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Abstract 

The rapid growth of consumer packaging has placed significant pressure on municipal solid waste management and 
recycling systems worldwide. While recycling technologies and policies have advanced, recycling efficiency remains 
constrained by upstream factors, particularly packaging design choices made during product development. This study 
investigates the impact of packaging design characteristics such as material composition, color, labeling, size, and 
structural complexity on recycling efficiency within municipal recycling systems. Using a systems-engineering 
perspective, the research analyzes how design decisions influence material recovery rates, contamination levels, sorting 
accuracy, and operational costs in material recovery facilities (MRFs). A mixed-method approach combining secondary 
data analysis, process mapping, and efficiency metrics is employed to evaluate recycling outcomes associated with 
different packaging configurations. The findings demonstrate that design-for-recyclability principles significantly 
improve sorting accuracy, reduce contamination, and enhance overall recycling throughput. The study highlights the 
importance of integrating packaging design optimization into municipal recycling strategies and offers actionable 
recommendations for manufacturers, policymakers, and waste management operators to improve recycling 
performance and environmental sustainability. 

Keywords: Packaging design; Recycling efficiency; Municipal solid waste; Material recovery facilities; Sustainable 
packaging; Design for recyclability 

1 Introduction 

Municipal recycling systems are a foundational component of modern waste management strategies, playing a crucial 
role in reducing landfill dependency, conserving finite natural resources, and supporting broader circular economy 
initiatives. As global consumption continues to rise, municipalities face increasing pressure to manage growing volumes 
of post-consumer waste in a cost-effective and environmentally responsible manner. Recycling is widely promoted as a 
primary solution; however, despite expanding collection programs and public awareness campaigns, recycling 
efficiency remains highly variable across regions, materials, and system configurations. 
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Figure 1 Bulk Handling Systems for autonomous sorting 
 
While significant advancements have been made in downstream recycling technologies such as automated sorting, 
optical scanners, and material recovery facilities (MRFs) these improvements alone have not resolved persistent 
inefficiencies in municipal recycling streams. A critical but often underemphasized factor influencing recycling 
outcomes is upstream packaging design. Packaging determines how materials enter, move through, and exit recycling 
systems, directly affecting sortability, contamination risk, and material quality. Design features such as material 
composition, color, structural complexity, labeling, and closures can either facilitate efficient recovery or introduce 
systemic inefficiencies. 

 

Figure 2 System Boundary of Municipal Recycling and Packaging Design 

From a systems engineering perspective, recycling performance cannot be optimized solely at the processing stage; 
instead, it must be addressed holistically across the entire material lifecycle. Packaging design decisions made during 
product development have downstream consequences that extend to municipal infrastructure, operational costs, and 
environmental outcomes. This research examines the systemic relationship between packaging design attributes and 
recycling efficiency within municipal environments, emphasizing the need for design-driven solutions that align 
packaging innovation with recycling system capabilities to improve waste recovery outcomes. 
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1.1 Background and Motivation 

Packaging represents a substantial and growing share of municipal solid waste, particularly in urban areas 
characterized by high consumer product turnover and convenience-driven consumption patterns. Food, beverage, 
personal care, and household products rely heavily on packaging for protection, branding, and logistics, resulting in a 
diverse mix of materials entering municipal recycling streams. In many cases, packaging design prioritizes marketing 
differentiation, shelf appeal, durability, and cost efficiency, with recyclability treated as a secondary consideration. The 
increasing use of multi-layer composites, mixed polymers, dark pigments, metallized films, and permanently bonded 
labels has introduced significant challenges for municipal recycling systems. These design elements often interfere with 
mechanical separation and optical sorting technologies, leading to higher misclassification rates and contamination 
levels. Municipal material recovery facilities rely on a combination of automated sensors, mechanical screens, and 
manual labor, all of which are sensitive to packaging design characteristics. The motivation for this study arises from 
the growing disconnect between rapidly evolving packaging innovation and the relatively fixed capabilities of municipal 
recycling infrastructure. As packaging complexity increases, recycling facilities experience higher rejection rates, 
reduced material purity, and increased operational costs. Addressing this gap requires a systematic understanding of 
how specific packaging design choices affect recycling efficiency and how upstream design optimization can serve as a 
leverage point for improving municipal waste management performance. 

