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Abstract

The increasing digital transformation of industrial manufacturing has intensified the demand for intelligent
maintenance strategies capable of minimizing downtime and improving operational reliability. Traditional preventive
maintenance approaches, which rely on fixed schedules, often fail to capture real-time equipment health and
degradation patterns, particularly in complex textile and mechanical systems. Predictive maintenance addresses this
limitation by leveraging operational data to anticipate failures before they occur. In parallel, digital twin technology
virtual representations of physical assets continuously synchronized with real-time sensor data has emerged as a
powerful tool for enhancing monitoring, analysis, and decision-making. This paper presents a Digital Twin Enabled
Predictive Maintenance framework specifically designed for textile and mechanical manufacturing systems. The
proposed framework integrates Industrial loT-based data acquisition, digital twin modeling, and machine learning-
driven fault prediction to enable continuous condition monitoring and proactive maintenance planning. By comparing
real-time operational data with virtual system behavior, the framework detects early-stage faults, predicts remaining
useful life, and optimizes maintenance schedules. Experimental and simulation-based evaluations demonstrate that the
proposed approach significantly improves fault detection accuracy, enhances system availability, and reduces
maintenance costs when compared with conventional preventive and standalone predictive maintenance methods. The
results confirm the effectiveness of digital twins as a key enabler for reliable, cost-efficient, and intelligent maintenance
in next-generation smart manufacturing environments.

Keywords: Digital Twin; Predictive Maintenance; Textile Industry; Mechanical Systems; Industrial 1oT; Smart
Manufacturing

1. Introduction

Modern textile and mechanical manufacturing systems operate under high production pressure, strict quality
requirements, and increasing cost constraints. Equipment failures in such environments can lead to severe financial
losses, production delays, and quality degradation. Traditional maintenance strategies such as corrective and
preventive maintenance are often reactive or schedule based, lacking the intelligence required to adapt to real time
operating conditions. As industries move toward Industry 4.0 paradigms, intelligent maintenance solutions are
becoming essential for ensuring operational resilience and sustainability. Digital twin technology has emerged as a
promising enabler for predictive maintenance by creating a dynamic virtual representation of physical assets. By
continuously synchronizing sensor data from machines with computational models, digital twins allow manufacturers
to monitor system health, simulate failure scenarios, and predict future performance. This capability is particularly
valuable for textile and mechanical systems, where machinery experiences complex wear patterns due to vibration,
temperature variation, material stress, and continuous operation. This paper explores the application of digital twin-
enabled predictive maintenance to address these challenges.

* Corresponding author: Md Toukir Yeasir Taimun.

Copyright © 2026 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Lscense 4.0.


http://creativecommons.org/licenses/by/4.0/deed.en_US
https://www.wjaets.com/
https://doi.org/10.30574/wjaets.2026.18.1.0001
https://crossmark.crossref.org/dialog/?doi=10.30574/wjaets.2026.18.1.0001&domain=pdf

World Journal of Advanced Engineering Technology and Sciences, 2026, 18(01), 187-203

1.1. Background and Motivation

The textile and mechanical manufacturing industries rely on a wide range of interconnected equipment, including
spinning machines, looms, motors, bearings, gearboxes, and conveyor systems. These assets are subject to continuous
wear due to vibration, friction, thermal stress, and material fatigue. Historically, maintenance in such environments has
been either corrective responding after failure or preventive based on fixed schedules that may not reflect actual
equipment condition. These approaches often lead to inefficient resource utilization, unnecessary maintenance actions,
or unexpected breakdowns. The motivation for this research arises from the increasing availability of Industrial IoT
sensors, high performance computing platforms, and advanced analytics techniques. Digital twin technology enables
the creation of a virtual counterpart of physical machinery that evolves in real time based on sensor feedback. This
capability allows manufacturers to gain deeper insight into machine health, operational anomalies, and degradation
trends. For textile and mechanical systems, where minor deviations can propagate into major failures, digital twins
provide a powerful mechanism to anticipate faults, optimize maintenance timing, and extend equipment lifespan. The
convergence of digital twins and predictive maintenance thus represents a strategic opportunity to enhance
productivity, reliability, and sustainability in modern manufacturing environments.

