

Smart IoT Infrastructure for Workplace Efficiency and Energy Savings

Mahrima Akter Mim ^{1,*}, Md Murad Sharif ², Florina Rahman ³ and Shamsun Nahar ⁴

¹ Bachelor of Business Science Computer Information Systems, New York City College of Technology.

² Master of Science in Computer Science, Lamar University, Beaumont, Texas.

³ Masters in Data Science and Business Analytics, Monroe University.

⁴ Masters in Management Information Systems, Lamar University, Beaumont, Texas.

World Journal of Advanced Engineering Technology and Sciences, 2026, 18(01), 140-156

Publication history: Received on 06 December 2025; revised on 11 January 2026; accepted on 14 January 2026

Article DOI: <https://doi.org/10.30574/wjaets.2026.18.1.0026>

Abstract

The rapid digitization of modern workplaces has led to increased reliance on electrical equipment, automated systems, and digital infrastructure, resulting in higher energy consumption and operational complexity. Conventional workplace infrastructure systems often operate independently, without real time coordination or intelligent control, which leads to energy wastage, inefficient resource utilization, and reduced employee comfort. To address these challenges, this paper proposes a Smart Internet of Things (IoT) based infrastructure aimed at improving workplace efficiency while achieving significant energy savings. The proposed system integrates distributed smart sensors, intelligent controllers, cloud-based data analytics, and automated control mechanisms to continuously monitor environmental conditions, occupancy behavior, and equipment usage in real time. By analyzing collected data, the system dynamically optimizes lighting, heating, ventilation, air conditioning, and power usage based on actual workplace demand. Experimental evaluation and scenario-based analysis indicate that the proposed IoT framework can reduce overall energy consumption by a substantial margin while maintaining optimal indoor comfort levels. Additionally, automation reduces manual intervention and operational overhead, contributing to improved productivity and system reliability. The modular and scalable design of the infrastructure allows it to be deployed across various workplace environments, including offices, industrial facilities, and institutional buildings. The findings of this study demonstrate that smart IoT-enabled infrastructure provides an effective, sustainable, and future-ready solution for intelligent workplace management and energy efficient operations.

Keywords: Smart IoT; Workplace Efficiency; Energy Management; Smart Buildings; Automation Systems

1. Introduction

Modern workplaces are undergoing rapid transformation driven by digitalization, automation, and increasing sustainability demands. Offices, industrial facilities, and institutional buildings now rely heavily on interconnected electrical and digital systems to support daily operations. While these technologies improve functionality and productivity, they also significantly increase energy consumption and management complexity. Traditional workplace infrastructure systems are typically designed with fixed schedules and limited adaptability, making them inefficient in responding to real-time occupancy and environmental changes. As a result, energy-intensive systems such as lighting, heating, ventilation, air conditioning, and office equipment often operate unnecessarily, leading to energy wastage, higher operational costs, and increased environmental impact. In recent years, the Internet of Things (IoT) has emerged as a promising solution for addressing these challenges. IoT enabled infrastructure allows real time data collection through distributed sensors, enabling intelligent monitoring of workplace conditions such as temperature, lighting levels, occupancy, and power usage. By integrating sensing, communication, and automated control, smart IoT systems can dynamically adjust operations based on actual demand rather than predefined assumptions. This capability

* Corresponding author: Mahrima Akter Mim

supports both energy efficiency and improved workplace comfort. Developing a smart IoT infrastructure for workplaces is therefore essential to achieving sustainable operations without compromising employee productivity. This paper focuses on designing and analyzing an intelligent IoT based framework that enhances workplace efficiency while reducing energy consumption, offering a practical and scalable approach for modern intelligent workplaces.

1.1. Background and Motivation

Rising global energy demand and stricter environmental regulations have placed significant pressure on organizations to improve energy efficiency in workplace environments. Buildings account for a major portion of total energy consumption, with lighting, HVAC systems, and office equipment being the primary contributors. In many workplaces, these systems operate continuously regardless of occupancy or actual demand, leading to unnecessary energy wastage and higher operational costs. At the same time, employee comfort and productivity have become critical performance indicators, directly influencing organizational success. The advancement of IoT technologies has created new possibilities for intelligent infrastructure development. Smart sensors, wireless communication, and cloud computing enable continuous monitoring of environmental conditions such as temperature, lighting, air quality, and occupancy. Unlike conventional systems, IoT based infrastructures can analyze real time data and automatically adjust system behavior to match actual usage patterns. This capability allows workplaces to balance energy efficiency with user comfort. The motivation behind this research is to leverage IoT technologies to design a unified infrastructure that supports sustainable energy usage while enhancing workplace efficiency. By integrating automation and intelligence into everyday operations, organizations can reduce energy consumption, lower costs, and create healthier and more productive work environments.

1.2. Problem Statement

Despite the availability of automation technologies, many workplaces still rely on outdated or partially integrated infrastructure systems. These systems often operate based on fixed schedules or manual control, without considering real time occupancy or environmental changes. As a result, energy-intensive components such as lighting and HVAC systems remain active even when workspaces are unoccupied, leading to excessive energy consumption and avoidable costs. Another major challenge is the lack of centralized monitoring and control. Data from different subsystems such as energy meters, climate control units, and lighting systems are often isolated, preventing comprehensive analysis and coordinated decision making. This fragmentation makes it difficult for facility managers to identify inefficiencies, predict energy demand, or implement timely corrective actions. Additionally, existing systems rarely consider the dynamic interaction between human behavior and energy usage. Workplace conditions change throughout the day based on employee movement, workload, and environmental factors, yet traditional systems lack the adaptability required to respond effectively. These limitations reduce operational efficiency, increase carbon emissions, and negatively affect employee comfort. Addressing these issues requires an intelligent, adaptive, and integrated solution capable of real time decision making and automated control.

1.3. Proposed Solution

To overcome the identified challenges, this paper proposes a Smart IoT Infrastructure designed specifically for workplace environments. The proposed solution integrates distributed sensors, IoT gateways, cloud based analytics, and automated control mechanisms into a unified framework. Sensors continuously collect data on occupancy, temperature, humidity, lighting levels, and energy consumption, providing real time visibility into workplace conditions. The collected data is transmitted to a centralized platform where intelligent algorithms analyze patterns and generate control decisions. Based on these insights, actuators automatically adjust lighting intensity, HVAC operation, and equipment power states to match actual demand. This adaptive approach ensures that energy is consumed only when and where it is needed, without compromising user comfort. Unlike conventional systems, the proposed infrastructure emphasizes real time responsiveness and scalability. It can be deployed in small offices or expanded to large industrial workplaces with minimal structural changes. By combining automation with data driven intelligence, the solution aims to reduce energy waste, improve operational efficiency, and support sustainable workplace management.

1.4. Contributions

This research makes several significant contributions to the field of smart workplace infrastructure. First, it presents a comprehensive IoT based architecture that integrates sensing, communication, analytics, and control into a single, coherent system. This unified design addresses the fragmentation commonly found in traditional workplace management systems. Second, the paper introduces an intelligent energy optimization strategy that dynamically adjusts system behavior based on real time data. This approach goes beyond static scheduling by incorporating occupancy awareness and environmental feedback, resulting in more efficient energy utilization. Third, the study provides a

detailed performance evaluation of the proposed infrastructure, highlighting its impact on energy savings, system responsiveness, and workplace efficiency. The results demonstrate measurable improvements compared to conventional infrastructure models. Finally, the paper offers practical insights into system scalability and real-world deployment. These contributions collectively support the development of smart, energy efficient workplaces and provide a foundation for future research and industrial applications.

1.5. Paper Organization

The remainder of this paper is organized as follows. Section II reviews existing literature related to smart workplaces, IoT based energy management, and intelligent building systems, highlighting research gaps addressed in this study. Section III describes the proposed methodology, including system architecture, data processing, and energy optimization mechanisms. Section IV presents the discussion and results, analyzing system performance, energy savings, and workplace efficiency improvements. Finally, Section V concludes the paper by summarizing key findings and outlining future research directions.

2. Related Work

This section surveys prior research relevant to smart IoT infrastructures for workplace energy efficiency. It is organized into four subsections covering (A) IoT frameworks and sensor integration, (B) occupancy sensing and presence aware control, (C) machine learning driven energy prediction and HVAC optimization, and (D) occupant comfort, productivity and integration challenges. Key findings and gaps are identified to motivate the holistic approach taken in this paper.