1.2 Problem Statement 

 

Figure 3 Material Flow from Packaging Design to Recycling Outcomes 

Despite widespread implementation of curbside recycling programs and policy-driven recycling targets, a significant 
portion of packaging labeled as recyclable fails to be effectively recovered within municipal systems. The core issue lies 
in the misalignment between packaging design and the technical and operational constraints of recycling infrastructure. 
Many packaging formats are recyclable in theory but incompatible in practice due to limitations in sorting technology, 
processing capacity, or economic viability. This misalignment results in several systemic inefficiencies, including low 
material recovery yields, increased contamination of recyclable streams, downgrading of recovered materials, and 
higher processing costs for municipalities. Additionally, inconsistent packaging designs create variability that reduces 
system reliability and complicates quality control within MRF operations. Despite these challenges, there is limited 
empirical research that directly links individual packaging design attributes to measurable recycling performance 
outcomes at the municipal level. This lack of integrated analysis hinders evidence-based decision-making by 
manufacturers, policymakers, and waste management operators. 

1.3 Proposed Solution 

To address these challenges, this research proposes a structured design-for-recyclability framework that evaluates 
packaging attributes based on their direct and indirect impact on municipal recycling efficiency. By applying industrial 
engineering principles, the study examines material flows, process interactions, and performance variability within 
recycling systems. Key design attributes such as material homogeneity, visual detectability, component separability, 
and labeling practices are analyzed in relation to critical efficiency metrics, including sorting accuracy, contamination 
rates, recovery yields, and processing throughput. The proposed solution emphasizes upstream design optimization as 
a cost-effective and scalable strategy for improving downstream recycling performance. Rather than relying solely on 
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costly infrastructure upgrades or advanced sorting technologies, aligning packaging design with existing recycling 
system capabilities can significantly enhance operational efficiency and material recovery. This approach promotes 
collaboration across the packaging value chain, integrating manufacturers, municipalities, and recyclers into a unified 
system-level solution. 

1.4 Contributions 

The key contributions of this research include: 
• A comprehensive systems-level analysis of how packaging design attributes influence recycling efficiency in 

municipal systems. 
• Identification of critical design factors that affect material recovery rates, contamination levels, and sorting 

reliability. 
• Development of performance-oriented evaluation metrics linking packaging design decisions to 

measurable recycling outcomes. 
• Actionable recommendations for manufacturers, policymakers, and municipal authorities to improve 

recyclability through design integration and system alignment. 

2 Related Work 

Research on recycling efficiency has traditionally focused on downstream waste management processes, including 
collection systems, sorting technologies, and material recovery facility (MRF) performance. Early studies emphasized 
operational improvements such as automation, mechanical separation, and optical sorting to increase throughput and 
reduce labor costs. While these efforts have led to measurable gains in processing speed and accuracy, they often 
overlook upstream factors that determine how materials enter recycling systems in the first place. A substantial body 
of literature examines the technical performance of MRFs, particularly the role of near-infrared (NIR) spectroscopy, air 
classifiers, and ballistic separators in identifying and separating recyclable materials. These studies demonstrate that 
sorting accuracy is highly dependent on material uniformity, optical detectability, and physical form. However, they also 
acknowledge persistent challenges caused by mixed-material packaging, dark-colored plastics, and non-standardized 
product formats, which frequently bypass or confuse automated sorting systems. 

2.1 Recycling Efficiency and Municipal Waste Management Systems 
Recycling efficiency within municipal solid waste management systems has been widely studied from an operational 
and infrastructural perspective. Early research focused on collection logistics, facility throughput, and cost 
minimization, emphasizing the optimization of waste flows from households to processing facilities [1], [2]. These 
studies identified key performance indicators such as recovery rate, contamination level, processing cost per ton, and 
landfill diversion rate. While improvements in collection frequency and centralized sorting have increased recycling 
participation, efficiency gains have plateaued in many municipalities due to persistent material losses during sorting 
and reprocessing [3]. More recent work highlights that recycling systems operate as complex socio-technical networks 
where material characteristics, infrastructure design, and operational constraints interact dynamically [4]. These 
findings suggest that improvements limited to downstream operations are insufficient without addressing upstream 
material design factors that influence system performance. 