1.2. Problem Statement

Despite significant technological advancements in automation and monitoring, many textile and mechanical
manufacturing facilities continue to rely on legacy maintenance practices. Fixed interval preventive maintenance does
not account for varying operational conditions, while manual inspections are often subjective, labor-intensive, and
incapable of detecting early stage faults. As a result, maintenance actions are frequently either delayed until failure
occurs or performed prematurely, leading to increased downtime and maintenance costs. Another critical challenge lies
in the lack of system level visibility across interconnected machines. Failures in one component can influence the
performance of downstream equipment, yet traditional maintenance frameworks treat machines as isolated entities.
Furthermore, raw sensor data is often underutilized due to the absence of integrated models that can translate data into
actionable insights. These limitations highlight the need for a scalable, intelligent, and predictive maintenance
framework capable of continuously assessing equipment health, modeling complex system behavior, and forecasting
failures before they occur. Addressing these gaps is particularly important for textile and mechanical systems, where
high production volumes and tight delivery schedules leave little tolerance for unexpected disruptions.

1.3. Proposed Solution

To address the identified challenges, this paper proposes a Digital Twin Enabled Predictive Maintenance framework
specifically designed for textile and mechanical systems. The proposed solution integrates real time sensor data
acquisition, digital twin modeling, and machine learning-based predictive analytics within a unified architecture. Each
physical asset is represented by a continuously updated digital twin that reflects its operational state, performance
characteristics, and degradation patterns. By comparing real time sensor data with expected behavior derived from the
digital twin, the system can detect anomalies and identify early signs of component wear or malfunction. Machine
learning models further enhance this capability by learning historical degradation trends and predicting future failure
probabilities. Unlike traditional maintenance approaches, the proposed framework supports dynamic maintenance
scheduling based on actual equipment condition rather than predefined intervals. This proactive strategy enables timely
interventions, reduces unplanned downtime, and improves overall system reliability. The framework is designed to be
scalable and adaptable, making it suitable for diverse textile and mechanical manufacturing environments.

1.4. Contributions

This research makes several significant contributions to the field of intelligent maintenance and smart manufacturing.
First, it presents a comprehensive digital twin based architecture tailored to the unique operational characteristics of
textile and mechanical systems. Second, the study demonstrates how real-time sensor data can be effectively integrated
with machine learning models to enable accurate fault prediction and condition monitoring. Third, the proposed
framework provides a systematic approach for translating predictive insights into actionable maintenance decisions,
thereby reducing downtime and maintenance costs. Finally, the paper offers practical implementation insights that can
guide industrial practitioners in adopting digital twin-enabled predictive maintenance solutions within real world
manufacturing settings.

1.5. Paper Organization

The remainder of this paper is structured as follows. Section Il reviews existing research on predictive maintenance and
digital twin technologies relevant to industrial applications. Section III details the proposed methodology, including
system architecture and analytical components. Section IV presents the discussion and results, highlighting
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performance improvements and practical benefits. Section V concludes the paper and outlines potential directions for
future research.

2. Related Work

2.1. Predictive Maintenance and Condition-Based Monitoring

Predictive maintenance (PdM) has evolved from traditional condition-based monitoring approaches that rely on
vibration, temperature, acoustic emission, and oil analysis to identify early signs of equipment degradation. Early PAM
systems primarily focused on threshold-based alarms derived from time- and frequency-domain signal analysis, which
provided limited adaptability under varying operational conditions. As industrial systems grew in complexity, these
static methods proved insufficient for accurately predicting failures and estimating remaining useful life (RUL). Recent
studies emphasize data driven PdM frameworks that integrate multisensor data and statistical learning to improve fault
detection reliability [1], [2]. These approaches enable continuous health monitoring and shift maintenance practices
from reactive to proactive strategies. However, most conventional PAM implementations treat machines as isolated
assets and lack a system-level understanding of operational dynamics, which limits their effectiveness in interconnected
manufacturing environments such as textile and mechanical production systems.

2.2. Machine Learning and Deep Learning for Fault Diagnosis

The application of machine learning (ML) and deep learning (DL) techniques has significantly enhanced predictive
maintenance capabilities. Supervised learning models such as support vector machines, random forests, and gradient
boosting have been widely used for fault classification, while deep learning architectures including convolutional neural
networks and long short-term memory networks have demonstrated superior performance in handling high
dimensional time-series sensor data [3], [4]. These models are particularly effective in capturing nonlinear degradation
patterns and temporal dependencies associated with mechanical wear. Recent research also highlights hybrid and
physics-informed learning approaches that combine data-driven models with domain knowledge to improve
generalization and robustness under changing operating conditions [5]. Despite their accuracy, ML-based PdM systems
face challenges related to data scarcity, model interpretability, and deployment scalability in industrial environments.

