

(REVIEW ARTICLE)

Medical technology and patient-centered care: innovation and patient-focused approach

Ioanna Maniou ^{1,*}, Pinelopi Sotiropoulou ² and Maria Manola ³

¹ Medical School, National and Kapodistrian University of Athens and University of Lausanne.

² School of Public Health, University of West Attica, Greece.

³ Department of Tourism and Management, University of West Attica, Greece.

World Journal of Advanced Engineering Technology and Sciences, 2026, 18(01), 157-164

Publication history: Received on 05 December 2025; revised on 12 January 2026; accepted on 14 January 2026

Article DOI: <https://doi.org/10.30574/wjaets.2026.18.1.0022>

Abstract

The rapid advancement of medical technology has profoundly transformed contemporary healthcare, reshaping diagnostic processes, therapeutic interventions, and models of care delivery. At the same time, patient-centered care has emerged as a fundamental paradigm for healthcare quality, emphasizing respect for patients' values, autonomy, and active involvement in clinical decision-making. This article critically examines the interaction between medical technology and patient-centered care, highlighting the conditions under which technological innovation can enhance, rather than undermine, the humanistic foundations of medicine.

Technological applications such as digital health systems, advanced imaging, artificial intelligence, and minimally invasive procedures offer significant potential for improving clinical accuracy, efficiency, and personalization of treatment. However, their safe and effective implementation is strongly dependent on the education, clinical experience, and reflective competence of healthcare professionals. Particular emphasis is placed on the concept of the learning curve, which is identified as a decisive determinant of patient safety, procedural outcomes, and quality of care. Evidence suggests that inadequate training and limited experiential expertise may increase the risk of errors and weaken the therapeutic relationship.

The article further addresses the risk of technocratization in medicine, whereby excessive reliance on technological solutions may marginalize clinical judgment and the psychosocial dimensions of care. Within this context, patient-centered care is presented as an essential framework that ensures technology functions as a supportive tool rather than a substitute for human interaction.

Finally, the analysis incorporates cultural and social determinants influencing patients' acceptance and experience of medical technology. Integrating ethical sensitivity, sociocultural awareness, and narrative understanding into technologically mediated care is proposed as a prerequisite for sustainable, equitable, and genuinely patient-centered healthcare, inviting further interdisciplinary research and critical scholarly engagement.

Keywords: Patient-centered care; Medical technology; Learning curve; Clinical education; Digital health; Healthcare ethics

* Corresponding author: Ioanna Maniou.

1. Introduction

Medical practice is characterized by the rapid evolution of technology, which profoundly transforms the diagnosis, treatment, and management of patients. At the same time, patient-centered care has emerged as a fundamental principle for the effectiveness and quality of medical interventions, as the acceptance and utilization of technology depend on patients' individual needs, values, and expectations (Vasilopoulos et al., 2018).

Medical technology can enhance diagnostic accuracy, reduce procedural times, and support patient monitoring. However, its effective implementation requires appropriate training and accumulated clinical experience among healthcare professionals (Roupa et al., 2006; Roupa et al., 2008). Furthermore, the knowledge and education of students and healthcare professionals in reproductive health and preventive medicine, such as contraceptive methods, strengthen patient participation in decision-making processes and promote a truly patient-centered approach (Roupa et al., 2007).

