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Abstract

Here we consider a single server queueing model consisting of two queues-an infinite capacity queue of low priority
customers and a finite capacity N of high priority customers. Customers join the system according to a MMAP. If the
server is free, at the epoch of an arrival of a customer (low priority/ high priority) can immediately join for service. An
(N +1) faces solid figure with the face marked 0 to N, is tossed at the beginning of the service of an ordinary customer.
ith face turns up with probability g: (0 < i < d). This decides the maximum number of priority customer(s) allowed to be
served during the service of the specified ordinary customer. During the service of a low priority customer pre-emption
can take place by the arrival of a high priority customer. Then the preempted customer waits at the head of the low
priority queue till either the high priority queue becomes empty or the maximum number of high priority customers
permitted to be served, as per the outcome of the toss of solid object, whichever occurs first. The restart/ resumption
of pre-empted customer’s service takes place when the high priority queue becomes empty or the maximum number of
high priority customer’s service permitted during his effective service is realized. We introduce a threshold random
variable which competes with the duration of each pre-emption; if this realizes before completion of preemption then
the pre-empted customer has to get its service repeated; otherwise the service is resumed. Here the random variable
corresponding to low priority customers service, high priority customers service and threshold random variable are all
distinct and independent PH distributed. The system is analysed under stable regime. A few useful measures for system
performance are obtained. These help in designing an efficient system. Numerical results are provided to illustrate the
system performance.

Keywords: Priority Service; Pre-emptions;Phase Type Distribution; Exponential Distribution; MMAP; Threshold
Clock.

1. Introduction

In this paper we consider interruption as the server processing a high priority customer. White and Christie [16] is the
first reported work on queues with interruption. Subsequently Heathcote [8], Keilson [7], Gaver [5], Aissani and Artalejo
[1], among others, analysed such queueing systems in continuous time. Discrete time queue with failure/interruption
at the time when a new service start is a recent work by Atentia and Moreno [3]. (See also Alfa [2]). A detailed review
on queues with service interruption could be found in Krishnamoorthy et.al. [11]. For motivation in the investigation of
such queues one may refer to Krishnamoorthy et.al. [10] which, we believe, is the first work to give concrete conditions
for resumption/repetition of an interrupted service, on removal of the interruption. Almost simultaneously Fiems et.al.
[4] considered an interruption queueing model with arbitrarily distributed service time and interruption duration, the
arrival constituting a Poisson process. They set a priori probability g for resumption of service; with complementary
probability it is repeated. In all these no upper bound was set on the number of interruptions that a customer may
undergo. This leads to impatience of waiting customers.
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One of the objectives of this chapter is to generalize results in [11] and [12], were concerned with customers of the same
priority. Though we would very well interpret an interruption as the server processing a high priority customer, the
models were basically confined to single priority. Otherwise, questions like arrival process of priority customers,
description of waiting space of such customers would arise. The present paper is concerned with a two-priority service
system. In contrast to fixing N as the upper bound for number of pre-emptions of a low priority customer’s service, the
customer is given the option to choose the maximum number of pre-emptions he is willing to undergo, subject to a
maximum of N. Nevertheless the customer who chooses to undergo preemptions closer to N (say > N/2) will be given
incentives, which will not be available to those who do not opt for such length pre-emptions. Specifically, we assume
that qi, 0 < i< N, is the probability of a low priority customer opting for maximum of i pre-emptions.