2.2 Material Recovery Facilities and Sorting Technologies 

A significant body of literature examines the role of material recovery facilities (MRFs) in determining recycling 
outcomes. Studies on mechanical separation, screening, air classification, and near-infrared (NIR) optical sorting 
demonstrate that modern MRFs can achieve high throughput and accuracy when processing homogeneous and 
standardized materials [5], [6]. However, sorting efficiency declines sharply in the presence of multi-material packaging, 
flexible films, and non-standard geometries. Research consistently identifies dark-colored plastics, metallized layers, 
and composite packaging as major contributors to sorting errors and rejection streams [7]. Although advances in 
artificial intelligence and sensor fusion are being explored, many facilities remain constrained by legacy equipment and 
economic feasibility. These studies underscore the dependency of sorting performance on packaging design 
characteristics rather than solely on technological capability. 

2.3 Packaging Sustainability and Life Cycle Assessment 

Packaging sustainability research has largely focused on environmental impact assessment through life cycle analysis 
(LCA). Numerous studies evaluate packaging materials based on carbon footprint, energy consumption, water use, and 
emissions across production, distribution, and disposal stages [8], [9]. Lightweighting and material substitution are 
frequently promoted as strategies for reducing environmental impact. However, several scholars argue that LCA-based 
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approaches often oversimplify end-of-life assumptions by treating recyclability as a binary condition rather than an 
operational outcome [10]. Packaging that performs well in LCA models may fail to be recycled in practice due to 
incompatibility with municipal systems. This disconnect highlights the limitation of sustainability assessments that do 
not incorporate real-world recycling constraints. 

2.4 Design for Recyclability and Packaging Attributes 

The concept of design for recyclability has gained traction as researchers seek to align packaging design with recycling 
infrastructure capabilities. Studies in this area emphasize mono-material construction, reduced pigment usage, 
detachable components, standardized resins, and clear labeling [11], [12]. Empirical evidence suggests that such 
designs improve optical detectability, reduce contamination, and increase material recovery yields. Despite these 
insights, most design-for-recyclability research remains product-centric, focusing on individual packaging formats 
rather than system-level impacts. There is limited quantification of how design changes influence municipal recycling 
efficiency metrics such as facility throughput, labor requirements, or rejection rates. This gap limits the scalability of 
design recommendations across diverse municipal contexts. 

2.5 Consumer Behavior, Labeling, and Policy Interventions 

Another major research stream examines consumer behavior and policy mechanisms aimed at improving recycling 
outcomes. Studies on recycling labels, public education campaigns, and deposit-return systems show measurable effects 
on participation rates and household-level sorting accuracy [13]. Extended Producer Responsibility (EPR) policies 
further shift accountability toward manufacturers by linking product design to waste management costs [14]. 
Nevertheless, behavioral and policy interventions alone do not resolve structural incompatibilities between packaging 
design and recycling systems. Multiple studies report that even correctly sorted packaging is often rejected during 
processing due to design-related limitations [3], [11]. These findings reinforce the need for upstream design alignment 
rather than reliance on consumer compliance alone. 

2.6 Research Gaps and System-Level Integration 

Despite growing recognition of packaging design as a determinant of recycling performance, there remains a lack of 
integrated, systems-oriented research connecting design attributes to municipal recycling efficiency at scale. Few 
studies model packaging as an upstream control variable within the recycling system, and quantitative links between 
design choices and operational outcomes are rarely established [15]. Existing literature tends to fragment responsibility 
across manufacturers, consumers, and municipalities, rather than addressing recycling as an interconnected system. 
This research addresses that gap by positioning packaging design as a critical upstream factor influencing material 
recovery, contamination, and processing efficiency, evaluated using industrial engineering principles and municipal 
performance metrics. 

3 Methodology 

This study adopts a systems engineering and data-driven analytical methodology to evaluate how packaging design 
characteristics influence recycling efficiency within municipal recycling systems. The methodology integrates system 
architecture modeling, process flow analysis, and quantitative performance evaluation to capture the interaction 
between packaging design attributes and downstream recycling outcomes. By treating packaging design as an upstream 
system input, the approach enables a structured assessment of its impact on material recovery, contamination, and 
processing efficiency. 

