® —

WIAE

World Journal of Advanced Engineering Technology and Sciences W,
cISSN: 2582-8266 Avaned
Cross Ref DOI: 10.30574/wjaets s e
WJAETS Journal homepage: https://wjaets.com/
(REVIEW ARTICLE) W) Check for updates

Leveraging Artificial Intelligence to bridge execution gaps in SAFe®-Scaled Agile
based Programs

Amar Gurajapu ”

AT&T, New Jersey, United States.

World Journal of Advanced Engineering Technology and Sciences, 2026, 18(01), 001-006

Publication history: Received on 24 November 2025; revised on 29 December 2025; accepted on 31 December 2025

Article DOI: https://doi.org/10.30574 /wjaets.2026.18.1.1585

Abstract

Large enterprises adopting the Scaled Agile Framework (SAFe®) often face challenges in Program Increment (PI)
planning accuracy, objective backlog prioritization, timely risk detection, and manual compliance verification. We
surveyed 12 teams across 10 Agile Release Trains (ARTSs) to quantify these gaps. To address them, we propose an Al-
augmented DevOps pipeline—built on common Infrastructure as Code tools—to integrate predictive analytics, natural
language processing, reinforcement learning, and anomaly detection. Experimental results on enterprise projects show
a 35 % reduction in Pl-velocity forecasting error, 20 % faster backlog lead time, and 62.5 % quicker risk detection.

Keywords: Agile Release Train, Scaled Agile Framework, Program Increment, Velocity Predictor, Backlog Prioritizer,
Compliance Monitor, Deep Q-Network

1. Introduction

Scaled Agile Framework (SAFe) structures large-scale agile delivery via ARTs and Program Increments. Despite its
benefits, survey feedback from 12 agile teams reveals:

PI commitments deviate by ~20 % on average

Backlog prioritization scores average 3.8/5 for alignment with business value
Integration risks surface ~41 hours into each PI

Compliance reviews consume ~13.6 hours per PI

Al can automate forecasting, drive objective prioritization, optimize CI/CD resources, and flag policy deviations in real
time.

2. Survey and analysis

The research and approach is based on the survey and historical data available from multiple teams who have been
executing programs on SAFe for at least one year or more.

2.1. Survey Input

e Customer Input - 12 teams across 10 ARTs. Most of them are critical in nature.
o SAFe execution - Every team has more than one year of experience. Some of the teams have been executing
for 3 years.

* Corresponding author: Amar Gurajapu.

Copyright © 2026 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0.

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://www.wjaets.com/
https://doi.org/10.30574/wjaets.2026.18.1.1585
https://crossmark.crossref.org/dialog/?doi=10.30574/wjaets.2026.18.1.1585&domain=pdf

World Journal of Advanced Engineering Technology and Sciences, 2026, 18(01), 001-006

e Instrument - 8-question online survey covering PI accuracy, backlog alignment, risk latency, compliance
effort
e Response Rate - 100 %

The survey design is built upon following inputs

By what percentage did your actual PI velocity deviate from your initial commitment to the last Program
Increment? - Response: Numeric (%)

How well did your backlog prioritization align with stakeholder/business value? - Response: Likert 1 = “Not
aligned” ... 5 = “Perfectly aligned”

How long after PI starts were integration or end-to-end risks typically detected? - Response: Numeric (hours)

How many hours per PI does your team spend on manual compliance, policy checks, or audit-readiness tasks?
- Response: Numeric (hours)

How easy is it to gather required metrics (velocity, test coverage, security) for audits with your current
pipeline? - Response: Likert 1 = “Very difficult” ... 5 = “Very easy”

How often do manual compliance or policy-review steps block your CI/CD pipeline? - Response: Likert 1 =
“Never” ... 5 = “Always”

How confident are you in your PI-planning estimates before execution begins? - Response: Likert 1 = “Very low”
... 5 =“Very high”

On average, how many times per PI does your team have to reprioritize backlog items due to misalignment or
new information? - Response: Numeric (times per PI)

2.2. Aggregated Results

Pl Deviation | Backlog Alignment
Team (%) (1-5) Risk Detection Delay (hrs) | Compliance Overhead (hrs)
T1 22 4 36 15
T2 18 8 42 12
T3 25 5] 48 16
T4 19 4 2B 13
15 21 4 44 14
T6 17 B 37 11
T7 23 5] 50 17
T8 20 4 41 14
T9 16 B 38 12
T10 24 5] 46 16
T11 18 4 40 13
T12 19 4 43 14
Average 20.2 3.8 41.3 13.6

Figure 1 Aggregation from questions 1-4

Question Average Response
Ease of gathering metrics (1 = Very difficult ... 5 = Very easy) 2.7
Frequency manual-review blocks CI/CD (1 = Never ... 5 = Always) 3.3
Confidence in Pl planning (1 = Very low ... 5 = Very high) 2.9
Mid-P1 backlog reprioritizations (times per Pl) 2.1

Figure 2 Aggregation from questions 5-8

2.3. Key Insights

Pl variance (~20 %) undermines predictability
Subjective scoring (3.8/5) delays alignment

Late risk detection (~41 hrs) increases rework
Manual compliance (~13.6 hrs) reduces capacity

The above analysis justifies the need for Al-driven pipeline for accuracy, objectivity, and automation.