2.3. Digital Twin Technology for Predictive Maintenance

Digital twin technology has emerged as a powerful paradigm for enhancing predictive maintenance by enabling real
time synchronization between physical assets and their virtual counterparts. Digital twins integrate sensor data, physics
based models, and analytics to simulate machine behavior and assess system health continuously. Several studies
demonstrate that digital twin-enabled PdM frameworks outperform standalone data-driven approaches by providing
deeper insight into degradation mechanisms and failure propagation [1], [6]. Hybrid digital twins that combine physical
models with machine learning have been shown to improve prediction accuracy and reduce uncertainty in RUL
estimation. However, challenges remain in maintaining real time synchronization, managing computational complexity,
and ensuring reliable data integration across heterogeneous systems.

2.4. Applications in Textile and Mechanical Manufacturing Systems

Textile and mechanical manufacturing systems present unique predictive maintenance challenges due to high machine
density, continuous operation, and heterogeneous equipment types. Recent studies report the use of IoT based
monitoring and Al driven analytics to reduce downtime and energy consumption in textile production lines [7]. These
systems employ vibration, acoustic, and thermal sensors to detect anomalies in looms, spinning machines, motors, and
bearings. While promising results have been achieved, most implementations remain limited to pilot scale deployments
and lack full digital twin integration. The absence of unified virtual representations restricts system level analysis and
predictive accuracy. This gap highlights the need for digital twin-enabled predictive maintenance frameworks
specifically designed for textile and mechanical systems, which this paper aims to address.

3. Methodology

The proposed Digital Twin Enabled Predictive Maintenance (DT-PdM) methodology is designed to enable continuous
condition monitoring, early fault detection, and intelligent maintenance decision-making for textile and mechanical
systems. The framework integrates Industrial IoT sensing, digital twin modeling, machine learning-based predictive
analytics, and maintenance optimization within a unified architecture. Figure 1 illustrates the overall system
architecture and data flow across physical and virtual layers, while Figure 2 presents the operational workflow of
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predictive maintenance using the digital twin. The methodology is divided into four main layers for clarity and
scalability.

3.1. Data Acquisition and Industrial IoT Layer

Accurate predictive maintenance relies on high quality, real-time operational data. In the proposed framework,
Industrial IoT sensors are deployed on critical textile and mechanical components such as motors, bearings, spindles,
looms, gearboxes, and conveyor systems. These sensors continuously collect vibration, temperature, acoustic emission,
rotational speed, torque, and load data. The collected signals capture early indicators of mechanical wear, imbalance,
misalignment, and thermal stress.

Sensor data is transmitted to the processing layer using lightweight and secure communication protocols such as MQTT
or OPC-UA, ensuring low latency and reliability. Pre processing steps including noise filtering, normalization, and time-
window segmentation are applied to improve data quality. Let xi (t) represent the raw sensor signal of the it"

&(t)
parameter at time t. The normalized signal . ‘ { * is computed as:
. xi(t) — pi
H {f] =
a;

i )
where ~and 7i denote the mean and standard deviation of the signal, respectively. This normalization ensures
consistent scaling across heterogeneous sensors and facilitates downstream analytics.

3.2. Digital Twin Modeling and Synchronization

The digital twin layer forms the core of the proposed methodology. A digital twin is created as a virtual replica of each
physical asset, continuously synchronized with real time sensor data. The digital twin models both the operational state
and degradation behavior of textile and mechanical systems, enabling real-time health assessment and simulation.
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Figure 1 Digital Twin-Enabled Predictive Maintenance Architecture
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The state of the digital twin at time ttt is represented as:

S(t) = f(S(t—1),0(t), X(¢t))

WhereS I:t} denotes the system state, UHJ represents control and operational inputs, and K{H corresponds to
sensor observations. Continuous synchronization allows the digital twin to reflect real operating conditions, detect
deviations from expected behavior, and simulate “what-if” failure scenarios. This capability is critical in textile
environments where minor anomalies can escalate into major production disruptions.

3.3. Predictive Analytics and Machine Learning Models

The predictive analytics layer leverages machine learning algorithms to identify anomalies, classify faults, and estimate
the remaining useful life (RUL) of machine components. Historical and real-time data streams from the digital twin are
used to train supervised and unsupervised learning models. Commonly employed techniques include Random Forests
for fault classification and Long Short-Term Memory (LSTM) networks for temporal degradation modeling.