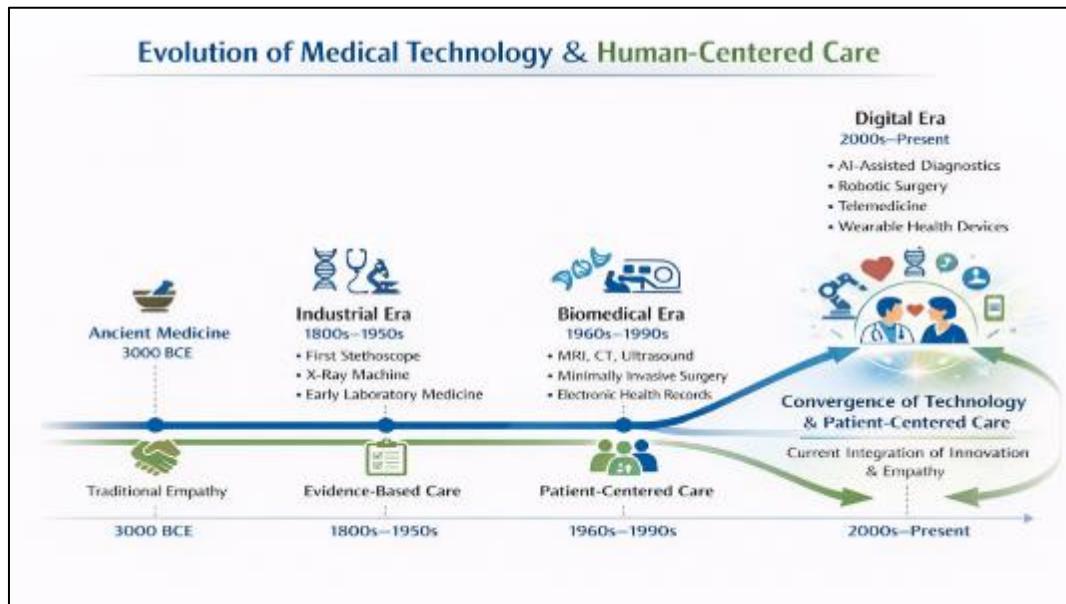
The integration of technological innovations into clinical practice should not be considered an end in itself, but rather as a tool that supports the therapeutic relationship, fosters personalized care, and builds trust between healthcare professionals and patients. Challenges arising from the use of technology, such as time management, training, and psychosocial support, require a holistic approach that combines technology, clinical experience, and humanistic values (Vasilopoulos et al., 2018; Roupa et al., 2008).

In contemporary practice, technology has become an integral part of healthcare, transforming the production, processing, and utilization of medical data. The digitization of medical records, the application of artificial intelligence (AI), robotic surgical platforms, and advanced imaging techniques have led to significant improvements in diagnosis, treatment, and disease prognosis, enhancing the accuracy, speed, and efficiency of clinical processes (Badawy et al., 2022). Simultaneously, digital health applications have been shown to increase patient engagement in their care and support self-management of chronic conditions, contributing to improved clinical and psychosocial outcomes (Badawy et al., 2022).

Nevertheless, rapid technological advancement raises profound scientific and ethical concerns. The "technocratization" of medicine—with an exclusive focus on technical solutions—may distance practice from the patient-centered core of care, potentially impacting the therapeutic relationship and patients' quality of life (Patient-Centered Care, 2021; Schofield et al., 2019).

Patient-centered care is now recognized as a fundamental principle for the functioning of healthcare systems, viewing patients not merely as carriers of disease but as active participants with unique biopsychosocial needs and expectations (Badawy et al., 2022). Patient-centered medicine emphasizes shared decision-making, collaborative development of therapeutic plans, and the strengthening of trust and communication between patients and healthcare professionals (Patient-Centered Care, 2021; Schofield et al., 2019).

Within this framework, technology should serve as a tool that enhances the human dimension of care: supporting the physician-patient relationship, enabling personalized treatment, and empowering patients through access to information, communication tools, and self-management opportunities (Badawy et al., 2022).



2. Medical Technology and Patient-Centered Care

Patient-centered care focuses on respecting patients' dignity, autonomy, and values, promoting their participation in decision-making and in shaping the therapeutic process (Barry & Edgman-Levitin, 2012; Epstein & Street, 2011). When applied appropriately, medical technology can enhance this approach by providing tools for personalized therapy, more accurate diagnosis, and improved communication between patients and healthcare professionals (Topol, 2019; Institute of Medicine, 2001).

However, technology is not neutral. The use of complex systems without proper training or understanding of human factors can increase the risk of medical errors, create feelings of patient alienation, and limit clinical judgment (Reason, 2000; Shapiro et al., 2009). Studies in mammography and biopsy show that professional experience is crucial for patient safety and care quality, while training and supervision significantly reduce the risk of complications (Michalopoulos, Maniou & Zografos, 2012; Maniou et al., 2019; Bruyère et al., 2020).

