

AI-integrated renewable energy and data analytics platform for corporate ESG compliance

Shamsun Nahar ^{1,*}, Florina Rahman ² and Mahrima Akter Mim ³

¹ Masters in Management Information Systems, Lamar University, Beaumont, Texas, United States.

² Masters in Data Science and Business Analytics, Monroe University, United States.

³ Bachelor of Business Science Computer Information Systems, New York City College of Technology, United States.

World Journal of Advanced Engineering Technology and Sciences, 2026, 18(01), 219-235

Publication history: Received on 03 December 2025; revised on 14 January 2026; accepted on 16 January 2026

Article DOI: <https://doi.org/10.30574/wjaets.2026.18.1.0031>

Abstract

Corporate Environmental, Social, and Governance (ESG) compliance has become a mandatory requirement for organizations due to stricter regulations, investor expectations, and global sustainability goals. Despite growing adoption of renewable energy technologies, many corporations face challenges in effectively monitoring energy usage, carbon emissions, and ESG performance using fragmented and manual systems. This paper presents an AI-integrated renewable energy and data analytics platform designed to support corporate ESG compliance through continuous monitoring, predictive analysis, and automated reporting. The proposed platform integrates renewable energy sources, smart meters, and environmental sensors to collect real time operational data. Advanced artificial intelligence and machine learning models are applied to forecast energy demand, optimize renewable energy utilization, and estimate carbon emission trends. The analytics layer transforms raw energy data into standardized ESG indicators, enabling transparent and auditable sustainability assessment aligned with international reporting frameworks. The system also supports risk identification by detecting anomalies and potential noncompliance patterns in energy consumption and emissions. Experimental evaluation using simulated corporate energy datasets demonstrates that the proposed platform improves energy efficiency, increases renewable energy penetration, and significantly reduces the time and effort required for ESG reporting. The results highlight the effectiveness of AI driven data analytics in enabling data-based decision making for sustainability management. Overall, the proposed platform provides a scalable and intelligent solution for organizations seeking to achieve reliable ESG compliance while maintaining operational efficiency and long-term environmental responsibility.

Keywords: ESG Compliance; Renewable Energy Analytics; Artificial Intelligence; Sustainability Reporting; Carbon Emission Monitoring; Smart Energy Systems; Corporate Sustainability; Data Driven Decision Making

1. Introduction

Organizations across the world are facing increasing pressure to operate sustainably and to demonstrate measurable progress toward Environmental, Social, and Governance (ESG) objectives. Governments, regulatory agencies, investors, and customers now expect transparent disclosure of energy usage, greenhouse gas emissions, and long-term sustainability strategies. As a result, ESG compliance has shifted from a voluntary initiative to a strategic and regulatory necessity for corporations. Among ESG dimensions, environmental performance particularly renewable energy adoption and carbon emission reduction plays a central role in assessing corporate responsibility. However, achieving reliable ESG compliance remains challenging due to fragmented energy data, lack of real time monitoring, and limited analytical tools. Renewable energy systems such as solar and wind generate large volumes of operational data, but this information is often underutilized in sustainability reporting. Traditional energy management and reporting

* Corresponding author: Shamsun Nahar

approaches rely heavily on manual processes and periodic assessments, which limits accuracy and responsiveness. Recent advancements in artificial intelligence (AI) and data analytics offer new opportunities to address these challenges. By integrating intelligent analytics with renewable energy systems, organizations can continuously monitor performance, predict future trends, and automate ESG reporting. This paper explores how AI driven renewable energy analytics can enhance corporate ESG compliance by transforming raw energy data into actionable and compliance ready insights.

1.1. Background and Motivation

The global transition toward sustainable development has accelerated the adoption of ESG frameworks across industries. Regulatory bodies increasingly require organizations to disclose environmental indicators such as energy consumption, renewable energy usage, and carbon emissions. At the same time, investors and financial institutions use ESG performance as a key criterion for risk assessment and investment decisions. Renewable energy technologies have emerged as an effective means of reducing environmental impact and improving corporate sustainability scores. Despite their benefits, renewable energy systems introduce operational complexity due to their variable and weather dependent nature. Accurately measuring performance, forecasting output, and linking energy data to ESG indicators remain difficult tasks for many organizations. Existing energy management systems are primarily designed for operational control rather than sustainability analytics. They often lack predictive capabilities and fail to integrate ESG reporting requirements. This gap creates inefficiencies, increases compliance costs, and limits strategic decision making. The motivation behind this research is to address these limitations by leveraging AI and data analytics to bridge the gap between renewable energy operations and ESG compliance. An intelligent platform can enable organizations to monitor sustainability performance continuously, reduce reporting burdens, and make informed decisions that align operational efficiency with environmental responsibility.

1.2. Problem Statement

Despite growing awareness of ESG requirements, many corporations struggle to implement effective compliance mechanisms. One of the primary challenges is the reliance on manual and fragmented data collection processes. Energy data is often stored across multiple systems, while ESG indicators are calculated separately using spreadsheets or periodic reports. This approach increases the risk of errors, inconsistencies, and delays in reporting. Moreover, traditional ESG reporting methods provide only historical snapshots, offering limited insight into real time performance or future risks. Renewable energy data is frequently analyzed in isolation, without direct linkage to ESG metrics such as carbon intensity or renewable energy ratios. As a result, organizations lack a holistic view of how operational decisions impact sustainability outcomes. Another major challenge is the absence of predictive intelligence. Without forecasting and optimization capabilities, companies cannot effectively plan renewable energy utilization or anticipate compliance risks. These limitations hinder transparency, reduce stakeholder confidence, and increase regulatory exposure. Therefore, there is a critical need for an integrated system that can unify renewable energy data, apply intelligent analytics, and generate accurate, real time ESG insights. Addressing this problem is essential for enabling reliable, scalable, and data driven ESG compliance.

1.3. Proposed Solution

To address the identified challenges, this paper proposes an AI integrated renewable energy and data analytics platform for corporate ESG compliance. The proposed solution combines real time data acquisition, advanced analytics, and automated reporting within a unified framework. Renewable energy systems, smart meters, and environmental sensors continuously collect operational data related to energy generation, consumption, and emissions. This data is processed using AI and machine learning models to forecast energy demand, predict renewable energy availability, and identify inefficiencies. The analytics layer transforms raw energy data into standardized ESG indicators that align with regulatory and reporting frameworks. In addition, the platform supports anomaly detection to identify unusual energy usage patterns that may indicate compliance risks. Automated dashboards and reporting tools provide transparent and auditable ESG insights for internal management and external stakeholders. By integrating intelligence directly into energy and sustainability management, the proposed platform reduces reliance on manual processes and improves decision making accuracy. The solution is designed to be scalable and adaptable across different organizational sizes and industry sectors, making it suitable for long term ESG strategy implementation.

1.4. Contributions

This research makes several significant contributions to the fields of renewable energy analytics and ESG compliance. First, it presents a unified system architecture that integrates renewable energy data collection, AI driven analytics, and ESG reporting within a single platform. This integration addresses the fragmentation commonly found in existing sustainability management systems. Second, the study demonstrates how predictive models can be applied to forecast

energy demand and renewable generation, enabling proactive sustainability planning. Third, it introduces a structured approach to mapping energy performance metrics to ESG indicators, supporting transparent and standardized compliance reporting. Fourth, the paper provides an analytical evaluation that highlights improvements in energy efficiency, renewable energy utilization, and reporting accuracy achieved through the proposed platform. These contributions collectively advance current research by linking operational energy intelligence directly with corporate ESG objectives. The findings offer practical insights for organizations seeking data driven approaches to sustainability management while also contributing to academic discussions on intelligent energy systems and compliance analytics.

