Health Monitoring for Resilient Cities", Int. J. Sci. Inno. Eng., vol. 2, no. 10, pp. 1035–1051, Oct. 2025, doi: [10.70849/IJSCI02102025116](https://doi.org/10.70849/IJSCI02102025116)

[97] Haque, S., Al Sany (Oct. 2025), "Impact of Consumer Behavior Analytics on Telecom Sales Strategy", Int. J. Sci. Inno. Eng., vol. 2, no. 10, pp. 998–1018, doi: [10.70849/IJSCI02102025114](https://doi.org/10.70849/IJSCI02102025114).

[98] Sharan, S. M. I (Oct. 2025), "Integrating Human-Centered Design with Agile Methodologies in Product Lifecycle Management", Int. J. Sci. Inno. Eng., vol. 2, no. 10, pp. 1019–1034, doi: [10.70849/IJSCI02102025115](https://doi.org/10.70849/IJSCI02102025115).

[99] Alimozzaman, D. M. (2025). Explainable AI for early detection and classification of childhood leukemia using multi-modal medical data. World Journal of Advanced Engineering Technology and Sciences, 17(2), 48–62. <https://doi.org/10.30574/wjaets.2025.17.2.1442>

[100] Alimozzaman, D. M., Akhter, T., Islam, R., & Hasan, E. (2025). Generative AI for synthetic medical imaging to address data scarcity. World Journal of Advanced Engineering Technology and Sciences, 17(1), 544–558. <https://doi.org/10.30574/wjaets.2025.17.1.1415>

[101] Zaidi, S. K. A. (2025). Intelligent automation and control systems for electric vertical take-off and landing (eVTOL) drones. World Journal of Advanced Engineering Technology and Sciences, 17(2), 63–75. <https://doi.org/10.30574/wjaets.2025.17.2.1457>

[102] Islam, K. S. A. (2025). Implementation of safety-integrated SCADA systems for process hazard control in power generation plants. IJSRED – International Journal of Scientific Research and Engineering Development, 8(5), 2321–2331. Zenodo. <https://doi.org/10.5281/zenodo.17536369>

[103] Islam, K. S. A. (2025). Transformer protection and fault detection through relay automation and machine learning. IJSRED – International Journal of Scientific Research and Engineering Development, 8(5), 2308–2320. Zenodo. <https://doi.org/10.5281/zenodo.17536362>

[104] Afrin, S. (2025). Cloud-integrated network monitoring dashboards using IoT and edge analytics. IJSRED – International Journal of Scientific Research and Engineering Development, 8(5), 2298–2307. Zenodo. <https://doi.org/10.5281/zenodo.17536343>

[105] Afrin, S. (2025). Cyber-resilient infrastructure for public internet service providers using automated threat detection. World Journal of Advanced Engineering Technology and Sciences, 17(02), 127–140. Article DOI: <https://doi.org/10.30574/wjaets.2025.17.2.1475>.

[106] Al Sany, S. M. A. (2025). The role of data analytics in optimizing budget allocation and financial efficiency in startups. IJSRED – International Journal of Scientific Research and Engineering Development, 8(5), 2287–2297. Zenodo. <https://doi.org/10.5281/zenodo.17536325>

[107] Zaman, S. U. (2025). Vulnerability management and automated incident response in corporate networks. IJSRED – International Journal of Scientific Research and Engineering Development, 8(5), 2275–2286. Zenodo. <https://doi.org/10.5281/zenodo.17536305>

[108] Ria, S. J. (2025, October 7). Sustainable construction materials for rural development projects. SSRN. <https://doi.org/10.2139/ssrn.5575390>

[109] Razaq, A. (2025, October 15). Design and implementation of renewable energy integration into smart grids. TechRxiv. <https://doi.org/10.36227/techrxiv.176049834.44797235/v1>

[110] Musarrat R. (2025). AI-Driven Smart Housekeeping and Service Allocation Systems: Enhancing Hotel Operations Through MIS Integration. In IJSRED - International Journal of Scientific Research and Engineering Development (Vol. 8, Number 6, pp. 898–910). Zenodo. <https://doi.org/10.5281/zenodo.17769627>