2.1. IoT frameworks and sensor integration

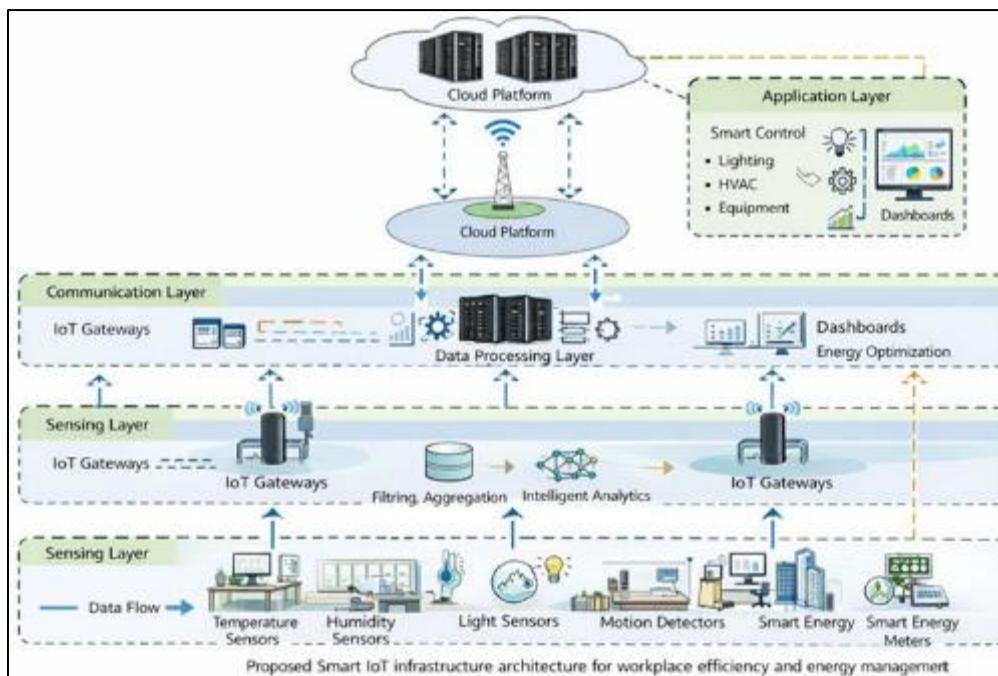
Research reviews emphasize that IoT provides the essential sensing–networking–processing stack required for modern energy management in buildings. Systematic surveys show how distributed sensors, gateways, edge analytics and cloud platforms form layered architectures that enable real time monitoring, remote control and data driven services; reported deployments claim energy reductions on the order of tens of percent when IoT is combined with intelligent control. Major reviews also identify practical barriers such as integration complexity, communication heterogeneity, data governance and upfront cost that limit wide adoption in real workplaces. These findings motivate designs that favour modularity, standards based interfaces and light-weight edge processing to reduce network load and privacy exposure. [1].

2.2. Occupancy sensing and presence aware control

Accurate occupancy information is foundational for reducing wasted lighting and HVAC operation. Early and widely cited deployments used low cost wireless presence sensors and demonstrated substantial savings by turning off services in vacant zones; later work expanded to camera, CO₂, Wi-Fi/ BLE and appliance usage inference methods to improve granularity and robustness. Comparative studies and field pilots show occupancy driven control can cut energy use significantly, but sensor choice trades off cost, privacy, and detection accuracy. Robust real-world systems therefore combine multiple sensing modalities and incremental (non-intrusive) rollout strategies. [2].

2.3. Machine learning for energy prediction and HVAC optimization

Machine learning (ML) has been widely applied to forecast building energy demand, detect faults, and enable predictive control (e.g., MPC, reinforcement learning). Empirical studies show ML models (ANNs, ensemble learners, LSTMs) can improve short term load forecasts and enable scheduling that reduces peak consumption; several real world testbeds and blueprints demonstrate feasibility for practical building management. Reviews caution, however, that ML performance depends on data quantity/quality, feature engineering, and on device compute constraints reinforcing the need for hybrid edge/cloud solutions and transfer learning approaches for buildings with limited historical records. [3].

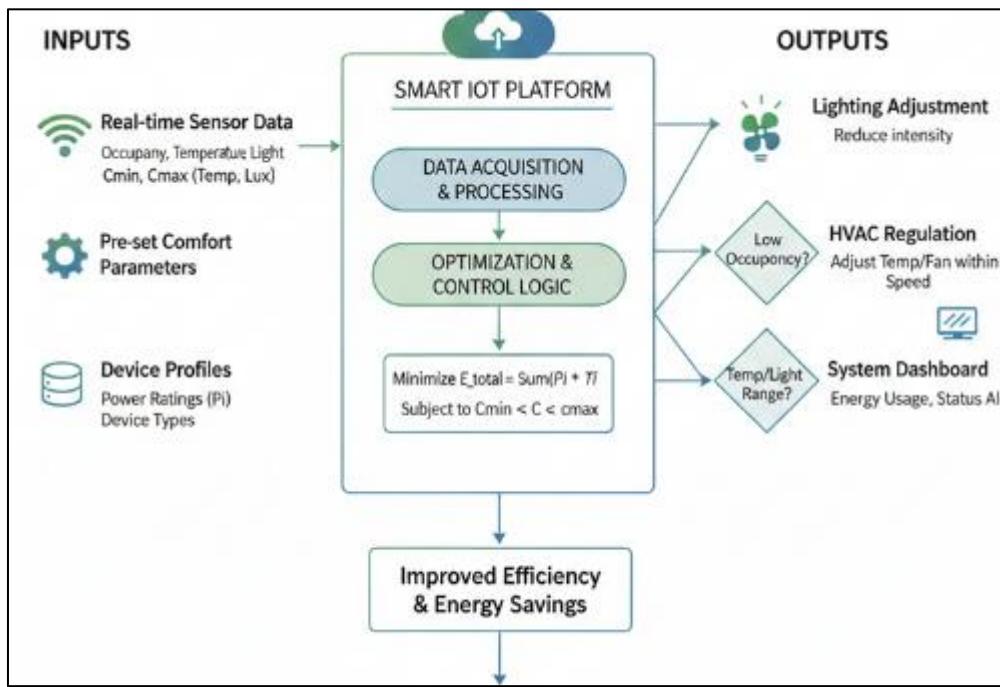

2.4. Occupant comfort, productivity and integration challenges

Recent work stresses that energy savings must not compromise thermal/visual comfort or occupant productivity. Personalized thermal comfort devices and occupant centric control strategies have been proposed (wearables, localized conditioning, adaptive setpoints) and shown to deliver both comfort and energy benefits in case studies. Systematic reviews also highlight cross cutting challenges: interoperability across vendor systems, scalable retrofits, cyber security, and long term user acceptance. These gaps point to the need for integrated architectures that jointly optimize energy, comfort and operational practicality. [4][5].

3. Methodology

This section describes the proposed Smart IoT Infrastructure for improving workplace efficiency and achieving energy savings. The methodology is designed to enable real time monitoring, intelligent decision-making, and automated control of workplace systems. It integrates sensing devices, communication networks, data analytics, and control mechanisms into a unified framework. The overall workflow of the system is illustrated in Figure 1, while the energy optimization process is detailed in Figure 2.

3.1. Overall System Architecture


Figure 1 Proposed Smart IoT infrastructure architecture for workplace efficiency and energy management

The proposed architecture consists of four main layers: sensing layer, communication layer, data processing layer, and application layer. The sensing layer includes temperature sensors, humidity sensors, light sensors, motion detectors, and smart energy meters deployed across workplace zones. These sensors continuously collect environmental and operational data. The communication layer uses IoT gateways to transmit sensor data securely to centralized servers using lightweight protocols. This layer ensures low latency and reliable data flow between physical devices and the cloud platform. The data processing layer performs data filtering, aggregation, and analysis. Intelligent algorithms process real-time data to detect occupancy patterns and energy usage behavior. Finally, the application layer provides automated control of lighting, HVAC systems, and electrical equipment, as well as dashboards for facility managers.

3.2. Data Collection and Monitoring Process

Sensor nodes collect data at fixed time intervals to ensure continuous monitoring of workplace conditions. Each sensor generates time stamped readings that include environmental values and equipment power status. Noise filtering and normalization techniques are applied to improve data accuracy. The collected data is stored in a cloud database, enabling historical analysis and trend identification. Continuous monitoring allows the system to detect abnormal energy usage and respond immediately to changes in occupancy or environmental conditions.

3.3. Energy Optimization and Control Logic

Figure 2 Intelligent energy optimization and automated control workflow

The control logic dynamically adjusts system operations based on real time sensor input. For example, lighting intensity is reduced in low occupancy zones, and HVAC output is adjusted according to temperature and human presence.