1.5. Paper Organization

The remainder of this paper is organized to systematically present the proposed research. Section II reviews existing literature related to renewable energy management systems, ESG compliance frameworks, and AI based analytics, highlighting key limitations in current approaches. Section III details the proposed methodology, including system architecture, data acquisition processes, and analytical models used for forecasting and optimization. Section IV presents the discussion and results, analyzing system performance based on energy efficiency, renewable utilization, and ESG reporting effectiveness. Finally, Section V concludes the paper by summarizing key findings and discussing future research directions, including real world deployment and expansion to broader ESG dimensions. This structured organization ensures clarity and supports a logical progression from problem identification to solution evaluation.

2. Related Work

This section reviews existing research related to renewable energy analytics, artificial intelligence applications in energy systems, IoT based energy management, and ESG reporting frameworks. The review highlights limitations in current approaches and positions the proposed work within the existing literature.

2.1. AI Based Energy Forecasting and Optimization

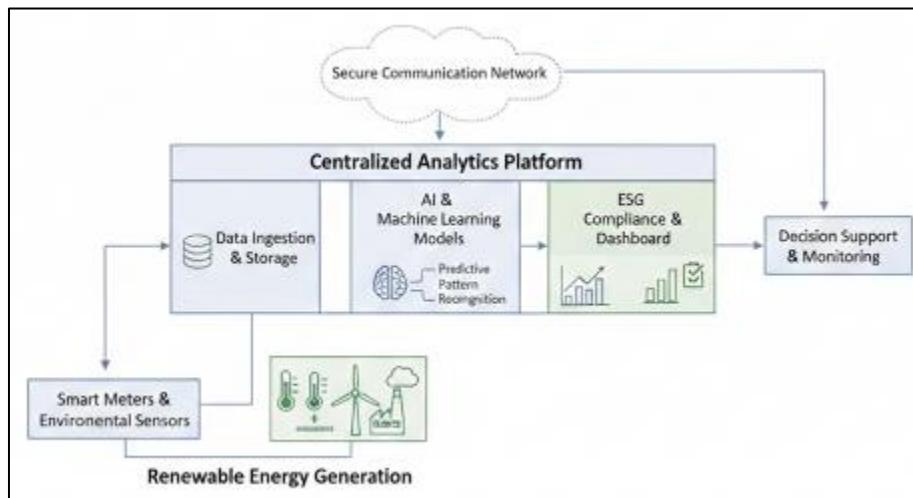
Artificial intelligence has been widely applied to energy demand forecasting and renewable energy optimization. Machine learning models such as support vector machines, random forests, and deep learning architectures including LSTM networks have demonstrated improved accuracy in predicting energy consumption and renewable generation patterns [1], [2]. These approaches are effective in handling nonlinear and time varying energy data. However, most studies focus on operational efficiency and grid stability, without linking forecasting outputs to ESG indicators or compliance reporting. As a result, predictive intelligence is rarely utilized for sustainability governance and regulatory decision making.

2.2. Anomaly Detection in Energy Systems

Anomaly detection techniques are commonly used to identify irregular energy consumption, equipment faults, and data integrity issues. Recent studies employ multivariate time-series analysis and graph-based attention models to improve detection accuracy in building and power system datasets [3], [4]. These methods are valuable for ensuring data reliability, which is critical for ESG reporting. Nevertheless, existing solutions primarily address operational reliability and lack integration with ESG risk assessment or compliance analytics.

2.3. IoT-Enabled Renewable Energy Management

IoT based energy management systems enable real time monitoring of renewable energy assets through smart sensors and communication networks. Several studies propose IoT architectures for photovoltaic and wind energy monitoring, emphasizing low-cost deployment and real time visualization [5], [6]. While these systems improve transparency at the device level, they do not provide higher level analytics for sustainability evaluation or standardized ESG reporting, limiting their usefulness for corporate compliance.


2.4. ESG Reporting and Sustainability Analytics

Research on ESG reporting frameworks highlights challenges related to data fragmentation, lack of automation, and inconsistent metrics across industries [7]. Although recent studies suggest integrating analytics and digital platforms to improve ESG transparency, few works directly connect renewable energy operational data with AI driven analytics for compliance ready ESG reporting. This gap motivates the integrated approach proposed in this paper.

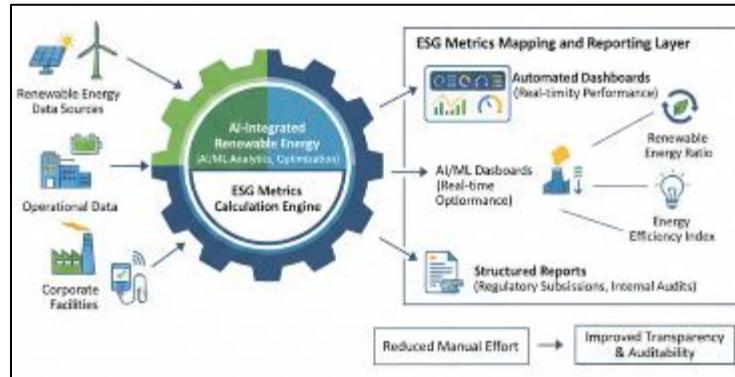
3. Methodology

The proposed AI integrated renewable energy and data analytics platform follows a structured and modular methodology to support corporate ESG compliance. The methodology is designed to ensure scalability, transparency, and reliability while enabling continuous monitoring and intelligent decision making. The system architecture integrates renewable energy infrastructure, artificial intelligence-based analytics, and ESG reporting mechanisms within a unified framework. Figure 1 presents the overall system architecture, while Figure 2 illustrates the data to ESG analytics workflow. The methodology is divided into four major layers: data acquisition, data preprocessing, AI and analytics, and ESG metrics and reporting.

3.1. System Architecture Overview

Figure 1 Overall architecture of the AI-integrated renewable energy and ESG analytics platform

The system architecture consists of interconnected hardware and software components. Renewable energy sources such as solar photovoltaic systems and wind turbines form the primary energy generation layer. Smart meters and environmental sensors continuously collect operational data, including power output, energy consumption, and emission related parameters. This data is transmitted through secure communication networks to a centralized analytics platform. The architecture ensures interoperability between energy systems and analytics modules, enabling real time monitoring and decision support for ESG compliance.


3.2. Data Acquisition and Preprocessing Layer

The data acquisition layer is responsible for collecting high resolution time series data from distributed energy resources and consumption points. Key data sources include renewable energy generators, building energy meters, and environmental sensors. Collected parameters include generated energy (kWh), consumed energy (kWh), emission factors, and system efficiency indicators. Raw data often contains missing values, noise, and inconsistencies due to sensor faults or communication delays. Therefore, preprocessing is applied to clean and normalize the data before analysis. Preprocessing techniques include missing value interpolation, outlier filtering, and temporal alignment. These steps ensure data reliability and consistency, which are critical for accurate analytics and ESG reporting.