The integration of innovative technologies, such as artificial intelligence and digital imaging, can enhance clinical effectiveness but must always be accompanied by ethical and educational frameworks that ensure technology supports rather than replaces the patient-centered nature of care (Topol, 2019; Zagouri & Maniou, 2016; Maniou et al., 2011). The proper balance between technological innovation and a patient-centered approach is critical for ensuring high-quality, safe, and participatory medical care.

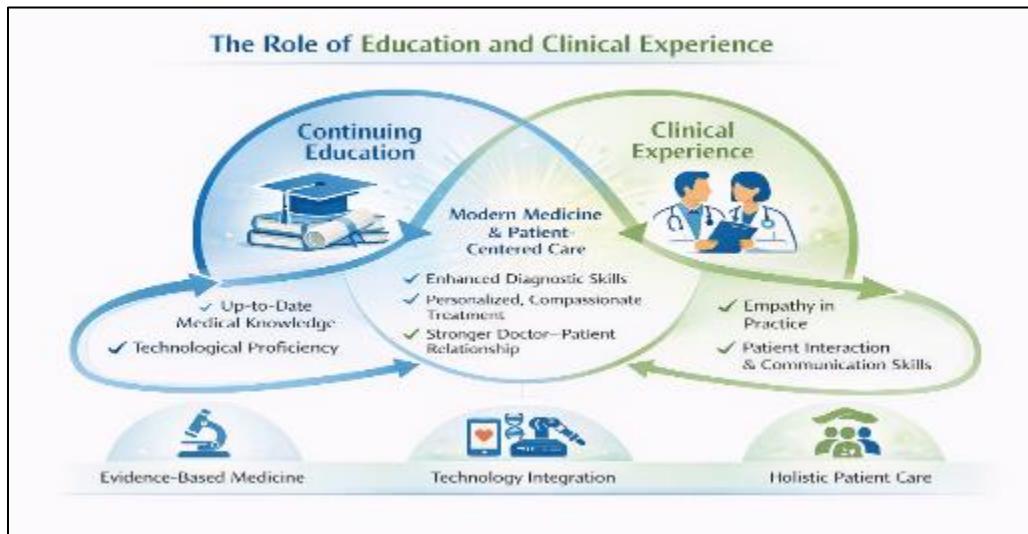
Figure 1 Commentary

Medical technology enhances care by providing tools for more accurate diagnosis and treatment. A patient-centered approach ensures that patients' needs and preferences remain at the core. The combination of technology and respect for the individual improves both care quality and patient experience.

3. The Role of Education and Clinical Experience

The concept of the learning curve emerges as a critical factor in modern medical practice, demonstrating that the effective and safe use of medical technology requires time, systematic training, and the accumulation of clinical experience. No matter how advanced, technological innovation cannot function autonomously without the active involvement of the human factor. The quality of care and patient safety depend directly on healthcare professionals' ability to integrate technology into clinical practice with critical thinking, responsibility, and ethical awareness (Institute of Medicine, 2001; Reason, 2000).

Empirical studies in fields such as interventional radiology and breast surgery have documented that physician experience significantly affects diagnostic accuracy, complication reduction, and overall therapeutic outcomes. In particular, the implementation of the Breast Lesion Excision System (BLES) has highlighted that the learning curve is a decisive factor for patient safety and procedural success (Michalopoulos, Maniou & Zografos, 2012; Maniou et al., 2019). Similarly, in diagnostic imaging, radiologist experience has proven critical for the correct interpretation of magnetic resonance imaging in endometriosis, confirming that technology requires specialized knowledge and continuous practice (Bruyère et al., 2020).


Balancing medical education with patient protection represents a fundamental challenge in contemporary medicine. Even when technology reduces invasiveness and improves precision, it does not replace clinical judgment or human experience (Maniou et al., 2011). On the contrary, it requires a clear pedagogical and ethical framework for its application.