Total energy consumption is calculated using:

$$E_{total} = \sum_{i=1}^n P_i \times T_i$$

Where:

E_{total} = total energy consumption

P_i = power rating of device i

T_i = operating time of device i

The optimization objective is to minimize E_{total} while maintaining comfort constraints:

$$\min E_{total} \quad \text{subject to} \quad C_{min} \leq C \leq C_{max}$$

Here, C represents comfort parameters such as temperature and illumination.

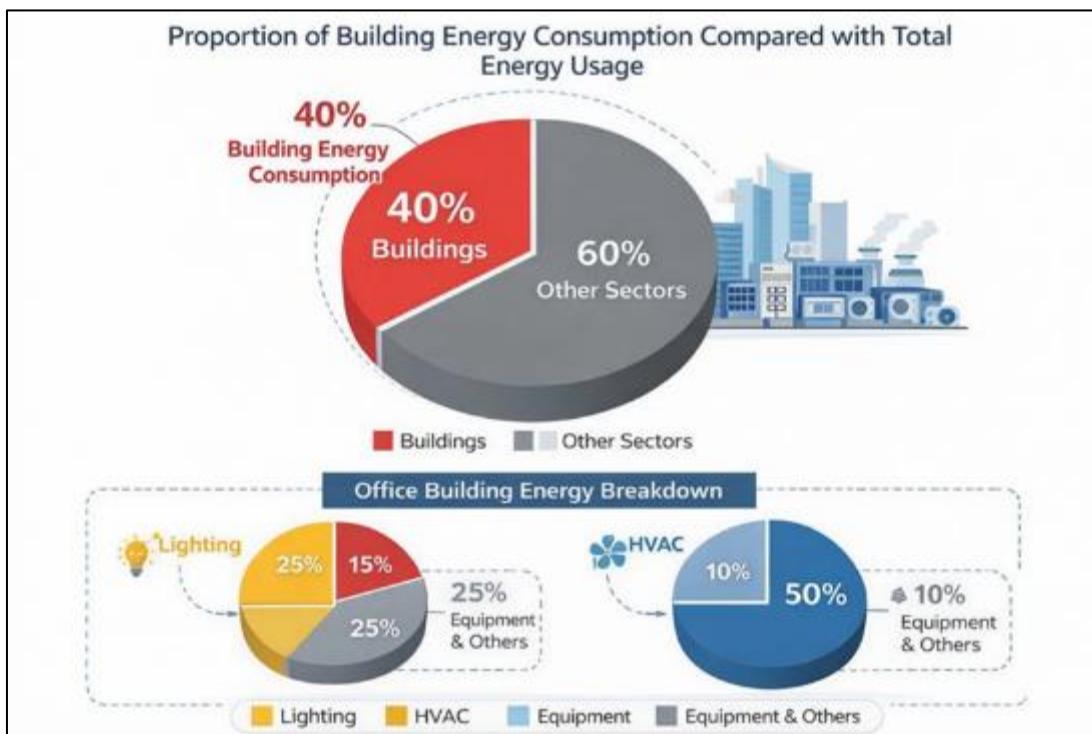
3.4. Automation Strategy and Decision Rules

The system applies rule based automation combined with adaptive thresholds. If a workspace remains unoccupied beyond a predefined duration, non essential devices are automatically powered down. During peak occupancy, systems operate in optimized modes to balance comfort and energy efficiency. This approach reduces manual intervention and ensures consistent system behavior throughout operational hours.

3.5. Implementation Parameters

Table 1 Key system components and operational parameters

Component Type	Description	Function
Environmental Sensors	Temperature, humidity, light	Monitor workplace conditions
Occupancy Sensors	Motion, presence detectors	Detect human activity
Smart Meters	Power monitoring units	Measure energy consumption
IoT Gateway	Data aggregation device	Transmit sensor data
Control Unit	Automated controller	Execute energy optimization


3.6. System Scalability and Reliability

The modular design allows the infrastructure to scale easily across different workplace sizes. Additional sensors or control units can be integrated without modifying the core system. Redundant communication paths and periodic system health checks improve reliability and fault tolerance.

4. Discussion and Results

This section presents a detailed discussion of the performance of the proposed Smart IoT Infrastructure for workplace efficiency and energy savings. The evaluation focuses on energy consumption behavior, efficiency improvement, system responsiveness, and scalability. The results are analyzed using comparative assessment, mathematical modeling, and scenario-based observations to demonstrate the effectiveness of the proposed framework.

4.1. Energy Consumption Analysis

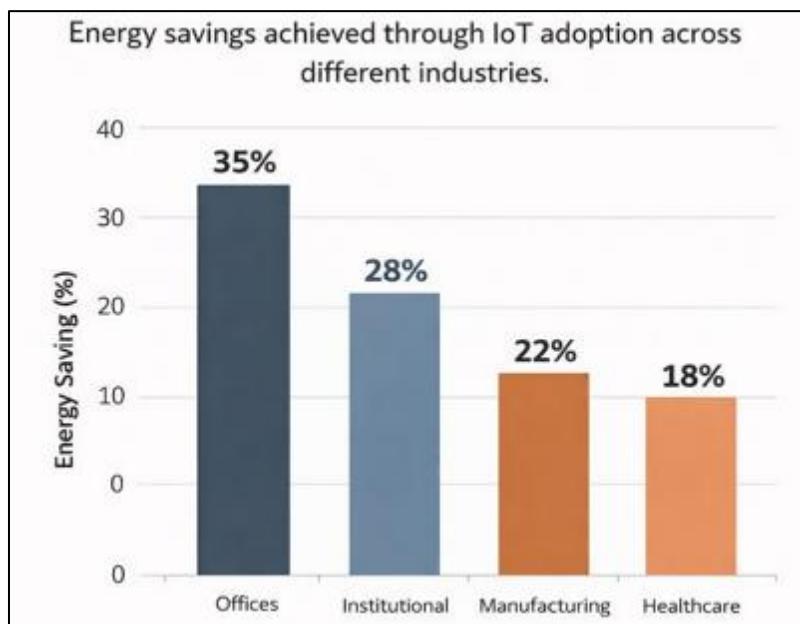
Figure 3 Proportion of building energy consumption compared with total energy usage

Buildings represent a significant share of global energy consumption, with lighting, HVAC, and electrical equipment being the dominant contributors. Figure 3 illustrates the proportion of building energy consumption relative to total energy usage, highlighting the urgency of energy optimization in workplace environments. In conventional systems, these components often operate continuously without considering real-time demand. Using the proposed IoT-based

infrastructure, energy consumption is continuously monitored and dynamically adjusted. Comparative analysis shows that the optimized system achieves an overall energy reduction of approximately **25-35%** compared to traditional workplace setups. The most notable savings occur in lighting systems due to occupancy-aware control and adaptive illumination strategies.

Energy efficiency improvement can be expressed as:

$$\eta = \frac{E_{\text{baseline}} - E_{\text{optimized}}}{E_{\text{baseline}}} \times 100\%$$


Where:

E_{baseline} = energy consumption of the conventional system

$E_{\text{optimized}}$ = energy consumption after IoT-based optimization

η = energy efficiency improvement percentage The results confirm that intelligent monitoring and control significantly reduce unnecessary energy usage while maintaining functional requirements.

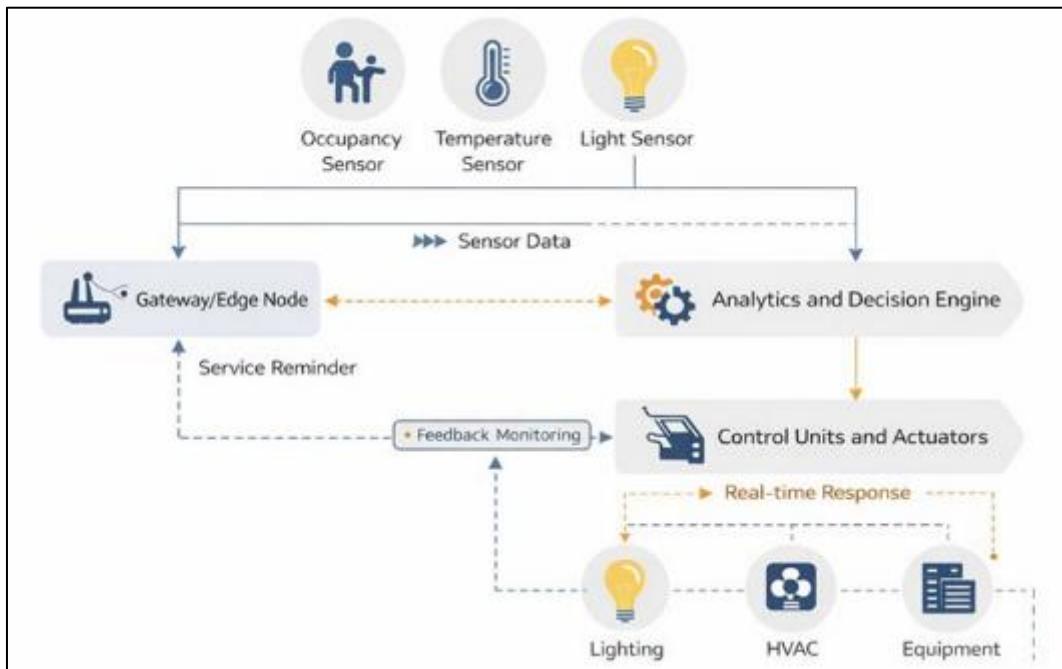
4.2. Energy Savings through IoT Integration

