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Abstract

This study develops a systematic approach to extract multivariate polynomial models from neural networks. A neural
network is trained using a random dataset generated using a bivariate polynomial. Numerical values obtained from
simulating the neural network are used to estimate the partial derivatives with respect to each input variable with
increasing order of partial differentiation until the derivatives become zero. In that way the highest power required in
the model is identified for each input variable. A general form of the multivariate polynomial model is written with all
possible combinations of powers of the input variables. An appropriate set of corresponding partial differential
operators is identified so as to produce a system of partial differential equations from the general polynomial model.
The corresponding partial derivatives are estimated numerically and substituted into the equations. On solving the
equations, it was found that the method correctly estimates the appropriate parameters for the multivariate polynomial
model.
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1. Introduction

The future of artificial intelligence necessitates machines that can infer the underlying nature of systems from
incomplete information. Trained neural networks replicate the outputs of a system according to specified input
conditions. The ability to explicitly infer the intricate structure and operations of the system from a given trained neural
network presents priceless capabilities in understanding, tweaking and potentially managing the systems under study.
Neural network model extraction has been studied as a system analysis tool and also as a hacking technique for
understanding target neural network systems [1]. A recent study [2] developed a technique for neural network
multivariate model extraction. Their study was based on variable neutralisation, where terms dependent on absent
(values set to zero) variables had no effect, that is zero value in the model. Univariate functional terms were isolated by
setting other variables to zero, and then modelling the resulting response on the remaining variable. Neural networks
are trained from empirical data [3]. Inputs at each neuron in the hidden or output layer of a neural network are a linear
combination of values from preceding neurons. Some choices of activation functions, such as the sigmoid and hyperbolic
tangent functions, are made to prevent the overall output of the neural network from becoming a linear combination of
the inputs at each neuron [2]. This prevents the neural network from only being able to appropriately model linear
functions. The resulting models become black box models (models that replicate the outputs of a system but do not
explicitly show the underlying functions governing the system) when systems are modelled based on estimation of
weights and biases.
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Some researches choose activation functions that maintain the linearity of the overall neural network model such as the
rectified linear unit (ReLu). This results in simplified model extraction where the final weights and biases are used to
write down neural network models in analytic form. Ranasinghe et al [4] developed a growing interpretable neural
network model for extracting polynomial models as Laurent series. The model succeeded in 87% of their test samples
and outperformed symbolic regression alternatives in selected tasks. Their strategy was to train a white box neural
network model where the weights were explicit powers in the output. After training the neural network they would
then read the final weights and use them to obtain analytic form models.

Kolmogorov-Arnold equations decompose multivariate functions into polynomials with weighted product terms [5]
whose parameters can be estimated using multivariate regression analysis. Guo et al [6] built upon this principle and
developed a white box linear activation neural network model in which hidden neuron inputs were weighted products
instead of the usual weighted sums. The outputs of the model could be expressed analytically using the visible final
weights. Liu et al [7] proposed the name Kolmogorov-Arnold Networks (KAN) for this kind of neural network. Danieli
and Granot [8] developed a hacking technique for learning ReLu based neural network architectures. Some hack attacks
seek exact replicas of target systems, others develop only an approximation that generates similar outputs [9]. Canales-
Martinez et al [10] developed a white box neural network modelling technique whose goal was to reduce computer
system processing resource usage. The choice of activation function, ReLu, allowed the final weights and biases to be
extracted from the neural network so as to express the model in analytic form.

Morala et al [11] developed a method of neural network model extraction, where activation functions were expressed
as Taylor series expansions. A single hidden layer was configured. The weights of a trained neural network would then
be inserted in the model which was a combination of Taylor series expansions, that was then simplified into a
polynomial regression model. Carlini et al [12] compared neural network model extraction to cryptocurrency mining,
where computational resources are invested to derive value. They developed a hacking technique that copied target
neural network systems. The technique exploited weaknesses in the white box nature of ReLu based neural network
models by analysing outputs from strategically selected input conditions.

Eskandarian et al [13] developed a method for extracting correlated time series models from neural networks.
Recurrent neural networks are a popular implementation for modelling time series [14], more efficiently than
traditional correlation analysis [15]. These are, however, black box models when the choice of activation are sigmoid or
hyperbolic tangents. Chrysos et al [16] proposed polynomial neural networks (PNN) where activation functions are
polynomials in place of the non-linear sigmoid and hyperbolic tangents. PNNs are more easily interpreted white box
models. Tang et al [17] used a PNN to identify parameters for time series models.