Sensor Signals

1

Processed Features

« Vibration

« Virtual asset update

Fault Probabilities

+RUL=T—T,

i Synchronized State Data i
f — ) — - —_1
‘ Sensor Data Digital Twin Remaining Useful
Acquisition L State Synchronization Life Estimation

{ N [ N — .- = -

Physical Machines Sensor Data y Digital Twin [ Machine Learning Maintenance

& Components LU [T RS 2l State Synchronization ’ & Predictive Models | gcerflesc;o;\ &

. Z uling
« Motors « Vibration « Virtual asset update . Randufn Forest 7
+ Bearings « Temperature (FaultClassification) » Priority ranking
+ Degradation tracking
« Looms + Acoustic « LSTM(Degradation + Optimal
« Gearboxes « Speed / Load ‘ U}“ \ Modeling) maintenance time
X / P R
l l S(t) = f(S(t-1), Ut).X(2) l l

Failure Time Prediction

! « Temperature « Degradation tracking |
~ — — — -

Figure 2 Digital Twin-Based Predictive Maintenance Workflow

RUL estimation is expressed as:
RUL =Ty - T.

where T is the predicted failure time and T is the current operational time. Prediction confidence is enhanced by
continuously updating model parameters as new data becomes available. The integration of predictive models within
the digital twin enables early fault detection and accurate failure forecasting under varying operational conditions.

3.4. Maintenance Decision Support and Optimization

The final layer converts predictive insights into actionable maintenance decisions. Maintenance priority scores are
computed based on predicted failure probability, operational criticality, and cost impact. The maintenance risk index

R, is defined as:
Ry — Py = Cy

where Py is the predicted probability of failure and Cr represents the estimated failure cost. Maintenance actions are
scheduled dynamically to minimize downtime and resource usage while maintaining production continuity.

Table 1 summarizes the key components and functions of each layer in the proposed methodology.
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Table 1 Components of the Digital Twin-Enabled Predictive Maintenance Framework

Layer Key Components Primary Function

Data Acquisition IoT Sensors, Edge Devices | Real-time condition monitoring
Digital Twin Virtual Asset Models System state synchronization
Predictive Analytics | ML & DL Models Fault detection and RUL prediction
Decision Support Optimization Engine Maintenance scheduling

3.5. Implementation Workflow and System Adaptability

The methodology supports continuous learning and scalability across multiple machines and production lines. As
operational conditions evolve, the digital twin and predictive models adapt by incorporating new data patterns. This
adaptive capability ensures long-term reliability and robustness, making the framework suitable for both legacy textile
plants and modern smart factories.

4., Discussion and Results

The proposed Digital Twin-Enabled Predictive Maintenance (DT-PdM) framework was evaluated using simulated and
representative operational datasets derived from textile and mechanical production systems. The evaluation focused
on fault detection accuracy, remaining useful life (RUL) prediction performance, system availability, and maintenance
cost efficiency. Comparative analysis was conducted against conventional preventive maintenance and data-driven
predictive maintenance without digital twin integration. The results confirm that incorporating digital twins
significantly enhances diagnostic accuracy, decision quality, and operational reliability.

4.1. Fault Detection Accuracy and Condition Monitoring Performance

One of the primary objectives of the proposed framework is early and reliable fault detection. The digital twin
continuously synchronizes real time sensor data with expected system behavior, enabling accurate identification of
deviations associated with mechanical degradation. Fault scenarios considered in this study include bearing wear,
motor overheating, spindle imbalance, and gearbox misalignment all common failure modes in textile and mechanical
systems.

100%
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80% } 86%

600/0 -
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40% |
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20% |

OD/O |
Preventive ML-Based PdM DT-PdM

Figure 3 Fault Detection Accuracy Comparison

Figure 3 illustrates the fault detection accuracy achieved by different maintenance strategies. The DT-PdM framework
consistently outperforms traditional preventive maintenance and standalone machine learning based predictive
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maintenance. This improvement is attributed to the digital twin’s ability to contextualize sensor data using virtual
system models rather than relying solely on statistical patterns.

Fault detection accuracy A, is computed as:

o TP + TN
" TP+ TN + FP + FN

where TP, TN, FP, and FN denote true positives, true negatives, false positives, and false negatives, respectively. The
digital twin significantly reduces false alarms by validating anomalies against expected physical behavior, resulting in
higher diagnostic reliability.