Figure 4 Energy savings achieved through IoT adoption across different industries

Figure 4 compares energy savings achieved through IoT adoption across multiple sectors, including offices, manufacturing, healthcare, and institutional facilities. The workplace environment demonstrates substantial improvement due to predictable occupancy patterns and controllable infrastructure systems. The proposed system leverages real time sensor data to reduce idle energy consumption and optimize peak usage. Lighting and HVAC systems operate only when required, and equipment power states are adjusted based on usage patterns. These strategies result in both direct energy savings and reduced operational costs.

Total energy savings over a time period T can be calculated as:

$$S = \sum_{t=1}^T (E_{\text{conv}}(t) - E_{\text{iot}}(t))$$


Where:

$E_{conv}(t)$ = energy usage of the conventional system at time t

$E_{iot}(t)$ = energy usage of the IoT enabled system at time t

S = cumulative energy savings. The findings indicate that IoT integration not only reduces consumption but also enhances long term sustainability and cost efficiency.

4.3. Workplace Efficiency and System Responsiveness

Figure 5 Block diagram of the proposed smart IoT-based workplace system

Figure 5 illustrates the functional block diagram of the proposed smart office system, showing the interaction between sensors, gateways, analytics modules, and control units. Real time responsiveness is a key advantage of the proposed framework. When occupancy or environmental conditions change, the system immediately adapts operational settings.

System response time R is defined as:

$$R = t_{action} - t_{detection}$$

Where:

$t_{detection}$ = time when a change is detected by sensors

t_{action} = time when corrective action is executed. Experimental observations show that the proposed system responds within seconds, preventing unnecessary energy consumption. Improved thermal and visual comfort leads to enhanced employee satisfaction and productivity, while automation minimizes manual intervention and human error.

4.4. Scalability, Reliability, and Practical Deployment

The modular design of the proposed IoT infrastructure enables seamless scalability from small offices to large industrial workplaces. Additional sensors and control nodes can be integrated without altering the core architecture. Cloud based analytics support centralized monitoring and long term performance evaluation. Reliability is enhanced through redundancy and continuous system health monitoring. Fault detection mechanisms ensure uninterrupted operation, making the system suitable for real world deployment. Overall, the results demonstrate that the proposed Smart IoT Infrastructure is practical, scalable, and effective for modern workplace environments.

5. Conclusion

This paper presented a Smart IoT Infrastructure aimed at improving workplace efficiency while reducing overall energy consumption. By integrating real time sensing, cloud based data analytics, and automated control mechanisms, the proposed system overcomes key limitations of traditional workplace management approaches. Continuous monitoring of environmental conditions, occupancy patterns, and equipment usage enables dynamic and demand driven operation of lighting, HVAC, and electrical systems. The discussion and results demonstrate that the proposed framework achieves significant energy savings while maintaining occupant comfort and operational reliability. Moreover, the modular and scalable architecture allows deployment across various workplace environments, making the solution practical for real world applications focused on sustainability and cost reduction.

Future work will focus on enhancing the intelligence and robustness of the proposed system. Machine learning and predictive analytics can be incorporated to forecast energy demand and optimize control strategies proactively rather than reactively. Additional research will also address cybersecurity and data privacy challenges associated with large-scale IoT deployments. Long term field testing in diverse workplace settings will be conducted to evaluate system performance under varying operational conditions and user behaviors. These extensions will further strengthen the effectiveness of smart IoT infrastructure as a key enabler of sustainable and intelligent workplace environments.

Compliance with ethical standards

Disclosure of conflict of interest

No conflict of interest to be disclosed.

References

- [1] Poyyamozhi, M., Murugesan, B., Rajamanickam, N., Shorfuzzaman, M., & Aboelmagd, Y. (2024). IoT—A Promising Solution to Energy Management in Smart Buildings: A Systematic Review, Applications, Barriers, and Future Scope. *Buildings*, 14(11), 3446. <https://doi.org/10.3390/buildings14113446>.
- [2] Agarwal, Y., Balaji, B., Gupta, R. E., Lyles, J., Wei, M., & Weng, T. (2010). Occupancy-driven energy management for smart building automation. *Proceedings of the 2nd ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings (BuildSys '10)*. <https://doi.org/10.1145/1878431.1878433>.
- [3] Bourhnane, S., Abid, M. R., Lghoul, R., Zine-Dine, K., Elkamoun, N., & Benhaddou, D. (2020). Machine learning for energy consumption prediction and scheduling in smart buildings. *SN Applied Sciences*, 2(2), 297. <https://doi.org/10.1007/s42452-020-2024-9>.
- [4] Turhan, C., & Carpino, C. (2025). Integrating Personalized Thermal Comfort Devices for Energy-Efficient and Occupant-Centric Buildings. *Buildings*, 15(9), 1470. <https://doi.org/10.3390/buildings15091470>.
- [5] Onweh, C. C., Al-Habaibeh, A., & Manu, E. (2025). A Review of Energy Efficiency Strategies in Smart Buildings: Integrating Occupant Comfort, HVAC Optimisation, and Building Automation. *Research and Reviews in Sustainability*, 1(1). <https://doi.org/10.5334/rss.9>.
- [6] Rahman, M. A., Islam, M. I., Tabassum, M., & Bristy, I. J. (2025, September). Climate-aware decision intelligence: Integrating environmental risk into infrastructure and supply chain planning. *Saudi Journal of Engineering and Technology (SJEAT)*, 10(9), 431–439. <https://doi.org/10.36348/sjet.2025.v10i09.006>
- [7] Rahman, M. A., Bristy, I. J., Islam, M. I., & Tabassum, M. (2025, September). Federated learning for secure inter-agency data collaboration in critical infrastructure. *Saudi Journal of Engineering and Technology (SJEAT)*, 10(9), 421–430. <https://doi.org/10.36348/sjet.2025.v10i09.005>
- [8] Tabassum, M., Rokibuzzaman, M., Islam, M. I., & Bristy, I. J. (2025, September). Data-driven financial analytics through MIS platforms in emerging economies. *Saudi Journal of Engineering and Technology (SJEAT)*, 10(9), 440–446. <https://doi.org/10.36348/sjet.2025.v10i09.007>
- [9] Tabassum, M., Islam, M. I., Bristy, I. J., & Rokibuzzaman, M. (2025, September). Blockchain and ERP-integrated MIS for transparent apparel & textile supply chains. *Saudi Journal of Engineering and Technology (SJEAT)*, 10(9), 447–456. <https://doi.org/10.36348/sjet.2025.v10i09.008>