2. Mathematical Model

We consider a queueing model in which arrival of low priority and high priority customers occur according to MMAP
with representation (Do,D1) of order r. The arriving customer is of low (high) priority with probability pi(pz). If the
server is idle, an arriving customer (low priority or high priority) can immediately join for service. During low priority
customers service the arrival of high priority customer preempts him, provided the number of high priority customers
served during his pre-emptions has not reached the maximum allowed by the outcome of the solid figure by his own
initial choice, and the pre-empted low priority customer waits as the head of the infinity capacity queue of low priority
customers. Subsequent high priority customers arriving during that period wait in the finite capacity (K) queue. An N +
1 faced solid figure with markings 0,1,..., N, respectively is tossed at the beginning of a low priority customers service;
let gibe the probability that the tossing results in i, (0 < i< N), then i is the maximum number of high priority customers
allowed to be served during his service period. It may happen there is no priority customer present to be served during
the effective service time of a low priority customer, even when the experimental outcome is i (= 1). The moment pre-
emption takes place the threshold random clock starts ticking. The pre-empted customer gets its service repeated
/resumed when the high priority queue becomes either empty or the number of high priority customers served during
his service period reaches its maximum, whichever occurs first. When the pre-emption time exceeds a threshold random
variable, the interrupted customer gets its service repeated on completion of pre-emption; else the service is resumed,
that is it starts at the point where it got pre-empted. Duration of services of low and high priority customers are PH
distributed random variables with representations (¢,5) and (5, T), respectively; the threshold r.v is PH distributed with
representation (6,U). All these random variables are mutually independent. Write S°= -Se, T°= -Te and U? = -Ue where
e is a column vector of 1’s of appropriate order. Let N1(t) , N2(t), S(t), B1(t) and Bz(t) denote, respectively, the number of
low priority customers , high priority customers, status of server, maximum number of high priority customers
permitted to be served during a low priority customers service and the number of high priority customers so far served
, including the present one, if a high priority service is going on by preemption. When S(¢t) = 0, the server is busy with
high priority service and a preempted low priority customer is waiting at the head of the queue; when S(t) = 1, the server
is busy with high priority customer with no pre-empted customer waiting and S(t) = 2 stand for the server busy with
low priority service. The process X(t) = {(N1(t),Nz(t),S(t),S1(£),S2(£),S3(¢t),M(t)),t = 0}; is a continuous time Markov chain

(CTMC) which turns out to be LIQBD with nttlevel given by I(n) = U w(n,m,l),0<m < K,| =0,1, 2. The subsets
n=0

of y(n, m,l) are defined as

{(n,m,O,jl,jz,il,iz,is,i4);1sjlsN;lsj2£jl;lsilSa;lgizsb;Osissc;lsi4£r} , for 1 < m <

K{(nm1,izis);1 <2< b;1 <is<r}and for 1 < m < K, {(n,m,2,j1,j2,i2,4);1 < j1< N;1 <j2< ji;1 <i2< b;1 <ia<r}.The states
in ¥ are listed in lexicographical order. The transitions among subsets y/(n, m,l),[=0,1,2 are as follows:

Forl<sm<K, Ik Q@ Inv+y2 @ Ia Q In Q Iie+1y @ pl1D1, Ik @ Ib @ p1D1  and Inw+1)/2)+kd@1aQ@p1D1 records
transition rates to states in y(n+1,m,0), w(n+1,m,1) and w(n+1,m,2) respectively, starting from states in

w(n+1,m,0),w(n+1m1) andy(n+1,m,?2).

The matrix D = (D1i)1xw+1),i = 1,2,.....,N +1 is a row vector with components D11,D13,......... Din; D1i=T'Q gi—1ei @ a Q I,
1 <i< N+ 1; records transition rates at the beginning of low priority service on completion of a high priority priority
customers service where e;is a column vector of order i with 1 in the 1s¢tplace and zero elsewhere.
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The matrix Q = (Qli)

,i :1, 2,---, N+1 is a row vector with components Q = (Qli) ,i :1,2,---, N"‘l;
Ix(N+1) Ix(N+1)

Qli ZSO ®qui ®a®|t,lﬁ I<N +1, records transition rates at the beginning of low priority service on

completion of a low priority customers service in state 2 where eiis a column vector of order i with 1 in the 1stplace and
zero elsewhere.

The matrix B = (Bu)ixawsny i = 12,..,.N+1 is a row vector with components
T _ .

By1, Bia......... Biny: By = T'® [ o e e . . € ] @I, ,1<i< N + 1 ; records

transition rates corresponding to repeat/resumption of pre-empted low priority customer’s service on completion of a

high priority customer’s service, where e:is a column vector of order 1 in the it place and zero elsewhere.

For 1 £ m < K, the matrices T°® S @ Ir, I» ® pz2D1records transition rates to states in W(n,m - 1,.) and ¥(nm + 1, .)

respectively, from states in ¥(n,m,.); SZ S DO lists transition rates to states in W(n,m, .) from W(n,m,.)for1<sm<K-

1 and SZ@DO@ ple form=K.