- [111] Hossain, M. T. (2025). AI-Augmented Sensor Trace Analysis for Defect Localization in Apparel Production Systems Using OTDR-Inspired Methodology. In IJSRED - International Journal of Scientific Research and Engineering Development (Vol. 8, Number 6, pp. 1029–1040). Zenodo. <https://doi.org/10.5281/zenodo.17769857>
- [112] Rahman M. (2025). Design and Implementation of a Data-Driven Financial Risk Management System for U.S. SMEs Using Federated Learning and Privacy-Preserving AI Techniques. In IJSRED - International Journal of Scientific Research and Engineering Development (Vol. 8, Number 6, pp. 1041–1052). Zenodo. <https://doi.org/10.5281/zenodo.17769869>
- [113] Alam, M. S. (2025). Real-Time Predictive Analytics for Factory Bottleneck Detection Using Edge-Based IIoT Sensors and Machine Learning. In IJSRED - International Journal of Scientific Research and Engineering Development (Vol. 8, Number 6, pp. 1053–1064). Zenodo. <https://doi.org/10.5281/zenodo.17769890>
- [114] Habiba, U., & Musarrat, R. (2025). Student-centered pedagogy in ESL: Shifting from teacher-led to learner-led classrooms. International Journal of Science and Innovation Engineering, 2(11), 1018–1036. <https://doi.org/10.70849/IJSCI02112025110>
- [115] Zaidi, S. K. A. (2025). Smart sensor integration for energy-efficient avionics maintenance operations. International Journal of Science and Innovation Engineering, 2(11), 243–261. <https://doi.org/10.70849/IJSCI02112025026>
- [116] Farooq, H. (2025). Cross-platform backup and disaster recovery automation in hybrid clouds. International Journal of Science and Innovation Engineering, 2(11), 220–242. <https://doi.org/10.70849/IJSCI02112025025>
- [117] Farooq, H. (2025). Resource utilization analytics dashboard for cloud infrastructure management. World Journal of Advanced Engineering Technology and Sciences, 17(02), 141–154. <https://doi.org/10.30574/wjaets.2025.17.2.1458>
- [118] Saeed, H. N. (2025). Hybrid perovskite–CIGS solar cells with machine learning-driven performance prediction. International Journal of Science and Innovation Engineering, 2(11), 262–280. <https://doi.org/10.70849/IJSCI02112025027>
- [119] Akter, E. (2025). Community-based disaster risk reduction through infrastructure planning. International Journal of Science and Innovation Engineering, 2(11), 1104–1124. <https://doi.org/10.70849/IJSCI02112025117>
- [120] Akter, E. (2025). Green project management framework for infrastructure development. International Journal of Science and Innovation Engineering, 2(11), 1125–1144. <https://doi.org/10.70849/IJSCI02112025118>
- [121] Shoag, M. (2025). Integration of lean construction and digital tools for façade project efficiency. International Journal of Science and Innovation Engineering, 2(11), 1145–1164. <https://doi.org/10.70849/IJSCI02112025119>
- [122] Akter, E. (2025). Structural Analysis of Low-Cost Bridges Using Sustainable Reinforcement Materials. In IJSRED - International Journal of Scientific Research and Engineering Development (Vol. 8, Number 6, pp. 911–921). Zenodo. <https://doi.org/10.5281/zenodo.17769637>
- [123] Razaq, A. (2025). Optimization of power distribution networks using smart grid technology. World Journal of Advanced Engineering Technology and Sciences, 17(03), 129–146. <https://doi.org/10.30574/wjaets.2025.17.3.1490>
- [124] Zaman, M. T. (2025). Enhancing grid resilience through DMR trunking communication systems. World Journal of Advanced Engineering Technology and Sciences, 17(03), 197–212. <https://doi.org/10.30574/wjaets.2025.17.3.1551>
- [125] Nabil, S. H. (2025). Enhancing wind and solar power forecasting in smart grids using a hybrid CNN-LSTM model for improved grid stability and renewable energy integration. World Journal of Advanced Engineering Technology and Sciences, 17(03), 213–226. <https://doi.org/10.30574/wjaets.2025.17.3.155>
- [126] Nahar, S. (2025). Optimizing HR management in smart pharmaceutical manufacturing through IIoT and MIS integration. World Journal of Advanced Engineering Technology and Sciences, 17(03), 240–252. <https://doi.org/10.30574/wjaets.2025.17.3.1554>
- [127] Islam, S. (2025). IPSC-derived cardiac organoids: Modeling heart disease mechanism and advancing regenerative therapies. World Journal of Advanced Engineering Technology and Sciences, 17(03), 227–239. <https://doi.org/10.30574/wjaets.2025.17.3.1553>

[128] Shoag, M. (2025). Structural load distribution and failure analysis in curtain wall systems. IJSRED - International Journal of Scientific Research and Engineering Development, 8(6), 2117–2128. Zenodo. <https://doi.org/10.5281/zenodo.17926722>

[129] Hasan, E. (2025). Machine learning-based KPI forecasting for finance and operations teams. IJSRED - International Journal of Scientific Research and Engineering Development, 8(6), 2139–2149. Zenodo. <https://doi.org/10.5281/zenodo.17926746>

[130] Hasan, E. (2025). SQL-driven data quality optimization in multi-source enterprise dashboards. IJSRED - International Journal of Scientific Research and Engineering Development, 8(6), 2150–2160. Zenodo. <https://doi.org/10.5281/zenodo.17926758>

[131] Hasan, E. (2025). Optimizing SAP-centric financial workloads with AI-enhanced CloudOps in virtualized data centers. IJSRED - International Journal of Scientific Research and Engineering Development, 8(6), 2252–2264. Zenodo. <https://doi.org/10.5281/zenodo.17926855>

[132] Karim, M. A. (2025). An IoT-enabled exoskeleton architecture for mobility rehabilitation derived from the ExoLimb methodological framework. IJSRED - International Journal of Scientific Research and Engineering Development, 8(6), 2265–2277. Zenodo. <https://doi.org/10.5281/zenodo.17926861>