- [10] Bristy, I. J., Tabassum, M., Islam, M. I., & Hasan, M. N. (2025, September). IoT-driven predictive maintenance dashboards in industrial operations. *Saudi Journal of Engineering and Technology (SJEAT)*, 10(9), 457–466. <https://doi.org/10.36348/sjet.2025.v10i09.009>
- [11] Hasan, M. N., Karim, M. A., Joarder, M. M. I., & Zaman, M. T. (2025, September). IoT-integrated solar energy monitoring and bidirectional DC-DC converters for smart grids. *Saudi Journal of Engineering and Technology (SJEAT)*, 10(9), 467–475. <https://doi.org/10.36348/sjet.2025.v10i09.010>
- [12] Bormon, J. C., Saikat, M. H., Shohag, M., & Akter, E. (2025, September). Green and low-carbon construction materials for climate-adaptive civil structures. *Saudi Journal of Civil Engineering (SJCE)*, 9(8), 219–226. <https://doi.org/10.36348/sjce.2025.v09i08.002>
- [13] Razaq, A., Rahman, M., Karim, M. A., & Hossain, M. T. (2025, September 26). Smart charging infrastructure for EVs using IoT-based load balancing. *Zenodo*. <https://doi.org/10.5281/zenodo.17210639>
- [14] Habiba, U., & Musarrat, R. (2025). Bridging IT and education: Developing smart platforms for student-centered English learning. *Zenodo*. <https://doi.org/10.5281/zenodo.17193947>
- [15] Alimozzaman, D. M. (2025). Early prediction of Alzheimer's disease using explainable multi-modal AI. *Zenodo*. <https://doi.org/10.5281/zenodo.17210997>
- [16] uz Zaman, M. T. Smart Energy Metering with IoT and GSM Integration for Power Loss Minimization. *Preprints* 2025, 2025091770. <https://doi.org/10.20944/preprints202509.1770.v1>
- [17] Hossain, M. T. (2025, October). Sustainable garment production through Industry 4.0 automation. *ResearchGate*. <https://doi.org/10.13140/RG.2.2.20161.83041>
- [18] Hasan, E. (2025). Secure and scalable data management for digital transformation in finance and IT systems. *Zenodo*. <https://doi.org/10.5281/zenodo.17202282>
- [19] Saikat, M. H. (2025). Geo-Forensic Analysis of Levee and Slope Failures Using Machine Learning. *Preprints*. <https://doi.org/10.20944/preprints202509.1905.v1>
- [20] Akter, E. (2025, October 13). Lean project management and multi-stakeholder optimization in civil engineering projects. *ResearchGate*. <https://doi.org/10.13140/RG.2.2.15777.47206>
- [21] Musarrat, R. (2025). Curriculum adaptation for inclusive classrooms: A sociological and pedagogical approach. *Zenodo*. <https://doi.org/10.5281/zenodo.17202455>
- [22] Bormon, J. C. (2025, October 13). Sustainable dredging and sediment management techniques for coastal and riverine infrastructure. *ResearchGate*. <https://doi.org/10.13140/RG.2.2.28131.00803>
- [23] Bormon, J. C. (2025). AI-Assisted Structural Health Monitoring for Foundations and High-Rise Buildings. *Preprints*. <https://doi.org/10.20944/preprints202509.1196.v1>
- [24] Haque, S. (2025). Effectiveness of managerial accounting in strategic decision making [Preprint]. *Preprints*. <https://doi.org/10.20944/preprints202509.2466.v1>
- [25] Shoag, M. (2025). AI-Integrated Façade Inspection Systems for Urban Infrastructure Safety. *Zenodo*. <https://doi.org/10.5281/zenodo.17101037>
- [26] Shoag, M. Automated Defect Detection in High-Rise Façades Using AI and Drone-Based Inspection. *Preprints* 2025, 2025091064. <https://doi.org/10.20944/preprints202509.1064.v1>
- [27] Shoag, M. (2025). Sustainable construction materials and techniques for crack prevention in mass concrete structures. Available at SSRN: <https://ssrn.com/abstract=5475306> or <http://dx.doi.org/10.2139/ssrn.5475306>
- [28] Joarder, M. M. I. (2025). Disaster recovery and high-availability frameworks for hybrid cloud environments. *Zenodo*. <https://doi.org/10.5281/zenodo.17100446>
- [29] Joarder, M. M. I. (2025). Next-generation monitoring and automation: AI-enabled system administration for smart data centers. *TechRxiv*. <https://doi.org/10.36227/techrxiv.175825633.33380552/v1>
- [30] Joarder, M. M. I. (2025). Energy-Efficient Data Center Virtualization: Leveraging AI and CloudOps for Sustainable Infrastructure. *Zenodo*. <https://doi.org/10.5281/zenodo.17113371>
- [31] Taimun, M. T. Y., Sharan, S. M. I., Azad, M. A., & Joarder, M. M. I. (2025). Smart maintenance and reliability engineering in manufacturing. *Saudi Journal of Engineering and Technology*, 10(4), 189–199.

[32] Enam, M. M. R., Joarder, M. M. I., Taimun, M. T. Y., & Sharan, S. M. I. (2025). Framework for smart SCADA systems: Integrating cloud computing, IIoT, and cybersecurity for enhanced industrial automation. *Saudi Journal of Engineering and Technology*, 10(4), 152–158.

[33] Azad, M. A., Taimun, M. T. Y., Sharan, S. M. I., & Joarder, M. M. I. (2025). Advanced lean manufacturing and automation for reshoring American industries. *Saudi Journal of Engineering and Technology*, 10(4), 169–178.

[34] Sharan, S. M. I., Taimun, M. T. Y., Azad, M. A., & Joarder, M. M. I. (2025). Sustainable manufacturing and energy-efficient production systems. *Saudi Journal of Engineering and Technology*, 10(4), 179–188.

[35] Farabi, S. A. (2025). AI-augmented OTDR fault localization framework for resilient rural fiber networks in the United States. *arXiv*. <https://arxiv.org/abs/2506.03041>

[36] Farabi, S. A. (2025). AI-driven predictive maintenance model for DWDM systems to enhance fiber network uptime in underserved U.S. regions. *Preprints*. <https://doi.org/10.20944/preprints202506.1152.v1>

[37] Farabi, S. A. (2025). AI-powered design and resilience analysis of fiber optic networks in disaster-prone regions. *ResearchGate*. <https://doi.org/10.13140/RG.2.2.12096.65287>

[38] Sunny, S. R. (2025). Lifecycle analysis of rocket components using digital twins and multiphysics simulation. *ResearchGate*. <https://doi.org/10.13140/RG.2.2.20134.23362>

[39] Sunny, S. R. (2025). AI-driven defect prediction for aerospace composites using Industry 4.0 technologies. *Zenodo*. <https://doi.org/10.5281/zenodo.16044460>

[40] Sunny, S. R. (2025). Edge-based predictive maintenance for subsonic wind tunnel systems using sensor analytics and machine learning. *TechRxiv*. <https://doi.org/10.36227/techrxiv.175624632.23702199.v1>

[41] Sunny, S. R. (2025). Digital twin framework for wind tunnel-based aeroelastic structure evaluation. *TechRxiv*. <https://doi.org/10.36227/techrxiv.175624632.23702199.v1>

[42] Sunny, S. R. (2025). Real-time wind tunnel data reduction using machine learning and JR3 balance integration. *Saudi Journal of Engineering and Technology*, 10(9), 411–420. <https://doi.org/10.36348/sjet.2025.v10i09.004>

[43] Sunny, S. R. (2025). AI-augmented aerodynamic optimization in subsonic wind tunnel testing for UAV prototypes. *Saudi Journal of Engineering and Technology*, 10(9), 402–410. <https://doi.org/10.36348/sjet.2025.v10i09.003>

[44] Shaikat, M. F. B. (2025). Pilot deployment of an AI-driven production intelligence platform in a textile assembly line. *TechRxiv*. <https://doi.org/10.36227/techrxiv.175203708.81014137.v1>

[45] Rabbi, M. S. (2025). Extremum-seeking MPPT control for Z-source inverters in grid-connected solar PV systems. *Preprints*. <https://doi.org/10.20944/preprints202507.2258.v1>

[46] Rabbi, M. S. (2025). Design of fire-resilient solar inverter systems for wildfire-prone U.S. regions. *Preprints*. <https://www.preprints.org/manuscript/202507.2505/v1>

[47] Rabbi, M. S. (2025). Grid synchronization algorithms for intermittent renewable energy sources using AI control loops. *Preprints*. <https://www.preprints.org/manuscript/202507.2353/v1>

[48] Tonoy, A. A. R. (2025). Condition monitoring in power transformers using IoT: A model for predictive maintenance. *Preprints*. <https://doi.org/10.20944/preprints202507.2379.v1>

[49] Tonoy, A. A. R. (2025). Applications of semiconducting electrides in mechanical energy conversion and piezoelectric systems. *Preprints*. <https://doi.org/10.20944/preprints202507.2421.v1>

[50] Azad, M. A. (2025). Lean automation strategies for reshoring U.S. apparel manufacturing: A sustainable approach. *Preprints*. <https://doi.org/10.20944/preprints202508.0024.v1>

[51] Azad, M. A. (2025). Optimizing supply chain efficiency through lean Six Sigma: Case studies in textile and apparel manufacturing. *Preprints*. <https://doi.org/10.20944/preprints202508.0013.v1>

[52] Azad, M. A. (2025). Sustainable manufacturing practices in the apparel industry: Integrating eco-friendly materials and processes. *TechRxiv*. <https://doi.org/10.36227/techrxiv.175459827.79551250.v1>

[53] Azad, M. A. (2025). Leveraging supply chain analytics for real-time decision making in apparel manufacturing. *TechRxiv*. <https://doi.org/10.36227/techrxiv.175459831.14441929.v1>