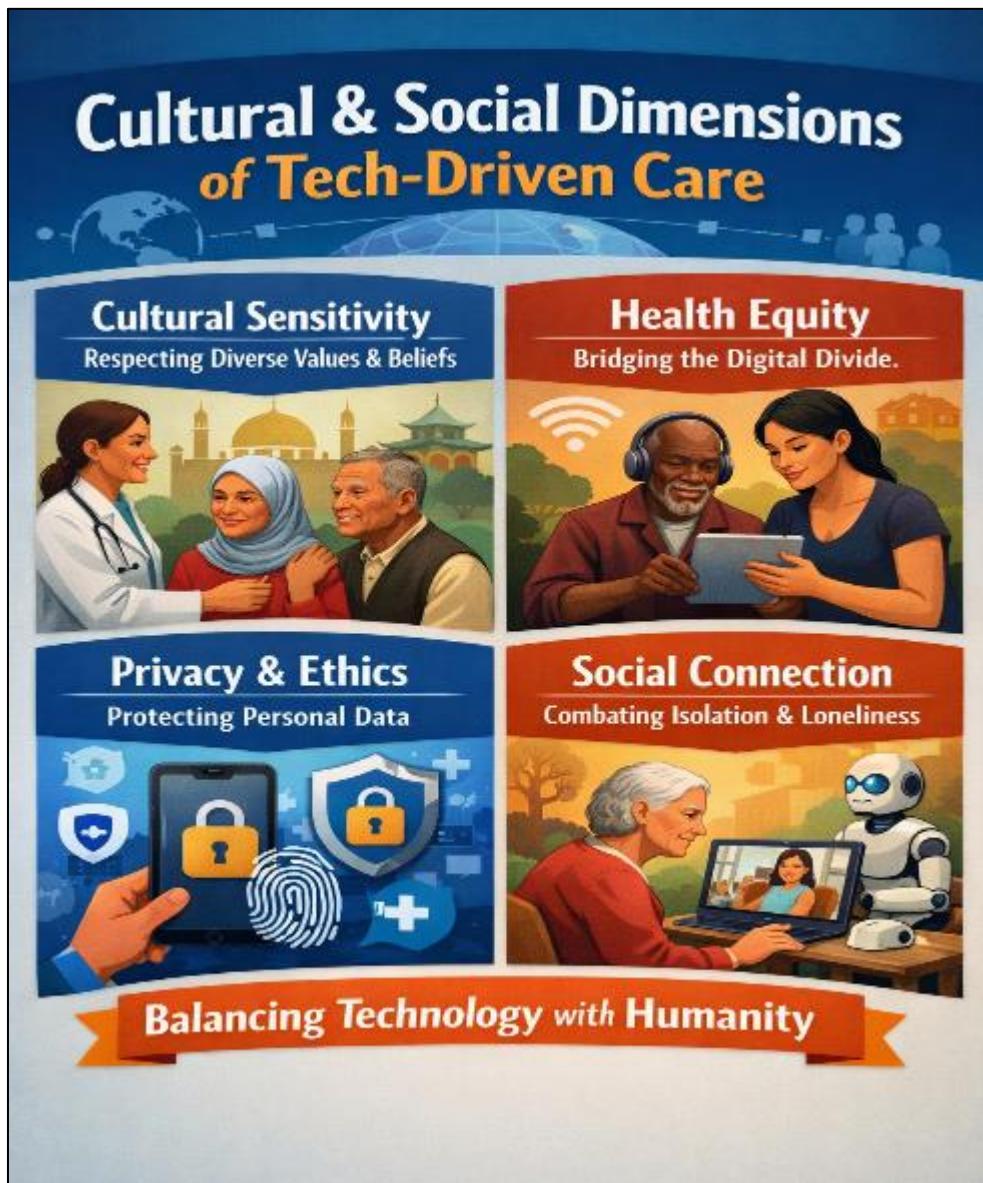
In this context, medical education must go beyond the narrow teaching of technical skills and adopt a holistic approach that includes developing communication skills, cultivating ethical sensitivity, and enhancing cultural awareness.