The infinitesimal generator of the Markov chain governing the system is given by

C, C, 0 0 0 0 0]
C, AA 0O 0 00
Q= A-A A 000 - @)
AbA A 0O
The matrix () = [C(()i"j)} represents a square matrix of order (N+1)r(b+1) which corresponds to transition from i to

J; 0 <1, j < K. The matrices Do, 8 Q p2D1, T° ® Irspecifies elements of C(()O‘n). C(()”’ Yand C[()l‘('), respectively. Ir Q p2D1

it . it .
provides the elements of CO(I " ),13 1<K +1 and 10 ® B &® I lists the elements of Co(” ),2 <i<K , while
32 ® Do records the transitions CO(I’I),]-S 1<K -1, Sz ® DO ® P, D1 corresponds to the transition rates in

i = K.
The only non zero block in €1 are the transition from ¥(n,m,.), n=m=0 to ¥(1,m,2) ;

Y(0m1) to W(1,m<1) and are denoted by C(l)? C{Q) respectively. Here Cl(l)=[cl(ll) [0]] where

Cl(ll) = [El E2 ...EN] with Ei= gi-1e:® a @ p1D1. eiis a 1 x i row vector having 1 in the it place and zero elsewhere.

The matrix sz) = [ I @ I, @ py Dy [0} } records arrival of a low priority customer when server’s state is 2

T
The matrix (y = [ 0] Cél) } where block [0] indicates no service completion of low priority customer during
state 0 and 1 of the server. The matrix ew+1m+2)2 ®S° QIrin CQUJ records transition from ¥(n,0,2) to ¥(n,0,2),ifn=1
and IxQen R (S°QBRI;) lists the transition rates to ¥(0,m,1) from W(1,m,2),1 <m<K.

The matrix Aorecords arrival of low priority customers in to the system where the only non zero elements are diagonal
ones. The matrices In @ Inw+1)2Q Q@I (c+1yQp1D1 , IK QIb @p1D1 and I((N+1)(N+2)/2)+Kd Qla Qp1D1 in A1 lists
the arrival of low priority customer within states W(n,m,0), ¥(n,m,1) and ¥(n,m,2).

The matrix Az in @ lists the service completion of low priority service. The matrices

Aél) = [ [0] Ik ®eny ® S'® £ ® 1, J and Ag) = [ e(N+1)(N+2)/2 @ B {D] ] where
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. 0 .
B= (Bli )LN+1 ,i=12,....,N +1is a column vector of Bll’ Blz,..., BlN+1i B, = S ®q ,®a®I ,1<I<N+1
records transition rates in W(n - 1,0,2), W(n - 1,m,2) of Az, starting from states in ¥(n,0,2) and ¥(n,m,2) respectively.

The matrix A1in Q records transition from W(n,m,[) to itself. The components in A1 are A11, A12, A13, A14, A1s and A1s each
of which records transition rates from states in ¥(n,m,0) to ¥(n,m,0); ¥(n,m,0) to ¥(n,m,1); ¥(n,m,1) to ¥(nm,1) ;
WY(n,m,1) to ¥(n,m,2); ¥(n,m,2) to ¥(n,m,0) and ¥(n,m,2) to ¥(n,m,2).

(a) The matrix A11is as follows: law+1)2 ®1a @ H, where H = G1 P G2,G1= F @Dy,

0 0
F = [ U oo }, Gy = T ® 1., records transitions to ¥(n,m,0) from ¥(n,m,0),

1<msN-1,luag+1)2® e Q@ Ip Q Ic+1) @ p1D1records transition rates from W(n,m,0) to ¥(nnm+ 1,0),1<m<K-1and
Inn+1)2 @ In Q@ (H B p1D1) f m=K. Inw+1)2 Q@ [n Q TO Q f Q Ie+1 Q Irrecords transition rates from W(n,m,0) to W(n,m
-1,0),2<m<K

The matrix A1z records transitions in ¥(n,m,2) from ¥(n,m,0) and is as follows:

The matrix | [0] diag [( [0] diag(I;B) )] |,1 < j < N, diag[( [0] diag(];B) )]

denote a diagonal matrix whose i" diagonal elementis (0] diag(/;B) ) and diag(1; B) is a diagonal matrix whose

j diagonal element is I;B, I;is the identity matrix of order j, records transition from ¥(n,1,0) to ¥(n,0,2). The matrix diag
[eiB],2 <i< Kis a diagonal matrix with it diagonal element e;B where e;is a column vector of order i with 1 in the it place
and 0 elsewhere, records transition from W(n,m,2) to W(nm-1,2),2<m<K.