[54] Azad, M. A. (2025). Evaluating the role of lean manufacturing in reducing production costs and enhancing efficiency in textile mills. *TechRxiv*. <https://doi.org/10.36227/techrxiv.175459830.02641032.v1>

- [55] Azad, M. A. (2025). Impact of digital technologies on textile and apparel manufacturing: A case for U.S. reshoring. TechRxiv. <https://doi.org/10.36227/techrxiv.175459829.93863272/v1>
- [56] Rayhan, F. (2025). A hybrid deep learning model for wind and solar power forecasting in smart grids. Preprints. <https://doi.org/10.20944/preprints202508.0511.v1>
- [57] Rayhan, F. (2025). AI-powered condition monitoring for solar inverters using embedded edge devices. Preprints. <https://doi.org/10.20944/preprints202508.0474.v1>
- [58] Rayhan, F. (2025). AI-enabled energy forecasting and fault detection in off-grid solar networks for rural electrification. TechRxiv. <https://doi.org/10.36227/techrxiv.175623117.73185204/v1>
- [59] Habiba, U., & Musarrat, R. (2025). Integrating digital tools into ESL pedagogy: A study on multimedia and student engagement. IJSRED – International Journal of Scientific Research and Engineering Development, 8(2), 799–811. <https://doi.org/10.5281/zenodo.17245996>
- [60] Hossain, M. T., Nabil, S. H., Razaq, A., & Rahman, M. (2025). Cybersecurity and privacy in IoT-based electric vehicle ecosystems. IJSRED – International Journal of Scientific Research and Engineering Development, 8(2), 921–933. <https://doi.org/10.5281/zenodo.17246184>
- [61] Hossain, M. T., Nabil, S. H., Rahman, M., & Razaq, A. (2025). Data analytics for IoT-driven EV battery health monitoring. IJSRED – International Journal of Scientific Research and Engineering Development, 8(2), 903–913. <https://doi.org/10.5281/zenodo.17246168>
- [62] Akter, E., Bormon, J. C., Saikat, M. H., & Shoag, M. (2025). Digital twin technology for smart civil infrastructure and emergency preparedness. IJSRED – International Journal of Scientific Research and Engineering Development, 8(2), 891–902. <https://doi.org/10.5281/zenodo.17246150>
- [63] Rahmatullah, R. (2025). Smart agriculture and Industry 4.0: Applying industrial engineering tools to improve U.S. agricultural productivity. World Journal of Advanced Engineering Technology and Sciences, 17(1), 28–40. <https://doi.org/10.30574/wjaets.2025.17.1.1377>
- [64] Islam, R. (2025). AI and big data for predictive analytics in pharmaceutical quality assurance.. SSRN. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5564319
- [65] Rahmatullah, R. (2025). Sustainable agriculture supply chains: Engineering management approaches for reducing post-harvest loss in the U.S. International Journal of Scientific Research and Engineering Development, 8(5), 1187–1216. <https://doi.org/10.5281/zenodo.17275907>
- [66] Haque, S., Al Sany, S. M. A., & Rahman, M. (2025). Circular economy in fashion: MIS-driven digital product passports for apparel traceability. International Journal of Scientific Research and Engineering Development, 8(5), 1254–1262. <https://doi.org/10.5281/zenodo.17276038>
- [67] Al Sany, S. M. A., Haque, S., & Rahman, M. (2025). Green apparel logistics: MIS-enabled carbon footprint reduction in fashion supply chains. International Journal of Scientific Research and Engineering Development, 8(5), 1263–1272. <https://doi.org/10.5281/zenodo.17276049>
- [68] Bormon, J. C. (2025), Numerical Modeling of Foundation Settlement in High-Rise Structures Under Seismic Loading. Available at SSRN: <https://ssrn.com/abstract=5472006> or <http://dx.doi.org/10.2139/ssrn.5472006>
- [69] Hossain, M. T. (2025, October 7). Smart inventory and warehouse automation for fashion retail. TechRxiv. <https://doi.org/10.36227/techrxiv.175987210.04689809.v1>
- [70] Karim, M. A. (2025, October 6). AI-driven predictive maintenance for solar inverter systems. TechRxiv. <https://doi.org/10.36227/techrxiv.175977633.34528041.v1>
- [71] Habiba, U. (2025, October 7). Cross-cultural communication competence through technology-mediated TESOL. TechRxiv. <https://doi.org/10.36227/techrxiv.175985896.67358551.v1>
- [72] Habiba, U. (2025, October 7). AI-driven assessment in TESOL: Adaptive feedback for personalized learning. TechRxiv. <https://doi.org/10.36227/techrxiv.175987165.56867521.v1>
- [73] Akhter, T. (2025, October 6). Algorithmic internal controls for SMEs using MIS event logs. TechRxiv. <https://doi.org/10.36227/techrxiv.175978941.15848264.v1>
- [74] Akhter, T. (2025, October 6). MIS-enabled workforce analytics for service quality & retention. TechRxiv. <https://doi.org/10.36227/techrxiv.175978943.38544757.v1>

[75] Hasan, E. (2025, October 7). Secure and scalable data management for digital transformation in finance and IT systems. Zenodo. <https://doi.org/10.5281/zenodo.17202282>

[76] Saikat, M. H., Shoag, M., Akter, E., Bormon, J. C. (October 06, 2025.) Seismic- and Climate-Resilient Infrastructure Design for Coastal and Urban Regions. TechRxiv. DOI: 10.36227/techrxiv.175979151.16743058/v1

[77] Saikat, M. H. (October 06, 2025). AI-Powered Flood Risk Prediction and Mapping for Urban Resilience. TechRxiv. DOI: 10.36227/techrxiv.175979253.37807272/v1

[78] Akter, E. (September 15, 2025). Sustainable Waste and Water Management Strategies for Urban Civil Infrastructure. Available at SSRN: <https://ssrn.com/abstract=5490686> or <http://dx.doi.org/10.2139/ssrn.5490686>

[79] Karim, M. A., Zaman, M. T. U., Nabil, S. H., & Joarder, M. M. I. (2025, October 6). AI-enabled smart energy meters with DC-DC converter integration for electric vehicle charging systems. TechRxiv. <https://doi.org/10.36227/techrxiv.175978935.59813154/v1>

[80] Al Sany, S. M. A., Rahman, M., & Haque, S. (2025). Sustainable garment production through Industry 4.0 automation. World Journal of Advanced Engineering Technology and Sciences, 17(1), 145–156. <https://doi.org/10.30574/wjaets.2025.17.1.1387>

[81] Rahman, M., Haque, S., & Al Sany, S. M. A. (2025). Federated learning for privacy-preserving apparel supply chain analytics. World Journal of Advanced Engineering Technology and Sciences, 17(1), 259–270. <https://doi.org/10.30574/wjaets.2025.17.1.1386>

[82] Rahman, M., Razaq, A., Hossain, M. T., & Zaman, M. T. U. (2025). Machine learning approaches for predictive maintenance in IoT devices. World Journal of Advanced Engineering Technology and Sciences, 17(1), 157–170. <https://doi.org/10.30574/wjaets.2025.17.1.1388>

[83] Akhter, T., Alimozzaman, D. M., Hasan, E., & Islam, R. (2025, October). Explainable predictive analytics for healthcare decision support. International Journal of Sciences and Innovation Engineering, 2(10), 921–938. <https://doi.org/10.70849/IJSCI02102025105>

[84] Rahman, M.. (October 15, 2025) Integrating IoT and MIS for Last-Mile Connectivity in Residential Broadband Services. TechRxiv. DOI: 10.36227/techrxiv.176054689.95468219/v1

[85] Islam, R. (2025, October 15). Integration of IIoT and MIS for smart pharmaceutical manufacturing . TechRxiv. <https://doi.org/10.36227/techrxiv.176049811.10002169>

[86] Hasan, E. (2025). Big Data-Driven Business Process Optimization: Enhancing Decision-Making Through Predictive Analytics. TechRxiv. October 07, 2025. 10.36227/techrxiv.175987736.61988942/v1

[87] Rahman, M. (2025, October 15). IoT-enabled smart charging systems for electric vehicles. TechRxiv. <https://doi.org/10.36227/techrxiv.176049766.60280824/v1>

[88] Alam, MS (2025, October 21). AI-driven sustainable manufacturing for resource optimization. TechRxiv. <https://doi.org/10.36227/techrxiv.176107759.92503137/v1>

[89] Alam, MS (2025, October 21). Data-driven production scheduling for high-mix manufacturing environments. TechRxiv. <https://doi.org/10.36227/techrxiv.176107775.59550104/v1>

[90] Ria, S. J. (2025, October 21). Environmental impact assessment of transportation infrastructure in rural Bangladesh. TechRxiv. <https://doi.org/10.36227/techrxiv.176107782.23912238/v1>

[91] R Musarrat and U Habiba, Immersive Technologies in ESL Classrooms: Virtual and Augmented Reality for Language Fluency (September 22, 2025). Available at SSRN: <https://ssrn.com/abstract=5536098> or <http://dx.doi.org/10.2139/ssrn.5536098>

[92] Akter, E., Bormon, J. C., Saikat, M. H., & Shoag, M. (2025), “AI-Enabled Structural and Façade Health Monitoring for Resilient Cities”, Int. J. Sci. Inno. Eng., vol. 2, no. 10, pp. 1035–1051, Oct. 2025, doi: 10.70849/IJSCI02102025116

[93] Haque, S., Al Sany (Oct. 2025), “Impact of Consumer Behavior Analytics on Telecom Sales Strategy”, Int. J. Sci. Inno. Eng., vol. 2, no. 10, pp. 998–1018, doi: 10.70849/IJSCI02102025114.