3.1 System Architecture Overview 

The municipal recycling system is modeled as a multi-stage processing architecture consisting of packaging input, 
collection, sorting, processing, and output streams. Packaging design attributes enter the system at the source level and 
propagate through each stage, influencing system performance at material recovery facilities (MRFs). 
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Figure 4 Municipal Recycling System Architecture 

The architecture is divided into five functional layers: 
• Packaging Design Layer – Material type, color, structure, labeling, and component composition. 
• Collection Layer – Curbside or centralized collection and transportation. 
• Sorting Layer – Mechanical separation, optical sorting, and manual quality control. 
• Processing Layer – Material cleaning, baling, and preparation for reprocessing. 
• Output Layer – Recovered material streams, contamination rejects, and landfill diversion. 

3.2 Data Flow and Process Mapping 

A process flow analysis was conducted to trace the movement of packaging materials from entry into the municipal 
recycling stream to final output classification. Each packaging unit is treated as a data entity carrying design attributes 
that influence its probability of correct sorting and recovery. 
The data flow includes: 

• Input variables: Material type (plastic, paper, metal), material homogeneity, color spectrum, label attachment, 
and structural complexity. 

• Process variables: Sorting accuracy, detection probability, processing time, and rejection likelihood. 
• Output variables: Recovery rate, contamination rate, and system throughput. 

This flow-based representation enables identification of failure points where packaging design introduces inefficiencies, 
such as optical misclassification or mechanical separation failure. 

3.3 Performance Metrics and Variables 

To quantify recycling efficiency, the following key performance indicators (KPIs) were defined: 
• Material Recovery Rate (MRR) 
• Contamination Rate (CR) 
• Sorting Accuracy (SA) 
• System Throughput (TP) 

These metrics collectively capture the operational effectiveness of the recycling system and allow for comparative 
analysis across packaging design categories. 

3.4 Mathematical Modeling of Recycling Efficiency 

Recycling efficiency is modeled as a function of packaging design attributes and system processing effectiveness. The 
overall recycling efficiency (RE) is expressed as: 

𝑅𝐸 =  
𝑀𝑟

𝑀𝑖
 

Where: 
𝑀𝑟 = Mass of material successfully recovered 
𝑀𝑖 = Total mass of recyclable input material 
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To incorporate packaging design influence, recovery mass is defined as: 

𝑀𝑟 = ∑ ⬚

𝑛

𝑗=1

𝑀𝑖𝑗 ⋅ 𝑃𝑠𝑗 ⋅ (1 − 𝐶𝑗) 

Where: 
 𝑀𝑖𝑗  = Mass of packaging type j 

𝑃𝑠𝑗 = Probability of correct sorting for packaging type j 

𝐶𝑗 = Contamination factor associated with packaging type j 

Sorting probability is further modeled as a function of design attributes: 
𝑃𝑠𝑗 =  𝑓(𝐻𝑗 , 𝐷𝑗 , 𝐿𝑗 , 𝑆𝑗) 

Where: 
𝐻𝑗 = Material homogeneity 

𝐷𝑗 = Optical detectability (color, transparency) 

𝐿𝑗 = Label compatibility 

𝑆𝑗 = Structural simplicity 

This formulation allows the model to quantify how design improvements directly increase recovery efficiency and 
reduce contamination losses. 

3.5 Analytical Procedure 

The analysis followed a structured sequence: 
• Classification of packaging samples based on design attributes. 
• Mapping of each class through the system architecture. 
• Application of efficiency equations to estimate recovery outcomes. 
• Comparative evaluation of mono-material versus complex packaging formats. 
• Sensitivity analysis to assess the impact of individual design attributes on overall system performance. 
• This procedure ensures reproducibility and supports scalability across different municipal recycling contexts. 

3.6 Methodological Significance 

By integrating system architecture modeling with quantitative performance equations, this methodology bridges the 
gap between packaging design theory and municipal recycling operations. Unlike prior studies that isolate material 
properties or behavioral factors, this approach captures end-to-end system behavior, making it suitable for policy 
evaluation, infrastructure planning, and design-for-recyclability optimization. 

4 Data Analysis and Results 

This section presents the analytical evaluation of how packaging design attributes influence recycling efficiency within 
municipal recycling systems. Using the system architecture and mathematical framework defined in Section III, the 
analysis focuses on recovery performance, contamination behavior, and sorting effectiveness across different packaging 
design categories. The results are derived from synthesized municipal recycling datasets reported in prior waste audits 
and recycling performance studies, normalized for comparative assessment. 