3. Gaps in safe execution

While SAFe provides structure for enterprise level agile, four recurring pain points considered for the survey do
undermine its effectiveness.

World Journal of Advanced Engineering Technology and Sciences, 2026, 18(01), 001-006

3.1. PI-Planning Inaccuracy

Teams typically forecast future velocity by extrapolating past delivery, but this “static velocity” approach fails to account
for many factors

Changing team composition (new hires or departures)

Often the competent resources are shared across programs though not recommended

Varying story complexity and technical debt

External dependencies (e.g. other ARTs or shared services). Consequences include over-commitment (leading
to spill-over stories) or under-commitment.

3.2. Backlog Prioritization Subjectivity

Business value scoring often relies on individual judgment during PI-Planning workshops. Factors such as regulatory
risk, customer impact, and technical effort may be weighed inconsistently across teams. This subjectivity can cause:

e Misaligned priorities between business stakeholders and development teams
e Frequent mid-PI reordering, disrupting sprint cadences
e Inadequate focus on critical compliance or security work

3.3. Risk Detection Latency

Integration and end-to-end risks often surface in later phases with an average 1-2 iterations into the PI. Without
automated risk indicators, teams rely on manual test cycles and ad-hoc tests resulting in:

e Large rework batches near PI end

Additional defects

Bottlenecks at shared test or staging environments
Delayed feedback loops to product owners

Impact to schedule

3.4. Compliance Overhead

Manual gathering of audit metrics (security scans, configuration settings, traceability) typically consumes 10-15 hours
per PI. This overhead:

e Diverts engineering capacity from feature delivery
e Introducing human error into compliance reports
e Increases risk of audit failures and potential penalties

4. Al augmented approach

To close these gaps, we propose embedding four Al modules and taking it further, it can be integrated into a standard
DevOps pipeline.

4.1. Velocity Predictor

Technique - Gradient Boosting Regressor [5]

Inputs - team size, historical velocity, story complexity, technical-debt metrics
Output - forecasted PI velocity with confidence intervals

Benefit - adjusts automatically for team changes and evolving codebase

4.2. Backlog Prioritizer

Technique - BERT-based text classifier[4] + Business Value Index (BVI)

Inputs - backlog item description, stakeholder tags, historical risk/effort scores
Output - priority ranking = 0.5-StrategicFit + 0.3-RiskScore + 0.2-EffortScore
Benefit - consistent, transparent prioritization aligned to business goals

World Journal of Advanced Engineering Technology and Sciences, 2026, 18(01), 001-006

4.3. CI/CD Resource Allocator

Technique - Deep Q-Network (DQN) [3]

State - queue length, average test time, recent failure rate

Actions - allocate low/medium/high compute resources to build/test stages
Reward - -(pipeline lead time + 5xfailure rate)

Benefit - dynamically optimizes throughput and reliability

4.4. Compliance Monitor

e Technique - Autoencoder for log-based anomaly detection

e Inputs - normalized deployment logs, configuration snapshots

e Qutput - real-time alerts when reconstruction error exceeds threshold
e Benefit - early detection of misconfigurations, policy violations

4.5. Integration Flow

Survey & Pl History =~ ——— Preprocessing ———= Gradient Boosting Training —— Velocity Predictor APl (—_

N

Backlog Items » Text Preprocessing » BERT Fine-Tune - » Priority + BVI — \

.
Dashboards & Alerting

7

CI/CD Metrics | + RL Environment » DQN Agent » Resource Allocator — /
s/
/
/
Ve
e
Deployment Logs ——» Autoencoder —————» Anomaly Alerts ——

Figure 3 End to end flow (extended version)

The Pre-PI Planning phase invokes Velocity Predictor REST API to seed planning tools. These tools can be custom
developed or existing tools. This follows Backlog Grooming where we invoke Prioritizer batch job to assign Business
value scores from the backlog system. Once integrated into CI/CD process, the DQN agent monitors queues and scales
runners via laC. Post-Deployment, the Compliance Monitor streams anomalies to alert destinations.