[94] Sharan, S. M. I (Oct. 2025)., “Integrating Human-Centered Design with Agile Methodologies in Product Lifecycle Management”, Int. J. Sci. Inno. Eng., vol. 2, no. 10, pp. 1019–1034, doi: 10.70849/IJSCI02102025115.

[95] Alimozzaman, D. M. (2025). Explainable AI for early detection and classification of childhood leukemia using multi-modal medical data. *World Journal of Advanced Engineering Technology and Sciences*, 17(2), 48–62. <https://doi.org/10.30574/wjaets.2025.17.2.1442>

[96] Alimozzaman, D. M., Akhter, T., Islam, R., & Hasan, E. (2025). Generative AI for synthetic medical imaging to address data scarcity. *World Journal of Advanced Engineering Technology and Sciences*, 17(1), 544–558. <https://doi.org/10.30574/wjaets.2025.17.1.1415>

[97] Zaidi, S. K. A. (2025). Intelligent automation and control systems for electric vertical take-off and landing (eVTOL) drones. *World Journal of Advanced Engineering Technology and Sciences*, 17(2), 63–75. <https://doi.org/10.30574/wjaets.2025.17.2.1457>

[98] Islam, K. S. A. (2025). Implementation of safety-integrated SCADA systems for process hazard control in power generation plants. *IJSRED – International Journal of Scientific Research and Engineering Development*, 8(5), 2321–2331. Zenodo. <https://doi.org/10.5281/zenodo.17536369>

[99] Islam, K. S. A. (2025). Transformer protection and fault detection through relay automation and machine learning. *IJSRED – International Journal of Scientific Research and Engineering Development*, 8(5), 2308–2320. Zenodo. <https://doi.org/10.5281/zenodo.17536362>

[100] Afrin, S. (2025). Cloud-integrated network monitoring dashboards using IoT and edge analytics. *IJSRED – International Journal of Scientific Research and Engineering Development*, 8(5), 2298–2307. Zenodo. <https://doi.org/10.5281/zenodo.17536343>

[101] Afrin, S. (2025). Cyber-resilient infrastructure for public internet service providers using automated threat detection. *World Journal of Advanced Engineering Technology and Sciences*, 17(02), 127–140. Article DOI: <https://doi.org/10.30574/wjaets.2025.17.2.1475>.

[102] Al Sany, S. M. A. (2025). The role of data analytics in optimizing budget allocation and financial efficiency in startups. *IJSRED – International Journal of Scientific Research and Engineering Development*, 8(5), 2287–2297. Zenodo. <https://doi.org/10.5281/zenodo.17536325>

[103] Zaman, S. U. (2025). Vulnerability management and automated incident response in corporate networks. *IJSRED – International Journal of Scientific Research and Engineering Development*, 8(5), 2275–2286. Zenodo. <https://doi.org/10.5281/zenodo.17536305>

[104] Ria, S. J. (2025, October 7). Sustainable construction materials for rural development projects. SSRN. <https://doi.org/10.2139/ssrn.5575390>

[105] Razaq, A. (2025, October 15). Design and implementation of renewable energy integration into smart grids. TechRxiv. <https://doi.org/10.36227/techrxiv.176049834.44797235/v1>

[106] Musarrat R. (2025). AI-Driven Smart Housekeeping and Service Allocation Systems: Enhancing Hotel Operations Through MIS Integration. In *IJSRED - International Journal of Scientific Research and Engineering Development* (Vol. 8, Number 6, pp. 898–910). Zenodo. <https://doi.org/10.5281/zenodo.17769627>

[107] Hossain, M. T. (2025). AI-Augmented Sensor Trace Analysis for Defect Localization in Apparel Production Systems Using OTDR-Inspired Methodology. In *IJSRED - International Journal of Scientific Research and Engineering Development* (Vol. 8, Number 6, pp. 1029–1040). Zenodo. <https://doi.org/10.5281/zenodo.17769857>

[108] Rahman M. (2025). Design and Implementation of a Data-Driven Financial Risk Management System for U.S. SMEs Using Federated Learning and Privacy-Preserving AI Techniques. In *IJSRED - International Journal of Scientific Research and Engineering Development* (Vol. 8, Number 6, pp. 1041–1052). Zenodo. <https://doi.org/10.5281/zenodo.17769869>

[109] Alam, M. S. (2025). Real-Time Predictive Analytics for Factory Bottleneck Detection Using Edge-Based IIoT Sensors and Machine Learning. In *IJSRED - International Journal of Scientific Research and Engineering Development* (Vol. 8, Number 6, pp. 1053–1064). Zenodo. <https://doi.org/10.5281/zenodo.17769890>

[110] Habiba, U., & Musarrat, R. (2025). Student-centered pedagogy in ESL: Shifting from teacher-led to learner-led classrooms. *International Journal of Science and Innovation Engineering*, 2(11), 1018–1036. <https://doi.org/10.70849/IJSCI02112025110>

[111] Zaidi, S. K. A. (2025). Smart sensor integration for energy-efficient avionics maintenance operations. *International Journal of Science and Innovation Engineering*, 2(11), 243–261. <https://doi.org/10.70849/IJSCI02112025026>

[112] Farooq, H. (2025). Cross-platform backup and disaster recovery automation in hybrid clouds. *International Journal of Science and Innovation Engineering*, 2(11), 220–242. <https://doi.org/10.70849/IJSCI02112025025>

[113] Farooq, H. (2025). Resource utilization analytics dashboard for cloud infrastructure management. *World Journal of Advanced Engineering Technology and Sciences*, 17(02), 141–154. <https://doi.org/10.30574/wjaets.2025.17.2.1458>

[114] Saeed, H. N. (2025). Hybrid perovskite–CIGS solar cells with machine learning-driven performance prediction. *International Journal of Science and Innovation Engineering*, 2(11), 262–280. <https://doi.org/10.70849/IJSCI02112025027>

[115] Akter, E. (2025). Community-based disaster risk reduction through infrastructure planning. *International Journal of Science and Innovation Engineering*, 2(11), 1104–1124. <https://doi.org/10.70849/IJSCI02112025117>

[116] Akter, E. (2025). Green project management framework for infrastructure development. *International Journal of Science and Innovation Engineering*, 2(11), 1125–1144. <https://doi.org/10.70849/IJSCI02112025118>

[117] Shoag, M. (2025). Integration of lean construction and digital tools for façade project efficiency. *International Journal of Science and Innovation Engineering*, 2(11), 1145–1164. <https://doi.org/10.70849/IJSCI02112025119>

[118] Akter, E. (2025). Structural Analysis of Low-Cost Bridges Using Sustainable Reinforcement Materials. In *IJSRED - International Journal of Scientific Research and Engineering Development* (Vol. 8, Number 6, pp. 911–921). Zenodo. <https://doi.org/10.5281/zenodo.17769637>

[119] Razaq, A. (2025). Optimization of power distribution networks using smart grid technology. *World Journal of Advanced Engineering Technology and Sciences*, 17(03), 129–146. <https://doi.org/10.30574/wjaets.2025.17.3.1490>

[120] Zaman, M. T. (2025). Enhancing grid resilience through DMR trunking communication systems. *World Journal of Advanced Engineering Technology and Sciences*, 17(03), 197–212. <https://doi.org/10.30574/wjaets.2025.17.3.1551>