Aim
To develop a systematic implementation for extracting multivariate polynomial models from neural networks.

Objectives

= Develop a neural network analysis program that identifies the appropriate order of multivariate polynomial
that fits the model,

= Develop a technique for the program to identify appropriate coefficients for the terms of various order in the
polynomial,

=  Validate and evaluate the performance of the developed program.

2. Methodology

2.1. Differential analysis

In a multivariate polynomial, partial derivatives can be chosen so as to cause specific terms to vanish. By evaluating a
set of partial derivatives at strategic input data values, a system of linear equations can be obtained whose variables are
the coefficients of the polynomial model. Solving the resulting system of equations then obtains the desired coefficients
of the polynomial model.

2.2. Polynomial model extraction

This study develops a technique for extracting multivariate polynomial models from trained neural networks. The
technique is outlined in 5 steps:
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Obtain the trained neural network whose polynomial model is to be extracted,

Identify the appropriate highest power in the model for each variable,

Obtain the appropriate set of partial differential operations from the identified highest powers,
Generate the corresponding system of linear equations at strategic input values,

Solve the system of equations to identify the polynomial model coefficients.

Obtaining a trained neural network

A feedforward neural network is trained using a data set simulated from a multivariate polynomial. For illustration, the
bivariate polynomial model will be used in this study. MATLAB is used to simulate 100 000 data points in the range
[—10,10] for both input variables. The neural network is configured with three hidden layers of 10 neurons each and
one output neuron, [2 10 10 10 1].

2.3. Identifying highest powers for each variable

Central difference partial differentiation of increasing order is implemented for each input variable until the partial
derivative is zero. This is the point after the partial derivative yielded a constant. The number of differential iterations
needed to obtain a zero partial derivative is used to identify the highest power of each variable in the polynomial model.

All possible combinations of the input variables are represented in the multivariate polynomial regression model, that
is, terms with all possible powers of each variable from zero to the highest. In the bivariate model case where the highest
power is two for each variable, the model is represented in Equation (1).

R=ko+kix+kyy+kaxy+ kux?y + ksxy? + kgx?y?. @8]

2.4. Exhaustive partial differential operations

The set of partial differential operators consists of all possible combinations of partial differential operations that result
in non-zero partial derivatives. For the bivariate polynomial case, these are:

fx' fy' fxyr fxxyr fxyy' and fxxyy-

2.5. Generating the system of linear equations

Executing all the partial differential operations on the model results in six additional equations. The operations are
executed in MATLAB code [18].

ke + kix + ky +  kyxy 4+ kx?y 4+ ksxy? 4+ kgx%y? = R (2)
kq +  kyy 4+ 2kyxy  + ksy?  + 2kgxy? = R, (3)
ky +  kyx +  kwx? + 2kexy  + 2kgx?y = R, (4)
ks +  2kyx +  2ksy  +  4dkexy = Ry, (5
2k4 + 4k6y = Rxxy (6)
2k5 + 4k6x = nyy [7)
4k = Ruxyy (8)
Evaluating all equations at x = 1,y = 1, the system can be represented in the augmented matrix (9).
1 1 1 1 1 1 1 R
0 1 0 1 2 1 2 R,
0 0 1 1 1 2 2 R,
0 0 0 1 2 2 4 Ry 9)
0 0 0 0 2 0 4 Raxy
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0 0 0 0 0 2 4 Ryyy

0 0 0 0 0 0 4 Ryxyy

2.6. Solving the system of equations

The system of linear equations represented by the augmented matrix (9) are solved using elementary row operations.
These are executed in programming source code using upper triangular matrix neutralisation in MATLAB [19].

3. Analysis

3.1. Programming environment

The implementation was developed and tested in the MATLAB online [20] programming environment.
Structure of the section
The analysis in this section is outlined in five steps:

Generating a trained neural network,

Systematically identifying the highest powers for each variable present,

Setting up the general form of the polynomial and corresponding partial differential operations,
Generating the corresponding system of linear equations,

Solving the linear equations to obtain the model coefficients.

SRl

3.2. Generating a trained neural network

For testing purposes, a neural network was trained using the bivariate polynomial in equation (10):
R =5-2x+x%+3y? + 3y — 4xy + 2x%y + 4xy? + 2x%y? + 4y3 — 2xy3 + x?%y3. (10)

The source code snippet in Figure 1 simulated the generation of 10 000 random data points in the range [—2.5,2.5], for
each of the two variables, thatis: —2.5 < x < 2.5 and —25<y<25.