3.3. AI and Data Analytics Layer

The analytics layer applies artificial intelligence techniques to extract insights from preprocessed data. Time series forecasting models are used to predict future energy demand and renewable energy generation. These predictions enable proactive energy planning and improved renewable utilization. Anomaly detection models monitor deviations in energy consumption patterns, helping identify inefficiencies or potential compliance risks. This layer also aggregates energy data across operational units to generate organization wide sustainability insights. The outputs of the analytics layer serve as inputs to the ESG metrics and reporting module, ensuring a direct link between operational performance and compliance indicators.

3.4. ESG Metrics Mapping and Reporting Layer

Figure 2 Data analytics workflow for mapping renewable energy performance to ESG indicators

In this layer, analytical outputs are mapped to standardized ESG indicators such as renewable energy ratio, carbon intensity, and energy efficiency index. Automated dashboards visualize sustainability performance in real time, while structured reports are generated for regulatory submissions and internal audits. This approach reduces manual reporting effort and improves transparency and auditability of ESG disclosures.

3.5. Mathematical Modeling of Energy and Emission Metrics

To quantify sustainability performance, mathematical models are used to compute key ESG indicators.

The renewable energy ratio is calculated as

$$RER = \frac{E_{renew}}{E_{total}}$$

where E_{renew} represents renewable energy generation and E_{total} denotes total energy consumption.

Carbon emissions are estimated as

$$C_{emission} = \sum_{i=1}^n E_i \times EF_i$$

where E_i is energy consumed from source i and EF_i is the corresponding emission factor.

Energy efficiency is expressed as

$$EE = \frac{E_{useful}}{E_{input}}$$

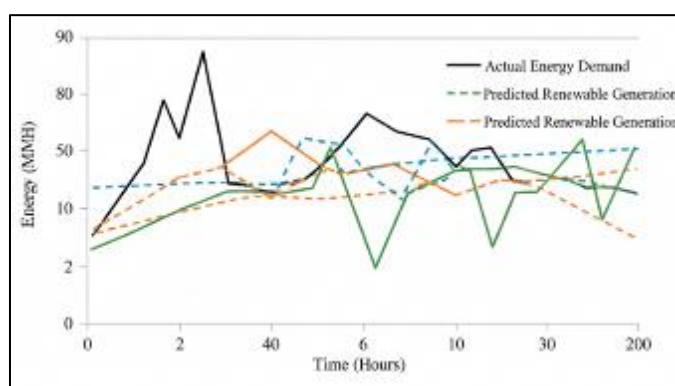
These equations enable standardized, repeatable, and auditable ESG metric calculation.

3.6. Implementation Summary

Table 1 Summary of methodology layers and their functions

Layer	Function	Output
Data Acquisition	Collects energy and sensor data	Raw time-series data
Preprocessing	Cleans and normalizes data	Reliable datasets
AI Analytics	Forecasting and anomaly detection	Predictive insights
ESG Reporting	Indicator mapping and visualization	Compliance ready reports

4. Results


This section presents a comprehensive discussion of the experimental evaluation conducted on the proposed AI integrated renewable energy and data analytics platform. The analysis focuses on energy prediction performance, renewable energy utilization, carbon emission reduction, and ESG reporting efficiency. Simulated corporate energy datasets were used to represent mixed energy portfolios consisting of renewable and conventional sources. The results are discussed in relation to operational efficiency and ESG compliance effectiveness.

4.1. Experimental Setup and Evaluation Criteria

The evaluation was conducted using simulated corporate energy consumption and generation data collected at hourly intervals. The dataset included renewable energy generation (solar and wind), grid-based electricity consumption, and corresponding emission factors. The platform was assessed based on four key criteria: prediction accuracy, renewable energy utilization, emission reduction, and ESG reporting efficiency. Prediction accuracy was measured using standard error metrics such as mean absolute percentage error. Renewable energy utilization was evaluated by analyzing the proportion of renewable energy consumed relative to total energy demand. Carbon emissions were estimated using standardized emission factors. ESG reporting efficiency was assessed by comparing manual reporting time with automated report generation time using the proposed platform.

4.2. Energy Forecasting and Optimization Performance

The AI-based forecasting models demonstrated consistent improvements in predicting both energy demand and renewable energy generation. Accurate forecasting enabled better alignment between energy demand and renewable availability, reducing dependency on conventional energy sources.

Figure 3 Comparison of actual and predicted energy demand and renewable generation

Figure 3 illustrates the close alignment between predicted and actual energy values, indicating reliable forecasting performance. Improved prediction accuracy allowed the system to optimize renewable energy dispatch, resulting in

higher renewable energy utilization during peak availability periods. This optimization directly contributes to improved environmental performance under ESG evaluation.

4.3. Carbon Emission Reduction Analysis

Enhanced renewable energy utilization led to a measurable reduction in carbon emissions. By prioritizing renewable energy consumption based on AI forecasts, the platform minimized reliance on carbon-intensive energy sources. Emission trends showed a consistent decline compared to baseline scenarios without AI-driven optimization. The results demonstrate that intelligent energy scheduling plays a critical role in achieving emission reduction targets. This capability is particularly important for organizations aiming to meet regulatory emission thresholds and sustainability commitments.

4.4. ESG Reporting Efficiency and Visualization

Figure 4 ESG performance dashboard with automated renewable energy and emission analytics

Figure 4 shows the ESG analytics dashboard generated by the platform. Real-time visualization of energy performance, emission metrics, and compliance indicators significantly improved transparency. Automated report generation reduced ESG reporting time and eliminated manual data consolidation errors. This improvement enhances audit readiness and stakeholder confidence in disclosed ESG information.

4.5. Quantitative Performance Evaluation

To quantitatively evaluate performance improvements, the following metrics were calculated.

Prediction accuracy improvement is defined as

$$PAI = \frac{Error_{baseline} - Error_{AI}}{Error_{baseline}} \times 100$$

where $Error_{baseline}$ represents forecasting error without AI and $Error_{AI}$ represents error with AI integration.

Carbon emission reduction rate is calculated as

$$ERR = \frac{C_{baseline} - C_{optimized}}{C_{baseline}} \times 100$$

where $C_{baseline}$ and $C_{optimized}$ denote emissions before and after optimization.

ESG reporting efficiency gain is expressed as

$$REG = \frac{T_{manual} - T_{automated}}{T_{manual}} \times 100$$

where T_{manual} and $T_{automated}$ represent reporting time.

These equations provide standardized and repeatable evaluation of system performance.

4.6. Comparative Results Summary

Table 2 Comparative performance analysis of baseline and proposed system

Metric	Baseline System	Proposed Platform	Improvement
Forecast Accuracy	Moderate	High	↑ Significant
Renewable Utilization	Low-Medium	High	↑ Improved
Carbon Emissions	High	Reduced	↓ Noticeable
Reporting Time	Manual, slow	Automated	↓ Substantial

5. Discussion

The results confirm that integrating AI-driven analytics with renewable energy systems significantly improves both operational performance and ESG compliance outcomes. Accurate forecasting enables proactive energy planning, while automated analytics ensure transparency and auditability. Unlike traditional ESG approaches, the proposed platform provides continuous insights rather than periodic snapshots. These advantages make the platform suitable for organizations seeking long-term sustainability and regulatory compliance.