5. Methodology and evaluation

5.1. Data Sources

e PI-History Dataset - for each Program Increment, we collect team_size, avg_story_complexity, tech_debt_score,
actual_velocity (story points delivered)

e Survey Dataset - raw responses from all teams (Q1-Q8)

e CI/CD Logs - Deployment metrics like queue lengths, test durations, failure rates

o Deployment Logs - configuration snapshots for anomaly

5.2. Preprocessing
e Join Pl-history with survey by ART/team
e Fill missing numerical fields (median imputation) and normalize to [0,1]

5.3. Train/Test Splits

e Predictive Model (Gradient Boosting) for velocity predictor - 80 % of PlIs for training, 20 % for test
e Backlog Prioritizer (BERT- Bidirectional Encoder Representations from Transformers) - 90 % of labeled items
for fine-tune, 10 % hold-out.

World Journal of Advanced Engineering Technology and Sciences, 2026, 18(01), 001-006

5.4. Evaluation Metrics

Forecast Error - Mean Absolute Error (MAE) = mean(|predicted_velocity - actual_velocity|)
Backlog Lead Time - avg days from item creation to completion

Defect Escape Rate - % defects found post-PI versus during PI

Risk Detection Latency - avg hours until first integration-error is flagged

Compliance Overhead - avg hours spent on manual policy checks

5.5. Baseline vs. Al-Augmented Comparison
e Baseline uses static velocity, manual backlog scoring, fixed CI/CD sizing, manual compliance scripts
e Al-Augmented runs the four modules in the same pipeline and measures identical metrics

5.6. Computing Key Metrics

The evaluation considers survey with 5 PIs from 2 release trains. We have considered key metrics like velocity(MAE),
backlog lead time, defect escape rate, risk-detection latency.

Metric Baseline |Al-Augmented [Improvement
Pl velocity MAE (pts) 12.5 8.1 35% |
Backlog lead time (days) 14.2 11.3 20% |
Defect escape rate (%) 8 6 25% |
Risk detection time (hrs) 48 18 62.5% |

Figure 4 Evaluation

Survey insights and experiments confirm that Al-driven modules deliver data-backed PI forecasts, objective
prioritization, proactive scaling, and real-time compliance checks, fitting modern DevOps and Infrastructure as Code
practices.

6. Futuristic directions

Future of ML driven Agile development can include following recommendations [2]

6.1. Autonomous Al Agents

Al-tool autonomously proposing sprint backlogs and alert anomalies.

6.2. Integration with DevOps Pipelines

Linking sprint forecasts with deployment metrics

6.3. Personalized Workload Predictions

Tailoring commitments per developer skillset and past performance

6.4. Hybrid Human-Al Planning

Combining data-driven forecasts with human judgement for balanced decisions

6.5. Quantum-Enhanced Forecasting

Using quantum computing for faster, more complex scenario simulations

7. Conclusion

An Al-augmented DevOps pipeline addresses planning, prioritization, risk, and compliance gaps in SAFe execution.
Future directions include federated learning across multiple ARTSs, causal root-cause analysis, and seamless GitOps
integration.

World Journal of Advanced Engineering Technology and Sciences, 2026, 18(01), 001-006

Compliance with ethical standards

Acknowledgments

Thanks to Karla Kimble & Ayush Kumar for providing valuable support during the research phase.

Disclosure of conflict of interest

No conflict of interest to be disclosed.

References

[1]

[2]

J. Cui, “LLM-Augmented DevOps: Autonomous CI/CD Pipeline Optimization via Reinforcement Learning,”
researchgate.net, Jul. 24, 2025. https://www.researchgate.net/publication/393965443_LLM-
Augmented_DevOps_Autonomous_CICD_Pipeline_Optimization_via_Reinforcement_Learning

0. Elugbadebo, “Machine Learning-Driven Sprint Planning: Enhancing Predictability in Agile Development,”
researchgate.net, Jul. 24, 2025. https://www.researchgate.net/publication/395390494_Machine_Learning-
Driven_Sprint_Planning_Enhancing_Predictability_in_Agile_Development

J. Bailey, “Deep Q-Networks Explained,” www.lesswrong.com, Sep. 2022, Available:
https://www.lesswrong.com/posts/kyvCNgx90Aw]Cuevo/deep-q-networks-explained

Nvidia, “What is BERT?,” NVIDIA Data Science Glossary. https://www.nvidia.com/en-us/glossary/bert/

GeeksforGeeks, “Gradient Boosting in ML,” GeeksforGeeks, Aug. 25, 2020.
https://www.geeksforgeeks.org/machine-learning/ml-gradient-boosting/

Author short biography

The author has extensive experience in leading multiple agile and SAFe programs.

Amar Gurajapu is Principal Member of Technical Staff at AT&T. Amar has 25 years of experience
in Telecom Software Engineering. He is leading multi-cloud transformation programs, and digital
initiatives for key Network systems portfolio aligned with AT&T organization goals

https://www.geeksforgeeks.org/machine-learning/ml-gradient-boosting/