Patient-centered care relies on shared decision-making and understanding the values and expectations of patients, strengthening trust and the therapeutic relationship (Epstein & Street, 2011; Barry & Edgman-Levitian, 2012).

Moreover, in the era of digital medicine and artificial intelligence, continuous education becomes even more essential. New technologies do not substitute human judgment but demand higher levels of scientific expertise, ongoing reflection, and professional accountability (Topol, 2019). The integration of technology into clinical practice can enhance human-centered care only when accompanied by education, experience, and respect for the humanistic dimensions of medicine (Shapiro et al., 2009).

Therefore, education and clinical experience are not merely supportive elements of medical technology but fundamental prerequisites for its sustainable, safe, and genuinely patient-centered application.

Figure 2 Commentary


Education equips healthcare professionals with essential theoretical knowledge, while clinical experience allows its practical application. This synergy enhances critical thinking, decision-making, and professional confidence. It also improves patient care, reduces errors, and fosters effective communication. Continuous learning ensures adaptation to evolving technologies and practices, shaping competent, well-rounded practitioners.

Finally, we underline the importance of all digital technologies in the education domain, and specifically for medical technology training and education. ICTs support education for everyone, give new methods for efficient teachers training, improve knowledge retention, encourage collaboration, improve transparency, create learner-centered approaches, invent new teaching methods, and accelerate knowledge acquisition. Moreover, provide new tools for knowledge representation and endorse the education activities and methods via virtualization, mobilization, artificial intelligence, and through new learning environments- worlds. More specifically, in medical training ICTs are very productive and successful, facilitating and improving the assessment, the intervention and the educational procedures via Mobiles which brings educational activities everywhere [25-28] and through various ICTs applications which are the core supporters of education [29-34]. The exploitation of AI, STEM & ROBOTICS [35] raise educational procedures into new levels of adaptability, innovation and performance, while games transform education in a multisensory, very friendly and enjoyable interaction [36-37]. Additionally, the adoption, enhancement and combination of ICTs with theories and models of metacognition, mindfulness, meditation and emotional intelligence cultivation [38-43] brings the mental abilities to the core of the education procedures and policies, and accelerate and improve even more the educational practices and results, especially in medical technology training.

4. Cultural and Social Dimensions of Technological Care

Technological advancement in medicine cannot be examined in isolation from the cultural and social conditions in which it develops and is applied. Healthcare is inherently a social and human-centered practice, where technology functions as a means rather than an end. Perceptions of health, illness, treatment, and healing are historically and culturally shaped, influencing how technological innovations are accepted and integrated into clinical practice (Maniou et al., 2025g).

The historical trajectory of medicine, from the Hippocratic tradition to modern robotic and digital medicine, demonstrates that every technological leap is accompanied by shifts in social values, physician-patient relationships, and the understanding of the human body and disease. Medical knowledge evolves not linearly but through continuous interactions among science, culture, and social needs, making a broader humanistic approach to technological care necessary (Maniou et al., 2025h).

Figure 3 Commentary

In this context, the integration of medicine with literature, narrative, and cultural practices offers valuable tools for understanding the experience of illness. Narrative acts as a bridge between biomedical knowledge and lived experience,

allowing the exploration of psychosocial dimensions often invisible in purely technocratic care models (Maniou et al., 2025h).

Furthermore, research in cultural entrepreneurship indicates that participation in cultural activities, such as literary festivals and literary parks, is directly associated with improved mental health, enhanced social cohesion, and the cultivation of creative expression (Pagkalos et al., 2025e; Maniou et al., 2025f). These findings reinforce the view that health encompasses not only the physical dimension but also psychological, social, and cultural parameters.

Technological care thus acquires meaningful significance only when embedded within a broader sociocultural framework that respects human experience, cultural identity, and community values. Just as cultural entrepreneurship succeeds when it combines innovation and cultural memory, medical technology must function in a complementary role to humans, enhancing care quality rather than weakening the therapeutic relationship (Maniou et al., 2025g).