A feedforward neural network was then trained with two input layer neurons (for the input variables x and y), three
hidden layers with ten neurons each, and an output layer with one output neuron (for the response variable R). The
sigmoid activation function was used for the hidden layer neurons and the purelin activation function was used at the
output layer.

1

1-e~%’

Sigmoid: f(x) =

Purelin: f(x) = x. (11)

3.3. Identifying the appropriate highest power for each input variable

The trained neural network was simulated in the neighbourhood of (x,y) = (1,1). Using a step size of h = 0.25, the
neural network output was numerically partially differentiated w.r.t. each input variable with increasing order of
partial differentiation (using the MATLAB code in Figure 2) until the result became zero (zero occurs when a constant
is differentiated). Thus, the highest power present for each variable was identified.

From Figure 3, the partial derivatives w.r.t. x became zero from the third partial derivative. The partial derivatives w.r.t.

y became zero from the fourth partial derivative. This indicated that the highest power of x was 2 and the highest power
of y was 3.
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% Setting umber of data points
npoints=10000;

%Generation of random x and y
x =rand(npoints,1) *5.0-2.5; 04-2.5<=x<=2.5
y = rand(npoints,1) *5.0-2.5; 04-2.5<=x<=25

9%Calculation of response R (x, y)
R=b-2*x+ XM 2+3%Y.0 2+ 3*y-4% . *y+ 2*y * e A 2+ 4% My A 24 2% (0 2). (v 0 2) +4% (v 3) - 2% % (v 3) + (= M2). *(vn3);

% Constituting the input vector
in = [xy];

% Setting up the neural network
hidden = [10 10 10]; %hidden layers with 10 neurons each
net = feedforwardnet(hidden);

o6 Setting sigmoid activation in hidden layers
fori=1:length(hidden)

net. layers{i}. transferFm = "tansig’;
end

9%Setting activation function for output layer
net. layers{end}. ransferFen = "purelin’;

%Transposing variables
in=in";
response=R’;

%Training the neural network
net = train (net, in, response);

Figure 1 MATLAB code snippet for simulating 10 000 random data points and training a neural network

3.4. General form of the model and corresponding partial differential equations

The highest powers of x and y were detected to be 2 and 3 respectively. The general form of the polynomial with all

possible combinations of powers of x from 0 to 2 and powers of y from 0 to 3 was written down in equation (12).

R=ko+kix+kyx?+ kyy + kaxy + ksx?y + kgy? + koxy? + kgx?y? + koy® + kigxy® + ki1 x?y3. (12)

The corresponding set of partial differential operations that systematically reduce the polynomial were written in (13).

fx' fxx' fy' fxy' fxxy' fyy' fxyy' fxxyy' fyyy' fxyyy: fxxyyy-
(13)
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%Defining function f to generate outputs by simulating the trained neural network
f=@ (x, y) net ([xy]");

% setting point (x, y) = (1, 1) and step size h = 8.25
x0=1;

ye=1;

h=0.25;

#Calculating first partial derivatives using central difference formulae
fx = (f (x@ + h, y@) - £ (x@ - h, yB)) / (2 * h)
fy = (f (x@, y@ + h) - £ (x@, y® - h)) / (2 * h)

#%Calculating second partial derivatives
fxx = (f (x@ + 2*h, yB) - 2%f (x@, y0) + f (x@ - 2*h, y0)) / (4*h"2)
fyy = (f (x@, y8 + 2*h) - 2*f (x@, y@) + ¥ (x@, y@ - 2*h)) / (4*h"2)

#Calculating third partial derivatives

fxxx = (f (x@ + 4%h, y@) - 2%f (x@ + 2%h, y@) + 2¥f(x0 - 2*h, y@) - f(x@ - 4%h, y0)) /
(16*h"3)

fyyy = (f (x@, y@ + 4%h) - 2*%f (x0, y@ + 2%*h) + 2¥f(x@, y@ - 2¥h) - f(x0, y0 - 4*h)) /
(16*h"3)

%Calculating third partial derivatives
froooe = (F(x@ + 4*h, y@) - A*f(x@ + 2*h, y@) + 6*F(x0, y@) - 4*f(x@ - 2*h, y@) + f(x0 - 4%*h,
v@)) / (16*h"~4)

Figure 2 MATLAB code used to calculate partial derivatives from the 15t to 4th order w.r.t. x and y

fx:
7.9996
f},’ =
28.1888
fxx:
11.9957
f},’}' =
36.0038

17.9948

0.0743
fyyyy =

-0.0857

Figure 3 MATLAB output showing partial derivatives from the 1st to 4th order w.r.t. x and y.