(c )The matrix Aislists transition rates in W(n,i,1) to W(n,,1), 1 < i,j < N. Diag[S @ Do] records transition rates in
Y(n,m1) from Y(nm1),1<m<N-1and S @ Do p1D1if m = N. diag[Ily ® p2D1],1 <i< N - 1 lists transition rates in
Y(n,m+1,1) from ¥(n,m,1) and diag[T° ® XI;] corresponds to transition rates to ¥(n,m - 1,1) from ¥(nm,1),2 <si<
K.

(d)The matrix A4 records transition rates in ¥(n,;,2) from ¥(n,,1), 1 < ij < K where the transition to ¥(n,0,2) from
0
w(n,11) is AY = [WMW12 "'Wl(N+l):| and W;; =T~ ®0_8,®a ® | where e;is a row vector of order i with 1 in

the 1stplace and zero elsewhere and other transition in Ai4are [0] block matrices.

(e)The matrix Ais in A:1 records transition rates in W(n,1,0) from W(n0,2) and is described as follows:

As=[[0] AP and AY =diag(e(l,® B®5®p,D,)),1<i<N .

(f )The matrix A1 records transition rates to ¥(n,j,2) from ¥(n,i,2), 0 < ij < K, where the matrix Iv:1w+2)2 Q (S @ Do)
lists transition rates in ¥(n,0,2) from ¥(n,0,2). Ivn & (S & Do) lists transition rates within W(n,m,2) for1l<m<K-1and
IN® (S @ Do) if m=K while In® 1. @ p2D1records transition in W(n,m + 1,2) from W(n,m2),1<m<K- 1.

3. Description of the phase type distribution for the services

The focus of this section is to describe the time it takes to process a job once it enters into the service facility. We assume
that the service times are of phase type with representation given by (a,S) of order a. The services are subject to pre-
emptions. When the current service is pre-empted for the first time, counting clocks, which counts the number of
priority customers served during his service period, pre-emption time (service time of current high priority customer),
and threshold clock, respectively, will simultaneously be started. The pre-emption clock and threshold clock are of
phase type with representations given by, respectively, (B,T) of order b, and (8,U) of order c. Once the high priority
queue becomes empty/the number of high priorities during the customer’s service period reaches its maximum allowed
level, whichever occurs first, the service of the pre-empted job will begin again. The service will resume (from the phase
where the service got interrupted) or repeat (like a new service) depending on whether the interruption clock expired
before the threshold clock or not. In addition, if the number of pre-emptions during the customers service reaches its
maximum allowed level, then the service of the current job will not be pre-empted anymore once the service begins
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again for this job. On the other hand, if the pre-emption clock expires before the number of pre-emption reaches its
maximum, the counting end temporarily and will resume from this phase should there be an another interruption for
the existing job. For the job under service, the number of interruptions will be tracked and when this number attains a
pre-specified threshold value, N < oo, no further interruptions are allowed.

Following the procedure indicated in the paper titled "A note on characterizing interruptions with Phase-type
distributions” by A.Krishnamoorthy, P.K Pramod and S.R. Chakravarthy [12] we will be able to compute the phase type
distribution governing the effective service rate. Mean of this phase type distribution can be computed in the usual
manner. Thus the system is stable if and only if arrival rate less than effective service rate.

3.1. Stability Condition

Next we examine the system stability. We can anticipate that a very strong condition is needed here for the same since
a service can get interrupted several times. What is needed is that the rate of drift to any lower level from a given level
should be higher than that to a higher level. This means that the Markov chain is stable iff

[TAoe < [1Aze (2)

where I1 is the unique solution to I[14 = 0,[le = 1 where A = Ao + A1 + A2. The above condition implies that the arrival rate
should be less than the effective service rate (reciprocal of the expected time to completely serve a customer).