Overall, the cultural and social dimensions of technological care highlight the need for an interdisciplinary and patient-centered approach to medicine. The convergence of medical science, the humanities, and cultural practices offers a fertile ground for developing sustainable and genuinely human-centered healthcare models in the modern world.

Technological care is significantly influenced by cultural and social factors. Patients' values and beliefs shape the acceptance of innovations. By taking these dimensions into account, care becomes more patient-centered and effective.

5. Conclusions and Recommendations

The analysis demonstrates that medical technology alone is insufficient for high-quality care; its effectiveness depends on its integration within a patient-centered framework. The education and clinical experience of healthcare professionals are critical factors for the correct and safe use of technological tools. Furthermore, recognizing cultural and social dimensions ensures that care is responsive to patients' needs and preferences.

As recommendations, the development of training programs that combine technological proficiency with a patient-centered approach is advised. Promoting interoperable tools that facilitate communication between patients and healthcare professionals, as well as integrating cultural awareness into decision-making processes, is also recommended. Finally, ongoing evaluation of the impact of technology on care—based on patient experience and satisfaction—can support the development of sustainable and effective patient-centered medical practices.

Compliance with ethical standards

Acknowledgments

The Authors would like to thank the SPECIALIZATION IN ICTs AND SPECIAL EDUCATION: PSYCHOPEDAGOGY OF INCLUSION Postgraduate studies Team, for their support.

Disclosure of conflict of interest

The Authors proclaim no conflict of interest.

References

- [1] Badawy, S.M. et al., 2022. Patient-centered digital health records and their effects on health outcomes. *Journal of Medical Internet Research*, 24(12), e43086. <https://doi.org/10.2196/43086>
- [2] Barry, M.J. & Edgman-Levitin, S., 2012. Shared decision making — the pinnacle of patient-centered care. *New England Journal of Medicine*, 366(9), pp.780–781. <https://doi.org/10.1056/NEJMp1109283>
- [3] Bruyère, C., Maniou, I., Habre, C., Botsikas, D., Chene, G., Pache, T. & Perneger, T.V., 2020. Pelvic MRI for Endometriosis: A Diagnostic Challenge for the Inexperienced Radiologist. How Much Experience Is Enough? *Academic Radiology*, 28(3). <https://doi.org/10.1016/j.acra.2020.02.023>
- [4] Epstein, R.M. & Street, R.L., 2011. The values and value of patient-centered care. *Annals of Family Medicine*, 9(2), pp.100–103. <https://doi.org/10.1370/afm.1239>