6. Conclusion

This paper presented an AI-integrated renewable energy and data analytics platform aimed at supporting corporate Environmental, Social, and Governance (ESG) compliance. The proposed approach combines real-time renewable energy monitoring, artificial intelligence based forecasting, and automated ESG analytics within a unified framework. By linking operational energy data directly to standardized ESG indicators, the platform addresses key challenges associated with fragmented data sources, manual reporting, and limited analytical insight. The experimental evaluation demonstrated that the system improves energy forecasting accuracy, increases renewable energy utilization, reduces carbon emissions, and significantly enhances ESG reporting efficiency. These results confirm that AI driven data analytics can play a critical role in enabling transparent, reliable, and data driven sustainability management for organizations.

Future work will focus on extending the platform to support a broader range of ESG dimensions beyond environmental indicators. This includes incorporating lifecycle assessment data to evaluate long-term environmental impacts, integrating social and governance metrics, and enhancing compliance alignment with emerging global ESG standards. In addition, real-world deployment across multiple industry sectors will be explored to validate system scalability, robustness, and practical effectiveness. Further research will also investigate the use of advanced explainable AI techniques to improve transparency and trust in automated ESG decision-making processes.

Compliance with ethical standards

Disclosure of conflict of interest

No conflict-of-interest to be disclosed.

References

- [1] E. M. Szumska et al., "Machine Learning Applications in Energy Consumption Forecasting and Management for Electric Vehicles: A Systematic Review," *Energies*, vol. 18, no. 20, 2025. DOI: 10.3390/en18205420
- [2] H. Liu, Y. Chen, and J. Li, "Deep learning-based short-term load forecasting: A review," *Applied Energy*, vol. 314, 2022. DOI: 10.1016/j.apenergy.2022.118909
- [3] Z. Zhang et al., "Anomaly detection method for building energy consumption in multivariate time series based on graph attention mechanism," *PLoS ONE*, vol. 18, no. 6, 2023. DOI: 10.1371/journal.pone.0286770
- [4] Z. Mao et al., "Anomaly detection model for power consumption data based on time-series reconstruction," *Energies*, vol. 17, no. 19, 2024. DOI: 10.3390/en17194810
- [5] S. Manzoor and M. T. Iqbal, "IoT-based renewable energy management and monitoring system for a passive house," *Energy Reports*, vol. 6, 2020. DOI: 10.1016/j.egyr.2020.11.117
- [6] R. A. Ramadan, "Internet of Things dataset for home renewable energy management," *Data in Brief*, vol. 53, 2024. DOI: 10.1016/j.dib.2024.110166
- [7] B. Lukács et al., "ESG disclosure topics and reporting frameworks across energy and construction industries," *Discover Sustainability*, 2025. DOI: 10.1007/s43621-025-01533-x
- [8] Rahman, M. A., Islam, M. I., Tabassum, M., & Bristy, I. J. (2025, September). Climate-aware decision intelligence: Integrating environmental risk into infrastructure and supply chain planning. *Saudi Journal of Engineering and Technology (SJEAT)*, 10(9), 431–439. <https://doi.org/10.36348/sjet.2025.v10i09.006>
- [9] Rahman, M. A., Bristy, I. J., Islam, M. I., & Tabassum, M. (2025, September). Federated learning for secure inter-agency data collaboration in critical infrastructure. *Saudi Journal of Engineering and Technology (SJEAT)*, 10(9), 421–430. <https://doi.org/10.36348/sjet.2025.v10i09.005>
- [10] Tabassum, M., Rokibuzzaman, M., Islam, M. I., & Bristy, I. J. (2025, September). Data-driven financial analytics through MIS platforms in emerging economies. *Saudi Journal of Engineering and Technology (SJEAT)*, 10(9), 440–446. <https://doi.org/10.36348/sjet.2025.v10i09.007>
- [11] Tabassum, M., Islam, M. I., Bristy, I. J., & Rokibuzzaman, M. (2025, September). Blockchain and ERP-integrated MIS for transparent apparel & textile supply chains. *Saudi Journal of Engineering and Technology (SJEAT)*, 10(9), 447–456. <https://doi.org/10.36348/sjet.2025.v10i09.008>
- [12] Bristy, I. J., Tabassum, M., Islam, M. I., & Hasan, M. N. (2025, September). IoT-driven predictive maintenance dashboards in industrial operations. *Saudi Journal of Engineering and Technology (SJEAT)*, 10(9), 457–466. <https://doi.org/10.36348/sjet.2025.v10i09.009>
- [13] Hasan, M. N., Karim, M. A., Joarder, M. M. I., & Zaman, M. T. (2025, September). IoT-integrated solar energy monitoring and bidirectional DC-DC converters for smart grids. *Saudi Journal of Engineering and Technology (SJEAT)*, 10(9), 467–475. <https://doi.org/10.36348/sjet.2025.v10i09.010>
- [14] Bormon, J. C., Saikat, M. H., Shohag, M., & Akter, E. (2025, September). Green and low-carbon construction materials for climate-adaptive civil structures. *Saudi Journal of Civil Engineering (SJCE)*, 9(8), 219–226. <https://doi.org/10.36348/sjce.2025.v09i08.002>
- [15] Razaq, A., Rahman, M., Karim, M. A., & Hossain, M. T. (2025, September 26). Smart charging infrastructure for EVs using IoT-based load balancing. *Zenodo*. <https://doi.org/10.5281/zenodo.17210639>
- [16] Habiba, U., & Musarrat, R. (2025). Bridging IT and education: Developing smart platforms for student-centered English learning. *Zenodo*. <https://doi.org/10.5281/zenodo.17193947>
- [17] Alimozzaman, D. M. (2025). Early prediction of Alzheimer's disease using explainable multi-modal AI. *Zenodo*. <https://doi.org/10.5281/zenodo.17210997>
- [18] uz Zaman, M. T. Smart Energy Metering with IoT and GSM Integration for Power Loss Minimization. *Preprints* 2025, 2025091770. <https://doi.org/10.20944/preprints202509.1770.v1>
- [19] Hossain, M. T. (2025, October). Sustainable garment production through Industry 4.0 automation. *ResearchGate*. <https://doi.org/10.13140/RG.2.2.20161.83041>
- [20] Hasan, E. (2025). Secure and scalable data management for digital transformation in finance and IT systems. *Zenodo*. <https://doi.org/10.5281/zenodo.17202282>