3.2. Stationary Distribution

Denote by x the stationary vector of X(t), and partition x in to sub vectors x(n,m,[),0 < n <0,0 <m < K, 1=0,1,2. and
satisfying the condition xQ=0 and xe=1. The vectors x(0) and x(1) are obtained by solving the equations

x(0)Co+x(1)C2=0,x(0)C1+ x(1)(A1+ RA2) =0 3)
subject to the normalizing condition

x(0)e +x(1)(I- R)-le=1 (4)
where R is the minimal non-negative solution to the matrix equation

Ao+ RA1+ R?A2=0. (5)

From these results, we obtain some interesting measures which helps in design of the system. Some of them are as
follows:

o0
e The mean number of units in the system, [, = E n T(n)
n=0
e The mean number of high priority units in the system =Yy2 YK _,mx(nm)

e The fraction of time the serverisidle = }]_;x(0,0,0)
e  Fraction of time the low priority customer is pre-empted = Y*_, YK _ x(n,m, 0)

e Fraction of time the server is busy with high priority customer ( with no pre-empted customer in the system)
= Yme1 Lm=1X(n,m, 1)

e  Fraction of time the server is busy with high priority customer ( with pre-empted customer in the system)

= i i x(n,m,2)

n=1m=1
e Fraction of time the customer is busy with low priority customer
©o N Ji a r © o N a r
- Z Z Z ZZ xn")’Z’jl‘jZ’i’l + Z Z Z Z xn’m' Z’il'i’l
n=1 j;=0 j,=0 i=1 I=1 n=1m=1i;=1 i=1 I=1
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o Effective service rate of low priority customer

4. Numerical Results

For the above input parameters we have plotted 4 graphs in Fig. 1. These represent variations in the mean number of
customers in the system against increasing the value of the probability of customers of that priority.

—65 0.25 6.0 0.25 ~120 6.0
AN, asbecer=2; B = [ 0.25 0.75 1’D1 - [ ]’S B [ ]

0.25 0.25 6.0 —12.0
~120 3.0 —120 80
T= { 30 —12.0 ] U= [ 80 —12.0 }
S"=160 60],70=[90 90].0°=[40 40],
a=[04 06],8=[03 07],6=[05 05].

Depending on the outcome of the toss ( the decision of the low priority customers to allow none, one or two priority
customers to be served during its effective service time), we have the four graphs given in Fig. 1. (i) go= 1;q1=qg2= 0 (ii)
qo=0.8,q1=0.2,q2= 0 (iii) go= 0.6;q1= q2= 0.2 (iv) go=q1= 0.33;g2= 0.34. At p1= 0.2 all the above result in almost the
same mean number of customers; at p1= 1.0 (no high priority customer turns up) all these have the same value, which
is not surprising,.

Fig. 2 provides the fraction of time the sever is busy with high priority customers with increasing value of p1in the four
cases indicated in Fig. 1 . As expected when p1 =1 ( when all arrivals are of low priority), the fraction of time the server
is busy serving low priority, turns out to be the maximum. Similarly the fraction of time the server is busy serving high
priority customers decrease with increase in p1 value (see Fig. 2).

3[-‘
e Q0)=1.0, Q(1)=0.0, G(2)=0.0 y
~=0-- Q(0)=0.8, a(1)=0.2. q(2)=0.0
25 —o— q(0)=0.8, a(1)=0.2. q2)=02
—0— q(0)=0.33, (1)=0.33, qf2)=0.34

Figure 1 p1versus Mean Number of Customers in the System
An unexpected behavior of effective service rate of low priority customer versus p1, when p1> 0.8 is seen in fig 3 in the

case qo= 1.0 and qo= 0.6, q1 = g2 = 0.34. It decreasing for increasing p: in the range (0.8,1.0). The four graphs in Fig.4 are
on expected lines.
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Figure 4 p1versus fraction of time the server is idle
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5. Conclusion

In this paper we investigated a continuous time queueing system where interruption as the server processing a high
priority customer. The low priority customer’s service is pre-empted subject to some conditions. The "maximum
number of pre-emptions” and "pre-emption clock” controls the system. The purpose of introducing threshold clock is
to decide whether the service to be repeated or resumed on completion of interruption. Such Queueing systems are very
common in real world and their modelling will help to improve their performance. Some numerical illustrations are
provided for the measures that are investigated.
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