3.5. Generating the corresponding system of linear equations

The system of equations (14) - (25) was generated by executing the partial derivative operators in (13)
corresponding equation (12) [21].

ko4 kix + kpx? + ksy + kyxy + ksx%y + key? + kyxy? + kgx?y? 4+ koy® + kioxy® + kyx?y3 = R
ky +2k,x + kyy + 2ksxy + k,y? + 2kgxy? + kyoy® + 2k xy® = R,

2k, + 2kgy + 2kgy? + 2k ¥ = Ry

ky + kyx + ksx® + 2key + 2koxy + 2kgx?y + 2koy* + 3kyoxy? + 3k;1x*y* = R,

k, + 2ksx + 2k,;y + 4kgxy + 3kyy* + 6ki1xy® = Ry,

on the

(14)
(15)
(16)
(17)
(18)
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2ks + 4dkgy + 6ki1y? = Ryyy (19)
2k + 2k;x + 2kgx* + 4kgy + 6kigxy + 6ky;x?y = R,, (20)

2k, + dkgx + + 6kyy + 12k;1xy = Ry (21)

4kg + 12k11y = Ryxyy (22)

4ky + 6kiox + 6kyx? = Ry, (23)

6kip + 12k;;x =Ry, (24)

12kll =Rxxyyy (25)

When evaluated at (x,y) = (1,1), the system of equations can be represented in the augmented matrix (26). The value
of R and the partial derivatives of R on the right side of the augmented matrix were calculated numerically using
MATLAB [18] (Figure 2).

1 1 1 1 1 1 1 1 1 1 1 1 (17.0003
0 1 2 0 1 2 0 1 2 0 1 2 79996
0 0 2 0 0 2 0 0 2 0 0 2 [11.9957
0 0 0 1 1 1 2 2 2 2 3 3 [28.1888
0 0 0 0 1 2 0 2 4 0 3 6 [15.9929
0 0 0 0 0 2 0 0 4 0 0 6 |18.1144 (26)
0 0 0 0 0 0 2 2 2 4 6 6 [36.0038
0 0 0 0 0 0 0 2 4 0 6 12 16.0033
0 0 0 0 0 0 0 0 4 0 0 12 19.9633
0 0 0 0 0 0 0 0 0 4 6 6 [17.9948
0 0 0 0 0 0 0 0 0 0 6 12 }0.0050
L 0 0 0 0 0 0 0 0 0 0 0 12 12.0754 |

3.6. Solving the system of equations to get model coefficients

The constant and coefficients for the model, (k, — k1) where obtained by solving the system represented in augmented
matrix (26) by row reduction. The results produced the values of k, to k.

Table 1 Resulting estimates of model constants.

Constan ko ky k, ks k, ks ke k; kg kqy kio kiq
t

Estimat

ed value 4.7303| —1.8412| 0.9252| 3.2898| —4.2017| 2.0944| 2.9723| 4.0602| 1.9720| 4.0063| —2.0134| 1.0063

4. Discussion

When rounded to one significant figure, the resulting constants in Table 1 were precisely equal to the constants in
equation (10) that were used to generate the random data points. This demonstrated that the model extraction strategy
was able to estimate the correct model with high accuracy. The method can be extended to an arbitrary number of input
variables with arbitrary polynomial degrees. It can be applied to a wide range of problems including situations were
polynomial models need to be retrieved from trained neural networks and scenarios where the model can be estimated
using a multivariate polynomial.

5. Conclusion

The study successfully developed a method and MATLAB implementation for extracting multivariate polynomial
models from trained neural networks. The analysis demonstrated that the method produces model estimates of high
accuracy. This widens the scope of capabilities in neural network research. Extracting analytic models from neural
networks allows researchers to study the underlying operations controlling a system. Useful insights can be drawn and
in some cases can help identify the nature and identify of the influences governing the system. Further research may be
done to develop ways of extracting non-polynomial models from neural networks. Automating extraction methods
helps improve the understanding capabilities of neural network systems in the pursuit of artificial general intelligence.
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