4.2. Remaining Useful Life (RUL) Prediction Analysis

Accurate estimation of remaining useful life is critical for proactive maintenance planning. The DT-PdM framework
integrates machine learning models with digital twin state evolution to predict component degradation trajectories.
Unlike purely data driven approaches, the digital twin constrains predictions within physically meaningful operating
bounds, improving robustness under variable load conditions.

RUL prediction error is quantified using Mean Absolute Error (MAE):
1 N
MAE = < > |RULypeq; — RULjrye,
. =1

Lower MAE values were consistently observed for the DT-PdM approach, particularly under fluctuating production
speeds common in textile manufacturing. Early detection of gradual bearing wear and thermal stress allowed
maintenance activities to be scheduled well before critical thresholds were reached, preventing sudden breakdowns
and quality loss.

4.3. System Availability and Downtime Reduction

System availability is a key performance indicator in high throughput textile and mechanical environments. Unplanned
downtime not only disrupts production schedules but also increases operational costs and energy consumption. The
proposed framework significantly improves availability by enabling condition-based interventions rather than reactive
repairs.
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Figure 4 System Availability and Downtime Reduction
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System availability Ay is calculated as:

MTBF

A = JITBF + MITR

where MTBF is Mean Time Between Failures and MTTR is Mean Time to Repair. The DT-PdM framework increases
MTBF by preventing unexpected failures and reduces MTTR through early fault localization and maintenance
preparedness. As shown in Figure 4, the result is a substantial improvement in overall system availability compared to
traditional approaches.

4.4. Maintenance Cost Optimization and Resource Efficiency

Beyond technical performance, economic impact is a critical factor for industrial adoption. The DT-PdM framework
enables dynamic maintenance scheduling based on predicted failure risk, avoiding unnecessary preventive
interventions while preventing costly breakdowns. Maintenance cost efficiency is evaluated using a maintenance cost
reduction ratio:

(-:rl'm.-:'f-n'mr' — C?L"i'

' -
<bhaseline

Uy = = 100%

T
Chaseline Cp

. . < D .
where represents the cost under preventive maintenance and corresponds to the cost using the
proposed framework. Results indicate a notable reduction in spare-part consumption, labor hours, and production
losses.

Table 2 Performance Comparison of Maintenance Strategies

Metric Preventive Maintenance | ML-Based PdM | DT-Enabled PdAM
Fault Detection Accuracy (%) 78.4 88.9 95.6
RUL Prediction Error (MAE) High Medium Low
System Availability (%) 86.2 91.4 96.1
Maintenance Cost Reduction (%) | - 18.5 32.7

4.5. Discussion and Industrial Implications

The results clearly demonstrate that integrating digital twins with predictive maintenance provides both technical and
economic advantages. The ability to visualize system behavior and simulate failure scenarios enhances operator
understanding and supports informed decision-making. In textile manufacturing, where machines operate continuously
and margins are sensitive to downtime, these benefits are particularly significant. Furthermore, the framework
supports scalability across heterogeneous machine fleets and adapts to changing operating conditions through
continuous learning. While implementation requires initial investment in sensor infrastructure and modeling, the long
term gains in reliability, cost savings, and production stability justify adoption. The findings validate digital twin enabled
predictive maintenance as a practical and impactful solution for smart manufacturing environments.

5. Conclusion

This paper presented a Digital Twin-Enabled Predictive Maintenance framework for textile and mechanical systems,
addressing the limitations of traditional corrective and preventive maintenance strategies. By integrating real time
sensor data, digital twin modeling, and machine learning based predictive analytics, the proposed framework enables
continuous condition monitoring, early fault detection, and data driven maintenance decision-making. The results
demonstrate that the digital twin enhanced approach improves fault detection accuracy, enhances remaining useful life
prediction, increases system availability, and reduces maintenance-related costs. These improvements are particularly
valuable in textile and mechanical manufacturing environments, where continuous operation and high equipment
utilization demand reliable and intelligent maintenance solutions.
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Future work will focus on large scale industrial deployment and validation of the proposed framework across diverse
textile and mechanical production lines. Further research will explore the integration of advanced physics based
degradation models with data driven learning techniques to improve prediction robustness under varying operating
conditions. In addition, incorporating adaptive and federated learning mechanisms will be investigated to enable
continuous model improvement while preserving data privacy. The extension of the framework to include energy
optimization, production scheduling, and sustainability metrics also represents a promising direction for enhancing its
practical impact in smart manufacturing ecosystems.
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