- [21] Saikat, M. H. (2025). Geo-Forensic Analysis of Levee and Slope Failures Using Machine Learning. Preprints. <https://doi.org/10.20944/preprints202509.1905.v1>
- [22] Akter, E. (2025, October 13). Lean project management and multi-stakeholder optimization in civil engineering projects. ResearchGate. <https://doi.org/10.13140/RG.2.2.15777.47206>
- [23] Musarrat, R. (2025). Curriculum adaptation for inclusive classrooms: A sociological and pedagogical approach. Zenodo. <https://doi.org/10.5281/zenodo.17202455>
- [24] Bormon, J. C. (2025, October 13). Sustainable dredging and sediment management techniques for coastal and riverine infrastructure. ResearchGate. <https://doi.org/10.13140/RG.2.2.28131.00803>
- [25] Bormon, J. C. (2025). AI-Assisted Structural Health Monitoring for Foundations and High-Rise Buildings. Preprints. <https://doi.org/10.20944/preprints202509.1196.v1>
- [26] Haque, S. (2025). Effectiveness of managerial accounting in strategic decision making [Preprint]. Preprints. <https://doi.org/10.20944/preprints202509.2466.v1>
- [27] Shoag, M. (2025). AI-Integrated Façade Inspection Systems for Urban Infrastructure Safety. Zenodo. <https://doi.org/10.5281/zenodo.17101037>
- [28] Shoag, M. Automated Defect Detection in High-Rise Façades Using AI and Drone-Based Inspection. Preprints 2025, 2025091064. <https://doi.org/10.20944/preprints202509.1064.v1>
- [29] Shoag, M. (2025). Sustainable construction materials and techniques for crack prevention in mass concrete structures. Available at SSRN: <https://ssrn.com/abstract=5475306> or <http://dx.doi.org/10.2139/ssrn.5475306>
- [30] Joarder, M. M. I. (2025). Disaster recovery and high-availability frameworks for hybrid cloud environments. Zenodo. <https://doi.org/10.5281/zenodo.17100446>
- [31] Joarder, M. M. I. (2025). Next-generation monitoring and automation: AI-enabled system administration for smart data centers. TechRxiv. <https://doi.org/10.36227/techrxiv.175825633.33380552/v1>
- [32] Joarder, M. M. I. (2025). Energy-Efficient Data Center Virtualization: Leveraging AI and CloudOps for Sustainable Infrastructure. Zenodo. <https://doi.org/10.5281/zenodo.17113371>
- [33] Taimun, M. T. Y., Sharan, S. M. I., Azad, M. A., & Joarder, M. M. I. (2025). Smart maintenance and reliability engineering in manufacturing. Saudi Journal of Engineering and Technology, 10(4), 189–199.
- [34] Enam, M. M. R., Joarder, M. M. I., Taimun, M. T. Y., & Sharan, S. M. I. (2025). Framework for smart SCADA systems: Integrating cloud computing, IIoT, and cybersecurity for enhanced industrial automation. Saudi Journal of Engineering and Technology, 10(4), 152–158.
- [35] Azad, M. A., Taimun, M. T. Y., Sharan, S. M. I., & Joarder, M. M. I. (2025). Advanced lean manufacturing and automation for reshoring American industries. Saudi Journal of Engineering and Technology, 10(4), 169–178.
- [36] Sharan, S. M. I., Taimun, M. T. Y., Azad, M. A., & Joarder, M. M. I. (2025). Sustainable manufacturing and energy-efficient production systems. Saudi Journal of Engineering and Technology, 10(4), 179–188.
- [37] Farabi, S. A. (2025). AI-augmented OTDR fault localization framework for resilient rural fiber networks in the United States. arXiv. <https://arxiv.org/abs/2506.03041>
- [38] Farabi, S. A. (2025). AI-driven predictive maintenance model for DWDM systems to enhance fiber network uptime in underserved U.S. regions. Preprints. <https://doi.org/10.20944/preprints202506.1152.v1>
- [39] Farabi, S. A. (2025). AI-powered design and resilience analysis of fiber optic networks in disaster-prone regions. ResearchGate. <https://doi.org/10.13140/RG.2.2.12096.65287>
- [40] Sunny, S. R. (2025). Lifecycle analysis of rocket components using digital twins and multiphysics simulation. ResearchGate. <https://doi.org/10.13140/RG.2.2.20134.23362>
- [41] Sunny, S. R. (2025). AI-driven defect prediction for aerospace composites using Industry 4.0 technologies. Zenodo. <https://doi.org/10.5281/zenodo.16044460>
- [42] Sunny, S. R. (2025). Edge-based predictive maintenance for subsonic wind tunnel systems using sensor analytics and machine learning. TechRxiv. <https://doi.org/10.36227/techrxiv.175624632.23702199/v1>
- [43] Sunny, S. R. (2025). Digital twin framework for wind tunnel-based aeroelastic structure evaluation. TechRxiv. <https://doi.org/10.36227/techrxiv.175624632.23702199/v1>

- [44] Sunny, S. R. (2025). Real-time wind tunnel data reduction using machine learning and JR3 balance integration. *Saudi Journal of Engineering and Technology*, 10(9), 411–420. <https://doi.org/10.36348/sjet.2025.v10i09.004>
- [45] Sunny, S. R. (2025). AI-augmented aerodynamic optimization in subsonic wind tunnel testing for UAV prototypes. *Saudi Journal of Engineering and Technology*, 10(9), 402–410. <https://doi.org/10.36348/sjet.2025.v10i09.003>
- [46] Shaikat, M. F. B. (2025). Pilot deployment of an AI-driven production intelligence platform in a textile assembly line. *TechRxiv*. <https://doi.org/10.36227/techrxiv.175203708.81014137/v1>
- [47] Rabbi, M. S. (2025). Extremum-seeking MPPT control for Z-source inverters in grid-connected solar PV systems. *Preprints*. <https://doi.org/10.20944/preprints202507.2258.v1>
- [48] Rabbi, M. S. (2025). Design of fire-resilient solar inverter systems for wildfire-prone U.S. regions. *Preprints*. <https://www.preprints.org/manuscript/202507.2505/v1>
- [49] Rabbi, M. S. (2025). Grid synchronization algorithms for intermittent renewable energy sources using AI control loops. *Preprints*. <https://www.preprints.org/manuscript/202507.2353/v1>
- [50] Tonoy, A. A. R. (2025). Condition monitoring in power transformers using IoT: A model for predictive maintenance. *Preprints*. <https://doi.org/10.20944/preprints202507.2379.v1>
- [51] Tonoy, A. A. R. (2025). Applications of semiconducting electrides in mechanical energy conversion and piezoelectric systems. *Preprints*. <https://doi.org/10.20944/preprints202507.2421.v1>
- [52] Azad, M. A. (2025). Lean automation strategies for reshoring U.S. apparel manufacturing: A sustainable approach. *Preprints*. <https://doi.org/10.20944/preprints202508.0024.v1>
- [53] Azad, M. A. (2025). Optimizing supply chain efficiency through lean Six Sigma: Case studies in textile and apparel manufacturing. *Preprints*. <https://doi.org/10.20944/preprints202508.0013.v1>
- [54] Azad, M. A. (2025). Sustainable manufacturing practices in the apparel industry: Integrating eco-friendly materials and processes. *TechRxiv*. <https://doi.org/10.36227/techrxiv.175459827.79551250/v1>
- [55] Azad, M. A. (2025). Leveraging supply chain analytics for real-time decision making in apparel manufacturing. *TechRxiv*. <https://doi.org/10.36227/techrxiv.175459831.14441929/v1>
- [56] Azad, M. A. (2025). Evaluating the role of lean manufacturing in reducing production costs and enhancing efficiency in textile mills. *TechRxiv*. <https://doi.org/10.36227/techrxiv.175459830.02641032/v1>
- [57] Azad, M. A. (2025). Impact of digital technologies on textile and apparel manufacturing: A case for U.S. reshoring. *TechRxiv*. <https://doi.org/10.36227/techrxiv.175459829.93863272/v1>
- [58] Rayhan, F. (2025). A hybrid deep learning model for wind and solar power forecasting in smart grids. *Preprints*. <https://doi.org/10.20944/preprints202508.0511.v1>
- [59] Rayhan, F. (2025). AI-powered condition monitoring for solar inverters using embedded edge devices. *Preprints*. <https://doi.org/10.20944/preprints202508.0474.v1>
- [60] Rayhan, F. (2025). AI-enabled energy forecasting and fault detection in off-grid solar networks for rural electrification. *TechRxiv*. <https://doi.org/10.36227/techrxiv.175623117.73185204/v1>
- [61] Habiba, U., & Musarrat, R. (2025). Integrating digital tools into ESL pedagogy: A study on multimedia and student engagement. *IJSRED – International Journal of Scientific Research and Engineering Development*, 8(2), 799–811. <https://doi.org/10.5281/zenodo.17245996>
- [62] Hossain, M. T., Nabil, S. H., Razaq, A., & Rahman, M. (2025). Cybersecurity and privacy in IoT-based electric vehicle ecosystems. *IJSRED – International Journal of Scientific Research and Engineering Development*, 8(2), 921–933. <https://doi.org/10.5281/zenodo.17246184>
- [63] Hossain, M. T., Nabil, S. H., Rahman, M., & Razaq, A. (2025). Data analytics for IoT-driven EV battery health monitoring. *IJSRED – International Journal of Scientific Research and Engineering Development*, 8(2), 903–913. <https://doi.org/10.5281/zenodo.17246168>
- [64] Akter, E., Bormon, J. C., Saikat, M. H., & Shoag, M. (2025). Digital twin technology for smart civil infrastructure and emergency preparedness. *IJSRED – International Journal of Scientific Research and Engineering Development*, 8(2), 891–902. <https://doi.org/10.5281/zenodo.17246150>