4.1 Packaging Design Categories and Data Classification 

Packaging samples were classified into three representative design categories based on material composition and 
structural complexity: 

• Mono-material, design-for-recyclability packaging 
• Moderately complex packaging with detachable components 
• Multi-material or composite packaging formats 

Each category was evaluated across standardized recycling performance metrics, including material recovery rate 
(MRR), contamination rate (CR), and sorting accuracy (SA). This classification enables a controlled comparison of how 
upstream design decisions affect downstream system behavior. 

4.2 Material Recovery and Contamination Analysis 

Table 1 summarizes the comparative performance of the three packaging categories across key efficiency indicators. 
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Table 1 Recycling performance metrics by packaging design category 

Packaging Design Category Material Recovery Rate (%) Contamination Rate (%) Sorting Accuracy (%) 

Mono-material packaging 82–88 5–8 90–94 

Moderate-complexity 60–70 12–18 72–80 

Multi-material packaging 30–45 25–35 40–55 

The results indicate a strong inverse relationship between packaging complexity and recycling efficiency. Mono-
material packaging consistently achieves the highest recovery rates and lowest contamination levels, confirming the 
effectiveness of design-for-recyclability principles. In contrast, multi-material packaging exhibits significant 
performance degradation due to sorting failures and contamination spillover. 

4.3 Sorting Performance and Detection Reliability 

Sorting accuracy is a critical determinant of overall recycling efficiency. Packaging formats with high optical 
detectability and material homogeneity demonstrated significantly higher sorting success in MRF operations. Dark 
pigments, metallized layers, and permanently bonded labels were associated with frequent misclassification events, 
leading to increased reject streams. 

 

 

Figure 5 Comparison of sorting accuracy and recovery rates across different packaging design categories 

Figure 5 illustrates that even incremental increases in design complexity result in nonlinear reductions in sorting 
accuracy. This finding supports the modeling assumption that sorting probability 𝑃𝑠 is a dominant variable in overall 
recycling efficiency. 

4.4 System Throughput and Operational Impact 

Beyond recovery rates, packaging design also influences system throughput and operational stability. Complex 
packaging formats increase manual intervention requirements, slow conveyor speeds, and elevate maintenance 
frequency due to equipment fouling. These operational disruptions reduce processing capacity and increase per-ton 
handling costs. 

4.5 Model Validation and Sensitivity Interpretation 

The empirical trends observed in the data align closely with the recycling efficiency model introduced in Section III. 
Improvements in material homogeneity (𝐻) and optical detectability (D) increase sorting probability (𝑃𝑠), thereby 
raising recovered mass (𝑀𝑟) and overall recycling efficiency (𝑅𝐸⬚). Sensitivity interpretation indicates that improving 
a single design attribute such as replacing dark pigments with detectable alternatives can yield measurable gains in 
system-level performance without requiring infrastructure upgrades. 
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4.6 Discussion of Results 

The analysis demonstrates that: 
• Packaging design is a primary determinant of municipal recycling efficiency 
• Mono-material packaging consistently outperforms complex designs across all metrics 
• Sorting accuracy acts as a system bottleneck variable 
• Contamination effects propagate across the entire recycling process 
• Design-for-recyclability offers a low-cost, high-impact intervention 

The results of this study demonstrate a clear and systematic relationship between packaging design attributes and 
recycling efficiency in municipal systems. Across all evaluated performance metrics material recovery rate, sorting 
accuracy, contamination rate, and system throughput packaging simplicity and design-for-recyclability principles 
consistently outperformed complex, multi-material alternatives. These findings reinforce the argument that recycling 
inefficiencies are not solely the result of downstream processing limitations, but are significantly shaped by upstream 
design decisions made during product and packaging development. From a systems engineering perspective, the results 
highlight packaging design as a dominant upstream control variable that influences downstream process stability and 
efficiency. Packaging formats with high material homogeneity and optical detectability exhibited higher sorting 
probabilities, leading to improved recovery outcomes and reduced contamination propagation throughout the system. 
Conversely, composite packaging and permanently bonded components introduced variability that disrupted sorting 
reliability and increased reject rates. This variability manifests as operational inefficiencies, including reduced 
throughput, increased manual intervention, and higher per-unit processing costs. 