[133] Akter, E., Ria, S. J., Khan, M. I., & Shoag, M. D. (2025). Smart & sustainable construction governance for climate-resilient cities. IJSRED - International Journal of Scientific Research and Engineering Development, 8(6), 2278–2291. Zenodo. <https://doi.org/10.5281/zenodo.17926875>

[134] Zaman, S. U. (2025). Enhancing security in cloud-based IAM systems using real-time anomaly detection. IJSRED - International Journal of Scientific Research and Engineering Development, 8(6), 2292–2304. Zenodo. <https://doi.org/10.5281/zenodo.17926883>

[135] Hossain, M. T. (2025). Data-driven optimization of apparel supply chain to reduce lead time and improve on-time delivery. World Journal of Advanced Engineering Technology and Sciences, 17(03), 263–277. <https://doi.org/10.30574/wjaets.2025.17.3.1556>

[136] Rahman, F. (2025). Advanced statistical models for forecasting energy prices. Global Journal of Engineering and Technology Advances, 25(03), 168–182. <https://doi.org/10.30574/gjeta.2025.25.3.0350>

[137] Karim, F. M. Z. (2025). Integrating quality management systems to strengthen U.S. export-oriented production. Global Journal of Engineering and Technology Advances, 25(03), 183–198. <https://doi.org/10.30574/gjeta.2025.25.3.0351>

[138] Fazle, A. B. (2025). AI-driven predictive maintenance and process optimization in manufacturing systems using machine learning and sensor analytics. Global Journal of Engineering and Technology Advances, 25(03), 153–167. <https://doi.org/10.30574/gjeta.2025.25.3.0349>

[139] Rahman, F. (2025). Data science in power system risk assessment and management. World Journal of Advanced Engineering Technology and Sciences, 17(03), 295–311. <https://doi.org/10.30574/wjaets.2025.17.3.1560>

[140] Rahman, M. (2025). Predictive maintenance of electric vehicle components using IoT sensors. World Journal of Advanced Engineering Technology and Sciences, 17(03), 312–327. <https://doi.org/10.30574/wjaets.2025.17.3.1557>

[141] Hossain, M. T. (2025). Cost negotiation strategies and their impact on profitability in fashion sourcing: A quantitative analysis. Global Journal of Engineering and Technology Advances, 25(03), 136–152. <https://doi.org/10.30574/gjeta.2025.25.3.0348>

[142] Jasem, M. M. H. (2025, December 19). An AI-driven system health dashboard prototype for predictive maintenance and infrastructure resilience. Authorea. <https://doi.org/10.22541/au.176617579.97570024/v1>

[143] uz Zaman, M. T. (2025). Photonics-based fault detection and monitoring in energy metering systems. IJSRED - International Journal of Scientific Research and Engineering Development, 8(6), 2359–2371. Zenodo. <https://doi.org/10.5281/zenodo.18074355>

[144] Shoag, M. D., Khan, M. I., Ria, S. J., & Akter, E. (2025). AI-based risk prediction and quality assurance in mega-infrastructure projects. IJSRED - International Journal of Scientific Research and Engineering Development, 8(6), 2324–2336. Zenodo. <https://doi.org/10.5281/zenodo.18074336>

[145] Haque, S. (2025). The impact of automation on accounting practices. IJSRED - International Journal of Scientific Research and Engineering Development, 8(6), 2312–2323. Zenodo. <https://doi.org/10.5281/zenodo.18074324>

- [146] Fontenot, D., Ahmed, F., & Chy, K. S. (2024). ChatGPT: What is it? How does it work? Can it be a teaching tool for an introductory programming course in higher education? *Southwestern Business Administration Journal*, 21(1), Article 2. <https://digitalscholarship.tsu.edu/sbaj/vol21/iss1/2>
- [147] Ahmed, F., & Rahaman, A. (2025). AI-driven predictive modeling of Bangladesh economic trends: Highlighting financial crime & fraud (pp. 533–542). IKSAD Congress. https://www.iksadkongre.com/_files/ugd/614b1f_4195d955f81e401a9bdbf7565b2f9948.pdf
- [148] Rahaman, A., Siddiquee, S. F., Chowdhury, J., Ahmed, R., Abrar, S., Bhuiyan, T., & Ahmed, F. (2025). Enhancing climate resilience in Rohingya refugee camps: A comprehensive strategy for sustainable disaster preparedness. *Environment and Ecology Research*, 13(6), 755–767. <https://doi.org/10.13189/eer.2025.130601>
- [149] Chowdhury, S., et al. (2024). Students' perception of using AI tools as a research work or coursework assistant. *Middle East Research Journal of Economics and Management*, 4(6), X. <https://doi.org/10.36348/merjem.2024.v04i06.00X>
- [150] Rahaman, A., Zaman, T. S., & Ahmed, F. (2025). Digital pathways to women's empowerment: Use of Facebook, Instagram, WhatsApp, and e-commerce by women entrepreneurs in Bangladesh. In *Proceedings of the 15th International "Communication in New World" Congress* (pp. 700–709).