- [5] Institute of Medicine, 2001. Crossing the quality chasm: A new health system for the 21st century. Washington, DC: National Academies Press. <https://doi.org/10.17226/10027>
- [6] Maniou, F., Manola, M., Maniou, I., Mitoula, R. & Pagkalos, I., 2025f. Literary parks in Europe as entrepreneurial models of cultural tourism. *Global Journal of Engineering and Technology Advances*, 25(1), pp.24-35. <https://doi.org/10.30574/gjeta.2025.25.1.0296>
- [7] Maniou, I., 2024. The Learning Curve of Trainees in BLES. PhD thesis, 1st Propaedeutic Surgical Clinic, Medical School, National and Kapodistrian University of Athens, Hippocratio General Hospital.
- [8] Maniou, I., Kontos, M., Kontzoglou, K., Zografos, G.C. & Zografos, C., 2019. The learning curve of breast lesion excision system: Balancing patient's safety and surgical training. *The Breast Journal*, 26(4). <https://doi.org/10.1111/tbj.13632>
- [9] Maniou, I., Manola, M., Maniou, F. & Pagkalos, I., 2025g. When medicine meets civilization: From Hippocrates to robotic surgery. *Magna Scientia Advanced Research and Reviews*, 15(1), pp.130-137. <https://doi.org/10.30574/msarr.2025.15.1.0119>
- [10] Maniou, I., Manola, M., Maniou, F. & Pagkalos, I., 2025h. Medicine and literature through time: A historical approach. *Magna Scientia Advanced Research and Reviews*, 15(1), pp.138-144. <https://doi.org/10.30574/msarr.2025.15.1.0120>
- [11] Maniou, I., Michalopoulos, N.V., Zografos, G.C. & Zografos, C., 2011. Health-related quality of life after stereotactic vacuum assisted breast biopsy utilizing radiofrequency: The Greek trial experience. *The Breast*, 20(1). [https://doi.org/10.1016/S0960-9776\(11\)70112-6](https://doi.org/10.1016/S0960-9776(11)70112-6)
- [12] Michalopoulos, N.V., Maniou, I. & Zografos, G.C., 2012. Breast Lesion Excision System Biopsy: The Learning Curve. *American Journal of Roentgenology*, 199(5), W667. <https://doi.org/10.2214/AJR.12.9154>
- [13] Pagkalos, I., Maniou, I., Maniou, F., Mitoula, R. & Manola, M., 2025e. The contribution of literary festivals to mental health and cultural development: A case study of Italy and Spain. *Magna Scientia Advanced Research and Reviews*, 15(1), pp.121-129. <https://doi.org/10.30574/msarr.2025.15.1.0118>
- [14] Patient-Centered Care: Transforming the Health Care System, 2021. *Journal of Medical Internet Research*. Available at: <https://www.jmir.org/2021/6/e24601/> [Accessed 2 Jan. 2026].
- [15] Reason, J., 2000. Human error: models and management. *BMJ*, 320(7237), pp.768-770. <https://doi.org/10.1136/bmj.320.7237.768>
- [16] Roupa, Z., Mylona, E., Sotiropoulou, P., Arsenos, P., Kotrotsiou, E. and Gourni, M., ... (2007) 'Planned parenthood and students' knowledge of contraceptive methods', *Health Science Journal*, 8.
- [17] Roupa, Z., Sotiropoulou, P., Kotrotsiou, E., Vassilopoulos, A. and Mylona, E., ... (2006) 'Exploring the problem of low back pain in relation to nurses' level of education', *Icus Nurs Web J*, pp. 1-6.
- [18] Roupa, Z., Tatsiou, I., Tsiklitara, A., Koulouri, A., Nikas, M. and Mpiskini, I., ... (2009) 'Anxiety and depression among elderly in the community', *Interscientific Health Care*, 1(2), p. 10.
- [19] Roupa, Z., Vassilopoulos, A., Sotiropoulou, P., Makrinika, E., Noula, E. and Faros, E., ... (2008) 'The problem of lower back pain in nursing staff and its effect on human activity', *Health Science Journal*, 2(4), p. 64.
- [20] Schofield, J. et al., 2019. Patient-centered care via health information technology: a qualitative study with experts from Israel and the U.S. *Health Informatics Journal*. <https://doi.org/10.1080/17538157.2019.1582055>
- [21] Shapiro, J., Coulehan, J., Wear, D. & Montello, M., 2009. Medical humanities and their discontents: definitions, critiques, and implications. *Academic Medicine*, 84(2), pp.192-198. <https://doi.org/10.1097/ACM.0b013e3181938bca>
- [22] Topol, E.J., 2019. High-performance medicine: the convergence of human and artificial intelligence. *Nature Medicine*, 25, pp.44-56. <https://doi.org/10.1038/s41591-018-0300-7>
- [23] Vasilopoulos, A., Marinou, S., Rammou, M., Sotiropoulou, P. and Roupa, Z., ... (2018) 'A research on anxiety and depression of the elderly in the community', *Hellenic Journal of Nursing Science*, 11(3), pp. 59-66.
- [24] Zagouri, F. & Maniou, I., 2016. Supportive Care During Pregnancy. In: *Managing Cancer during Pregnancy*. Springer, pp. https://doi.org/10.1007/978-3-319-28800-0_8
- [25] M Karyotaki, A Drigas, C Skianis 2022 The Role of Mobiles and Women in the Sustainable Local Economic Development. *International Journal of Interactive Mobile Technologies* 16 (22)