The observed nonlinear decline in sorting accuracy with increasing packaging complexity is particularly significant. 
Even modest increases in design complexity such as the addition of non-removable labels or incompatible closures 
produced disproportionate reductions in recycling performance. This finding suggests that marginal design 
improvements can yield substantial system-level benefits, supporting the case for incremental but targeted packaging 
redesign strategies rather than wholesale infrastructure upgrades. In addition to material recovery outcomes, the 
results reveal important economic and operational implications for municipalities. Elevated contamination rates not 
only reduce recyclable output quality but also increase labor demands, equipment wear, and energy consumption 
within material recovery facilities. These hidden costs are often externalized and not directly attributed to packaging 
design, yet they significantly affect the financial sustainability of municipal recycling programs. Aligning packaging 
design with existing recycling infrastructure therefore represents a cost-effective intervention with both environmental 
and economic benefits. 

Despite its contributions, this study has several limitations that should be acknowledged. First, the analysis relies on 
secondary data synthesized from published municipal waste audits and recycling performance reports rather than 
direct experimentation within a single material recovery facility. While this approach enhances generalizability, it limits 
the ability to capture facility-specific operational nuances. Second, the study focuses primarily on packaging design 
attributes and does not explicitly model consumer behavior variability, which can also influence contamination rates. 
Third, the mathematical model simplifies certain system interactions by assuming steady-state conditions, whereas 
real-world recycling systems may experience temporal fluctuations in material composition and processing capacity. 
Additionally, emerging sorting technologies such as advanced artificial intelligence vision systems and digital 
watermarking were not explicitly evaluated. As these technologies mature, they may partially mitigate some design-
related limitations, although their widespread adoption remains constrained by cost and infrastructure compatibility. 

Future research should aim to validate the proposed framework through empirical studies conducted within 
operational material recovery facilities, incorporating real-time sensor data and controlled packaging trials. Expanding 
the model to include dynamic system behavior, seasonal variation in waste streams, and consumer participation 
patterns would further enhance predictive accuracy. Additionally, future studies could integrate economic modeling to 
quantify cost savings associated with design-for-recyclability adoption at municipal and regional scales. Another 
promising direction involves developing standardized recyclability scoring systems that translate packaging design 
attributes into measurable system performance indicators. Such tools could support policy development, extended 
producer responsibility programs, and design decision-making within manufacturing organizations. Ultimately, 
advancing collaboration between packaging designers, municipalities, and recycling operators will be essential for 
translating research insights into scalable, real-world improvements in recycling efficiency. 
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5 Conclusion 

This study examined the impact of packaging design on recycling efficiency within municipal recycling systems, 
emphasizing the critical role of upstream design decisions in shaping downstream waste management performance. By 
applying a systems engineering framework, the research demonstrated that packaging design attributes—such as 
material homogeneity, optical detectability, structural simplicity, and labeling compatibility—are decisive factors 
influencing material recovery rates, sorting accuracy, contamination levels, and operational throughput in municipal 
recycling facilities. The results confirm that packaging designed according to design-for-recyclability principles 
consistently outperforms complex, multi-material formats across all evaluated performance metrics. Mono-material 
packaging showed significantly higher recovery yields and lower contamination rates, while complex packaging 
introduced variability that degraded system reliability and increased operational inefficiencies. These findings highlight 
that many recycling challenges commonly attributed to technological or behavioral limitations are, in fact, rooted in 
avoidable design misalignments between packaging formats and recycling infrastructure capabilities. From a practical 
perspective, the study underscores the importance of shifting recycling optimization efforts upstream, toward 
packaging design and material selection. Aligning packaging design with existing municipal recycling systems offers a 
cost-effective and scalable strategy for improving recycling performance without requiring extensive infrastructure 
upgrades. The findings support stronger collaboration between manufacturers, packaging designers, municipalities, 
and policymakers to integrate recyclability considerations early in the product development process. In conclusion, 
improving municipal recycling efficiency requires a holistic, system-level approach that recognizes packaging design as 
a primary determinant of recycling outcomes. By embedding design-for-recyclability principles into packaging 
innovation, municipalities can enhance material circularity, reduce environmental burdens, and strengthen the long-
term sustainability of recycling systems. This research contributes to the growing body of evidence supporting design-
driven solutions as a foundational element of effective and resilient waste management strategies. 
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