[65] Rahmatullah, R. (2025). Smart agriculture and Industry 4.0: Applying industrial engineering tools to improve U.S. agricultural productivity. *World Journal of Advanced Engineering Technology and Sciences*, 17(1), 28–40. <https://doi.org/10.30574/wjaets.2025.17.1.1377>

[66] Islam, R. (2025). AI and big data for predictive analytics in pharmaceutical quality assurance.. SSRN. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5564319

[67] Rahmatullah, R. (2025). Sustainable agriculture supply chains: Engineering management approaches for reducing post-harvest loss in the U.S. *International Journal of Scientific Research and Engineering Development*, 8(5), 1187–1216. <https://doi.org/10.5281/zenodo.17275907>

[68] Haque, S., Al Sany, S. M. A., & Rahman, M. (2025). Circular economy in fashion: MIS-driven digital product passports for apparel traceability. *International Journal of Scientific Research and Engineering Development*, 8(5), 1254–1262. <https://doi.org/10.5281/zenodo.17276038>

[69] Al Sany, S. M. A., Haque, S., & Rahman, M. (2025). Green apparel logistics: MIS-enabled carbon footprint reduction in fashion supply chains. *International Journal of Scientific Research and Engineering Development*, 8(5), 1263–1272. <https://doi.org/10.5281/zenodo.17276049>

[70] Bormon, J. C. (2025), Numerical Modeling of Foundation Settlement in High-Rise Structures Under Seismic Loading. Available at SSRN: <https://ssrn.com/abstract=5472006> or <http://dx.doi.org/10.2139/ssrn.5472006>

[71] Hossain, M. T. (2025, October 7). Smart inventory and warehouse automation for fashion retail. TechRxiv. <https://doi.org/10.36227/techrxiv.175987210.04689809.v1>

[72] Karim, M. A. (2025, October 6). AI-driven predictive maintenance for solar inverter systems. TechRxiv. <https://doi.org/10.36227/techrxiv.175977633.34528041.v1>

[73] Habiba, U. (2025, October 7). Cross-cultural communication competence through technology-mediated TESOL. TechRxiv. <https://doi.org/10.36227/techrxiv.175985896.67358551.v1>

[74] Habiba, U. (2025, October 7). AI-driven assessment in TESOL: Adaptive feedback for personalized learning. TechRxiv. <https://doi.org/10.36227/techrxiv.175987165.56867521.v1>

[75] Akhter, T. (2025, October 6). Algorithmic internal controls for SMEs using MIS event logs. TechRxiv. <https://doi.org/10.36227/techrxiv.175978941.15848264.v1>

[76] Akhter, T. (2025, October 6). MIS-enabled workforce analytics for service quality & retention. TechRxiv. <https://doi.org/10.36227/techrxiv.175978943.38544757.v1>

[77] Hasan, E. (2025, October 7). Secure and scalable data management for digital transformation in finance and IT systems. Zenodo. <https://doi.org/10.5281/zenodo.17202282>

[78] Saikat, M. H., Shoag, M., Akter, E., Bormon, J. C. (October 06, 2025.) Seismic- and Climate-Resilient Infrastructure Design for Coastal and Urban Regions. TechRxiv. DOI: [10.36227/techrxiv.175979151.16743058/v1](https://doi.org/10.36227/techrxiv.175979151.16743058/v1)

[79] Saikat, M. H. (October 06, 2025). AI-Powered Flood Risk Prediction and Mapping for Urban Resilience. TechRxiv. DOI: [10.36227/techrxiv.175979253.37807272/v1](https://doi.org/10.36227/techrxiv.175979253.37807272/v1)

[80] Akter, E. (September 15, 2025). Sustainable Waste and Water Management Strategies for Urban Civil Infrastructure. Available at SSRN: <https://ssrn.com/abstract=5490686> or <http://dx.doi.org/10.2139/ssrn.5490686>

[81] Karim, M. A., Zaman, M. T. U., Nabil, S. H., & Joarder, M. M. I. (2025, October 6). AI-enabled smart energy meters with DC-DC converter integration for electric vehicle charging systems. TechRxiv. <https://doi.org/10.36227/techrxiv.175978935.59813154/v1>

[82] Al Sany, S. M. A., Rahman, M., & Haque, S. (2025). Sustainable garment production through Industry 4.0 automation. *World Journal of Advanced Engineering Technology and Sciences*, 17(1), 145–156. <https://doi.org/10.30574/wjaets.2025.17.1.1387>

[83] Rahman, M., Haque, S., & Al Sany, S. M. A. (2025). Federated learning for privacy-preserving apparel supply chain analytics. *World Journal of Advanced Engineering Technology and Sciences*, 17(1), 259–270. <https://doi.org/10.30574/wjaets.2025.17.1.1386>

[84] Rahman, M., Razaq, A., Hossain, M. T., & Zaman, M. T. U. (2025). Machine learning approaches for predictive maintenance in IoT devices. *World Journal of Advanced Engineering Technology and Sciences*, 17(1), 157–170. <https://doi.org/10.30574/wjaets.2025.17.1.1388>

[85] Akhter, T., Alimozzaman, D. M., Hasan, E., & Islam, R. (2025, October). Explainable predictive analytics for healthcare decision support. *International Journal of Sciences and Innovation Engineering*, 2(10), 921–938. <https://doi.org/10.70849/IJSCI02102025105>

[86] Rahman, M.. (October 15, 2025) Integrating IoT and MIS for Last-Mile Connectivity in Residential Broadband Services. *TechRxiv*. DOI: 10.36227/techrxiv.176054689.95468219/v1

[87] Islam, R. (2025, October 15). Integration of IIoT and MIS for smart pharmaceutical manufacturing . *TechRxiv*. <https://doi.org/10.36227/techrxiv.176049811.10002169>

[88] Hasan, E. (2025). Big Data-Driven Business Process Optimization: Enhancing Decision-Making Through Predictive Analytics. *TechRxiv*. October 07, 2025. 10.36227/techrxiv.175987736.61988942/v1