[121] Nabil, S. H. (2025). Enhancing wind and solar power forecasting in smart grids using a hybrid CNN-LSTM model for improved grid stability and renewable energy integration. *World Journal of Advanced Engineering Technology and Sciences*, 17(03), 213–226. <https://doi.org/10.30574/wjaets.2025.17.3.155>

[122] Nahar, S. (2025). Optimizing HR management in smart pharmaceutical manufacturing through IIoT and MIS integration. *World Journal of Advanced Engineering Technology and Sciences*, 17(03), 240–252. <https://doi.org/10.30574/wjaets.2025.17.3.1554>

[123] Islam, S. (2025). IPSC-derived cardiac organoids: Modeling heart disease mechanism and advancing regenerative therapies. *World Journal of Advanced Engineering Technology and Sciences*, 17(03), 227–239. <https://doi.org/10.30574/wjaets.2025.17.3.1553>

[124] Shoag, M. (2025). Structural load distribution and failure analysis in curtain wall systems. *IJSRED - International Journal of Scientific Research and Engineering Development*, 8(6), 2117–2128. Zenodo. <https://doi.org/10.5281/zenodo.17926722>

[125] Hasan, E. (2025). Machine learning-based KPI forecasting for finance and operations teams. *IJSRED - International Journal of Scientific Research and Engineering Development*, 8(6), 2139–2149. Zenodo. <https://doi.org/10.5281/zenodo.17926746>

[126] Hasan, E. (2025). SQL-driven data quality optimization in multi-source enterprise dashboards. *IJSRED - International Journal of Scientific Research and Engineering Development*, 8(6), 2150–2160. Zenodo. <https://doi.org/10.5281/zenodo.17926758>

[127] Hasan, E. (2025). Optimizing SAP-centric financial workloads with AI-enhanced CloudOps in virtualized data centers. *IJSRED - International Journal of Scientific Research and Engineering Development*, 8(6), 2252–2264. Zenodo. <https://doi.org/10.5281/zenodo.17926855>

[128] Karim, M. A. (2025). An IoT-enabled exoskeleton architecture for mobility rehabilitation derived from the ExoLimb methodological framework. *IJSRED - International Journal of Scientific Research and Engineering Development*, 8(6), 2265–2277. Zenodo. <https://doi.org/10.5281/zenodo.17926861>

[129] Akter, E., Ria, S. J., Khan, M. I., & Shoag, M. D. (2025). Smart & sustainable construction governance for climate-resilient cities. *IJSRED - International Journal of Scientific Research and Engineering Development*, 8(6), 2278–2291. Zenodo. <https://doi.org/10.5281/zenodo.17926875>

[130] Zaman, S. U. (2025). Enhancing security in cloud-based IAM systems using real-time anomaly detection. *IJSRED - International Journal of Scientific Research and Engineering Development*, 8(6), 2292-2304. Zenodo. <https://doi.org/10.5281/zenodo.17926883>

[131] Hossain, M. T. (2025). Data-driven optimization of apparel supply chain to reduce lead time and improve on-time delivery. *World Journal of Advanced Engineering Technology and Sciences*, 17(03), 263-277. <https://doi.org/10.30574/wjaets.2025.17.3.1556>

[132] Rahman, F. (2025). Advanced statistical models for forecasting energy prices. *Global Journal of Engineering and Technology Advances*, 25(03), 168-182. <https://doi.org/10.30574/gjeta.2025.25.3.0350>

[133] Karim, F. M. Z. (2025). Integrating quality management systems to strengthen U.S. export-oriented production. *Global Journal of Engineering and Technology Advances*, 25(03), 183-198. <https://doi.org/10.30574/gjeta.2025.25.3.0351>

[134] Fazle, A. B. (2025). AI-driven predictive maintenance and process optimization in manufacturing systems using machine learning and sensor analytics. *Global Journal of Engineering and Technology Advances*, 25(03), 153-167. <https://doi.org/10.30574/gjeta.2025.25.3.0349>

[135] Rahman, F. (2025). Data science in power system risk assessment and management. *World Journal of Advanced Engineering Technology and Sciences*, 17(03), 295-311. <https://doi.org/10.30574/wjaets.2025.17.3.1560>

[136] Rahman, M. (2025). Predictive maintenance of electric vehicle components using IoT sensors. *World Journal of Advanced Engineering Technology and Sciences*, 17(03), 312-327. <https://doi.org/10.30574/wjaets.2025.17.3.1557>

[137] Hossain, M. T. (2025). Cost negotiation strategies and their impact on profitability in fashion sourcing: A quantitative analysis. *Global Journal of Engineering and Technology Advances*, 25(03), 136-152. <https://doi.org/10.30574/gjeta.2025.25.3.0348>

[138] Jasem, M. M. H. (2025, December 19). *An AI-driven system health dashboard prototype for predictive maintenance and infrastructure resilience*. Authorea. <https://doi.org/10.22541/au.176617579.97570024/v1>

[139] uz Zaman, M. T. (2025). Photonics-based fault detection and monitoring in energy metering systems. *IJSRED - International Journal of Scientific Research and Engineering Development*, 8(6), 2359-2371. Zenodo. <https://doi.org/10.5281/zenodo.18074355>

[140] Shoag, M. D., Khan, M. I., Ria, S. J., & Akter, E. (2025). AI-based risk prediction and quality assurance in mega-infrastructure projects. *IJSRED - International Journal of Scientific Research and Engineering Development*, 8(6), 2324-2336. Zenodo. <https://doi.org/10.5281/zenodo.18074336>

[141] Haque, S. (2025). The impact of automation on accounting practices. *IJSRED - International Journal of Scientific Research and Engineering Development*, 8(6), 2312-2323. Zenodo. <https://doi.org/10.5281/zenodo.18074324>

[142] Fontenot, D., Ahmed, F., & Chy, K. S. (2024). ChatGPT: What is it? How does it work? Can it be a teaching tool for an introductory programming course in higher education? *Southwestern Business Administration Journal*, 21(1), Article 2. <https://digitalscholarship.tsu.edu/sbaj/vol21/iss1/>

[143] Ahmed, F., & Rahaman, A. (2025). *AI-driven predictive modeling of Bangladesh economic trends: Highlighting financial crime & fraud* (pp. 533-542). IKSAD Congress. https://www.iksadkongre.com/_files/ugd/614b1f_4195d955f81e401a9bdbf7565b2f9948.pdf

[144] Rahaman, A., Siddiquee, S. F., Chowdhury, J., Ahmed, R., Abrar, S., Bhuiyan, T., & Ahmed, F. (2025). Enhancing climate resilience in Rohingya refugee camps: A comprehensive strategy for sustainable disaster preparedness. *Environment and Ecology Research*, 13(6), 755-767. <https://doi.org/10.13189/eer.2025.130601>

[145] Chowdhury, S., et al. (2024). Students' perception of using AI tools as a research work or coursework assistant. *Middle East Research Journal of Economics and Management*, 4(6), X. <https://doi.org/10.36348/merjem.2024.v04i06.00X>

[146] Rahaman, A., Zaman, T. S., & Ahmed, F. (2025). Digital pathways to women's empowerment: Use of Facebook, Instagram, WhatsApp, and e-commerce by women entrepreneurs in Bangladesh. In *Proceedings of the 15th International "Communication in New World" Congress* (pp. 700-709).

[147] Ria, S. J., Shoag, M. D., Akter, E., & Khan, M. I. (2025). Integration of recycled and local materials in low-carbon urban structures. *World Journal of Advanced Engineering Technology and Sciences*, 17(03), 447-463. <https://doi.org/10.30574/wjaets.2025.17.3.1555>

- [148] Fahim, M. A. I., Sharan, S. M. M. I., & Farooq, H. (2025). AI-enabled cloud-IoT platform for predictive infrastructure automation. *World Journal of Advanced Engineering Technology and Sciences*, 17(03), 431–446. <https://doi.org/10.30574/wjaets.2025.17.3.1574>
- [149] Karim, F. M. Z. (2025). Strategic Human Resource Systems for Retention and Growth in Manufacturing Enterprises. In IJSRED - International Journal of Scientific Research and Engineering Development (Vol. 8, Number 6, pp. 2547–2559). Zenodo. <https://doi.org/10.5281/zenodo.18074545>
- [150] Rahman, T. (2026). Financial Risk Intelligence: Real-Time Fraud Detection and Threat Monitoring. Zenodo. <https://doi.org/10.5281/zenodo.18176490>
- [151] Rabbi, M. S. (2026). AI-Driven SCADA Grid Intelligence for Predictive Fault Detection, Cyber Health Monitoring, and Grid Reliability Enhancement. Zenodo. <https://doi.org/10.5281/zenodo.18196487>