- [26] P. Leliopoulos, AS Drigas, 2022 The evolution of wireless mobile networks and the future 5G mobile technology for sustainability Technium Sustainability 2(2):28-43
- [27] A Stathopoulou, Z Karabatzaki, G Kokkalia, E Dimitriou, PI Loukeri, ...2018, Mobile Assessment Procedures for Mental Health and Literacy Skills in Education. International Journal of Interactive Mobile Technologies 12 (3), 21-37
- [28] Politi-Georgousi S, Drigas A 2020 Mobile Applications, an Emerging Powerful Tool for Dyslexia Screening and Intervention: A Systematic Literature Review , International Association of Online Engineering
- [29] Chaidi I, Papoutsi C, Drigas A, C Skianis 2022 Women: E-Entrepreneurship and Emotional Intelligence Technium Soc. Sci. J. 30, 214
- [30] Pappas M, Papagerasimou Y, Drigas A, D Raftopoulos, P Nikolaidis 2017 ICT-based Innovation and Employability for Women International Association of Online Engineering 7 (2), 36-47
- [31] Galitskaya V, Drigas A Special education: Teaching geometry with ICTs 2020 International Journal of Emerging Technologies in Learning (iJET) 15 (6)
- [32] Pappas M, et all 2017 Online Research for the Impact of ICTs on Greek Women's Employability and Entrepreneurship. International Journal of Advanced Corporate Learning 10 (1)
- [33] Karyotaki M, Drigas A, 2022 The impact of digital technologies and social networks in young women and young mother's entrepreneurship and employability Technium Sustainability 2(5):79-91
- [34] Alexopoulou, A., Batsou, A., & Drigas, A. S. (2019). Effectiveness of Assessment, Diagnostic and Intervention ICT Tools for Children and Adolescents with ADHD. International Journal of Recent Contributions from Engineering, Science & IT (iJES), 7(3), pp. 51–63. <https://doi.org/10.3991/ijes.v7i3.11178>
- [35] Karyotaki M, Drigas A, Skianis C, 2024 Contributions of the 9-Layered Model of Giftedness to the Development of a Conversational Agent for Healthy Ageing and Sustainable Living. Sustainability 16(7):1-18
- [36] Drigas A, Mitsea E, Skianis C. 2022 Virtual Reality and Metacognition Training Techniques for Learning Disabilities , SUSTAINABILITY 14(16), 10170, <https://doi.org/10.3390/su141610170>
- [37] Drigas A, Sideraki A 2024 Brain neuroplasticity leveraging virtual reality and brain-computer interface technologies. Sensors 24 (17), 5725
- [38] Drigas A, Papoutsi C, Skianis C, 2023 Being an emotionally intelligent leader through the nine-layer model of emotional intelligence—The supporting role of new technologies Sustainability 15 (10), 8103
- [39] Drigas A., Sideraki A. 2021 Emotional Intelligence in Autism , Technium Social Sciences Journal 26, 80, <https://doi.org/10.47577/tssj.v26i1.5178>
- [40] E Mitsea, A Drigas, C Skianis 2023 Digitally assisted mindfulness in training self-regulation skills for sustainable mental health: a systematic review Behavioral Sciences 13 (12), 1008
- [41] Bamicha V, Drigas A 2022 The Evolutionary Course of Theory of Mind-Factors that facilitate or inhibit its operation & the role of ICTs. Technium Soc. Sci. J. 30, 138
- [42] Chaidi I, Drigas A 2022 Social and Emotional Skills of children with ASD: Assessment with Emotional Comprehension Test (TEC) in a Greek context and the role of ICTs. Technium Soc. Sci. J. 33, 146
- [43] Kontostavrou, E. Z., & Drigas, A. (2021). How Metacognition Supports Giftedness in Leadership: A Review of Contemporary Literature. International Journal of Advanced Corporate Learning (iJAC), 14(2), pp. 4–16. <https://doi.org/10.3991/ijac.v14i2.23237>