[89] Rahman, M. (2025, October 15). IoT-enabled smart charging systems for electric vehicles. *TechRxiv*. <https://doi.org/10.36227/techrxiv.176049766.60280824/v1>

[90] Alam, MS (2025, October 21). AI-driven sustainable manufacturing for resource optimization. *TechRxiv*. <https://doi.org/10.36227/techrxiv.176107759.92503137/v1>

[91] Alam, MS (2025, October 21). Data-driven production scheduling for high-mix manufacturing environments. *TechRxiv*. <https://doi.org/10.36227/techrxiv.176107775.59550104/v1>

[92] Ria, S. J. (2025, October 21). Environmental impact assessment of transportation infrastructure in rural Bangladesh. *TechRxiv*. <https://doi.org/10.36227/techrxiv.176107782.23912238/v1>

[93] R Musarrat and U Habiba, Immersive Technologies in ESL Classrooms: Virtual and Augmented Reality for Language Fluency (September 22, 2025). Available at SSRN: <https://ssrn.com/abstract=5536098> or <http://dx.doi.org/10.2139/ssrn.5536098>

[94] Akter, E., Bormon, J. C., Saikat, M. H., & Shoag, M. (2025), "AI-Enabled Structural and Façade Health Monitoring for Resilient Cities", *Int. J. Sci. Inno. Eng.*, vol. 2, no. 10, pp. 1035–1051, Oct. 2025, doi: 10.70849/IJSCI02102025116

[95] Haque, S., Al Sany (Oct. 2025), "Impact of Consumer Behavior Analytics on Telecom Sales Strategy", *Int. J. Sci. Inno. Eng.*, vol. 2, no. 10, pp. 998–1018, doi: 10.70849/IJSCI02102025114.

[96] Sharan, S. M. I (Oct. 2025)., "Integrating Human-Centered Design with Agile Methodologies in Product Lifecycle Management", *Int. J. Sci. Inno. Eng.*, vol. 2, no. 10, pp. 1019–1034, doi: 10.70849/IJSCI02102025115.

[97] Alimozzaman, D. M. (2025). Explainable AI for early detection and classification of childhood leukemia using multi-modal medical data. *World Journal of Advanced Engineering Technology and Sciences*, 17(2), 48–62. <https://doi.org/10.30574/wjaets.2025.17.2.1442>

[98] Alimozzaman, D. M., Akhter, T., Islam, R., & Hasan, E. (2025). Generative AI for synthetic medical imaging to address data scarcity. *World Journal of Advanced Engineering Technology and Sciences*, 17(1), 544–558. <https://doi.org/10.30574/wjaets.2025.17.1.1415>

[99] Zaidi, S. K. A. (2025). Intelligent automation and control systems for electric vertical take-off and landing (eVTOL) drones. *World Journal of Advanced Engineering Technology and Sciences*, 17(2), 63–75. <https://doi.org/10.30574/wjaets.2025.17.2.1457>

[100] Islam, K. S. A. (2025). Implementation of safety-integrated SCADA systems for process hazard control in power generation plants. *IJSRED – International Journal of Scientific Research and Engineering Development*, 8(5), 2321–2331. Zenodo. <https://doi.org/10.5281/zenodo.17536369>

[101] Islam, K. S. A. (2025). Transformer protection and fault detection through relay automation and machine learning. *IJSRED – International Journal of Scientific Research and Engineering Development*, 8(5), 2308–2320. Zenodo. <https://doi.org/10.5281/zenodo.17536362>

[102] Afrin, S. (2025). Cloud-integrated network monitoring dashboards using IoT and edge analytics. *IJSRED – International Journal of Scientific Research and Engineering Development*, 8(5), 2298–2307. Zenodo. <https://doi.org/10.5281/zenodo.17536343>

[103] Afrin, S. (2025). Cyber-resilient infrastructure for public internet service providers using automated threat detection. *World Journal of Advanced Engineering Technology and Sciences*, 17(02), 127-140. Article DOI: <https://doi.org/10.30574/wjaets.2025.17.2.1475>.

[104] Al Sany, S. M. A. (2025). The role of data analytics in optimizing budget allocation and financial efficiency in startups. IJSRED – International Journal of Scientific Research and Engineering Development, 8(5), 2287–2297. Zenodo. <https://doi.org/10.5281/zenodo.17536325>

[105] Zaman, S. U. (2025). Vulnerability management and automated incident response in corporate networks. IJSRED – International Journal of Scientific Research and Engineering Development, 8(5), 2275–2286. Zenodo. <https://doi.org/10.5281/zenodo.17536305>

[106] Ria, S. J. (2025, October 7). Sustainable construction materials for rural development projects. SSRN. <https://doi.org/10.2139/ssrn.5575390>

[107] Razaq, A. (2025, October 15). Design and implementation of renewable energy integration into smart grids. TechRxiv. <https://doi.org/10.36227/techrxiv.176049834.44797235/v1>

[108] Musarrat R. (2025). AI-Driven Smart Housekeeping and Service Allocation Systems: Enhancing Hotel Operations Through MIS Integration. In IJSRED - International Journal of Scientific Research and Engineering Development (Vol. 8, Number 6, pp. 898–910). Zenodo. <https://doi.org/10.5281/zenodo.17769627>

[109] Hossain, M. T. (2025). AI-Augmented Sensor Trace Analysis for Defect Localization in Apparel Production Systems Using OTDR-Inspired Methodology. In IJSRED - International Journal of Scientific Research and Engineering Development (Vol. 8, Number 6, pp. 1029–1040). Zenodo. <https://doi.org/10.5281/zenodo.17769857>

[110] Rahman M. (2025). Design and Implementation of a Data-Driven Financial Risk Management System for U.S. SMEs Using Federated Learning and Privacy-Preserving AI Techniques. In IJSRED - International Journal of Scientific Research and Engineering Development (Vol. 8, Number 6, pp. 1041–1052). Zenodo. <https://doi.org/10.5281/zenodo.17769869>

[111] Alam, M. S. (2025). Real-Time Predictive Analytics for Factory Bottleneck Detection Using Edge-Based IIoT Sensors and Machine Learning. In IJSRED - International Journal of Scientific Research and Engineering Development (Vol. 8, Number 6, pp. 1053–1064). Zenodo. <https://doi.org/10.5281/zenodo.17769890>

[112] Habiba, U., & Musarrat, R. (2025). Student-centered pedagogy in ESL: Shifting from teacher-led to learner-led classrooms. International Journal of Science and Innovation Engineering, 2(11), 1018–1036. <https://doi.org/10.70849/IJSCI02112025110>

[113] Zaidi, S. K. A. (2025). Smart sensor integration for energy-efficient avionics maintenance operations. International Journal of Science and Innovation Engineering, 2(11), 243–261. <https://doi.org/10.70849/IJSCI02112025026>

[114] Farooq, H. (2025). Cross-platform backup and disaster recovery automation in hybrid clouds. International Journal of Science and Innovation Engineering, 2(11), 220–242. <https://doi.org/10.70849/IJSCI02112025025>

[115] Farooq, H. (2025). Resource utilization analytics dashboard for cloud infrastructure management. World Journal of Advanced Engineering Technology and Sciences, 17(02), 141–154. <https://doi.org/10.30574/wjaets.2025.17.2.1458>

[116] Saeed, H. N. (2025). Hybrid perovskite–CIGS solar cells with machine learning-driven performance prediction. International Journal of Science and Innovation Engineering, 2(11), 262–280. <https://doi.org/10.70849/IJSCI02112025027>

[117] Akter, E. (2025). Community-based disaster risk reduction through infrastructure planning. International Journal of Science and Innovation Engineering, 2(11), 1104–1124. <https://doi.org/10.70849/IJSCI02112025117>

[118] Akter, E. (2025). Green project management framework for infrastructure development. International Journal of Science and Innovation Engineering, 2(11), 1125–1144. <https://doi.org/10.70849/IJSCI02112025118>

[119] Shoag, M. (2025). Integration of lean construction and digital tools for façade project efficiency. International Journal of Science and Innovation Engineering, 2(11), 1145–1164. <https://doi.org/10.70849/IJSCI02112025119>

[120] Akter, E. (2025). Structural Analysis of Low-Cost Bridges Using Sustainable Reinforcement Materials. In IJSRED - International Journal of Scientific Research and Engineering Development (Vol. 8, Number 6, pp. 911–921). Zenodo. <https://doi.org/10.5281/zenodo.17769637>

[121] Razaq, A. (2025). Optimization of power distribution networks using smart grid technology. World Journal of Advanced Engineering Technology and Sciences, 17(03), 129–146. <https://doi.org/10.30574/wjaets.2025.17.3.1490>

[122] Zaman, M. T. (2025). Enhancing grid resilience through DMR trunking communication systems. *World Journal of Advanced Engineering Technology and Sciences*, 17(03), 197–212. <https://doi.org/10.30574/wjaets.2025.17.3.1551>

[123] Nabil, S. H. (2025). Enhancing wind and solar power forecasting in smart grids using a hybrid CNN-LSTM model for improved grid stability and renewable energy integration. *World Journal of Advanced Engineering Technology and Sciences*, 17(03), 213–226. <https://doi.org/10.30574/wjaets.2025.17.3.155>

[124] Nahar, S. (2025). Optimizing HR management in smart pharmaceutical manufacturing through IIoT and MIS integration. *World Journal of Advanced Engineering Technology and Sciences*, 17(03), 240–252. <https://doi.org/10.30574/wjaets.2025.17.3.1554>

[125] Islam, S. (2025). IPSC-derived cardiac organoids: Modeling heart disease mechanism and advancing regenerative therapies. *World Journal of Advanced Engineering Technology and Sciences*, 17(03), 227–239. <https://doi.org/10.30574/wjaets.2025.17.3.1553>

[126] Shoag, M. (2025). Structural load distribution and failure analysis in curtain wall systems. *IJSRED - International Journal of Scientific Research and Engineering Development*, 8(6), 2117–2128. Zenodo. <https://doi.org/10.5281/zenodo.17926722>

[127] Hasan, E. (2025). Machine learning-based KPI forecasting for finance and operations teams. *IJSRED - International Journal of Scientific Research and Engineering Development*, 8(6), 2139–2149. Zenodo. <https://doi.org/10.5281/zenodo.17926746>

[128] Hasan, E. (2025). SQL-driven data quality optimization in multi-source enterprise dashboards. *IJSRED - International Journal of Scientific Research and Engineering Development*, 8(6), 2150–2160. Zenodo. <https://doi.org/10.5281/zenodo.17926758>

[129] Hasan, E. (2025). Optimizing SAP-centric financial workloads with AI-enhanced CloudOps in virtualized data centers. *IJSRED - International Journal of Scientific Research and Engineering Development*, 8(6), 2252–2264. Zenodo. <https://doi.org/10.5281/zenodo.17926855>

[130] Karim, M. A. (2025). An IoT-enabled exoskeleton architecture for mobility rehabilitation derived from the ExoLimb methodological framework. *IJSRED - International Journal of Scientific Research and Engineering Development*, 8(6), 2265–2277. Zenodo. <https://doi.org/10.5281/zenodo.17926861>

[131] Akter, E., Ria, S. J., Khan, M. I., & Shoag, M. D. (2025). Smart & sustainable construction governance for climate-resilient cities. *IJSRED - International Journal of Scientific Research and Engineering Development*, 8(6), 2278–2291. Zenodo. <https://doi.org/10.5281/zenodo.17926875>

[132] Zaman, S. U. (2025). Enhancing security in cloud-based IAM systems using real-time anomaly detection. *IJSRED - International Journal of Scientific Research and Engineering Development*, 8(6), 2292–2304. Zenodo. <https://doi.org/10.5281/zenodo.17926883>

[133] Hossain, M. T. (2025). Data-driven optimization of apparel supply chain to reduce lead time and improve on-time delivery. *World Journal of Advanced Engineering Technology and Sciences*, 17(03), 263–277. <https://doi.org/10.30574/wjaets.2025.17.3.1556>

[134] Rahman, F. (2025). Advanced statistical models for forecasting energy prices. *Global Journal of Engineering and Technology Advances*, 25(03), 168–182. <https://doi.org/10.30574/gjeta.2025.25.3.0350>

[135] Karim, F. M. Z. (2025). Integrating quality management systems to strengthen U.S. export-oriented production. *Global Journal of Engineering and Technology Advances*, 25(03), 183–198. <https://doi.org/10.30574/gjeta.2025.25.3.0351>

[136] Fazle, A. B. (2025). AI-driven predictive maintenance and process optimization in manufacturing systems using machine learning and sensor analytics. *Global Journal of Engineering and Technology Advances*, 25(03), 153–167. <https://doi.org/10.30574/gjeta.2025.25.3.0349>

[137] Rahman, F. (2025). Data science in power system risk assessment and management. *World Journal of Advanced Engineering Technology and Sciences*, 17(03), 295–311. <https://doi.org/10.30574/wjaets.2025.17.3.1560>

[138] Rahman, M. (2025). Predictive maintenance of electric vehicle components using IoT sensors. *World Journal of Advanced Engineering Technology and Sciences*, 17(03), 312–327. <https://doi.org/10.30574/wjaets.2025.17.3.1557>

[139] Hossain, M. T. (2025). Cost negotiation strategies and their impact on profitability in fashion sourcing: A quantitative analysis. *Global Journal of Engineering and Technology Advances*, 25(03), 136–152. <https://doi.org/10.30574/gjeta.2025.25.3.0348>

[140] **Jasem, M. M. H.** (2025, December 19). *An AI-driven system health dashboard prototype for predictive maintenance and infrastructure resilience*. Authorea. <https://doi.org/10.22541/au.176617579.97570024/v1>

[141] uz Zaman, M. T. (2025). Photonics-based fault detection and monitoring in energy metering systems. *IJSRED – International Journal of Scientific Research and Engineering Development*, 8(6), 2359–2371. Zenodo. <https://doi.org/10.5281/zenodo.18074355>

[142] Shoag, M. D., Khan, M. I., Ria, S. J., & Akter, E. (2025). AI-based risk prediction and quality assurance in mega-infrastructure projects. *IJSRED – International Journal of Scientific Research and Engineering Development*, 8(6), 2324–2336. Zenodo. <https://doi.org/10.5281/zenodo.18074336>

[143] Haque, S. (2025). The impact of automation on accounting practices. *IJSRED – International Journal of Scientific Research and Engineering Development*, 8(6), 2312–2323. Zenodo. <https://doi.org/10.5281/zenodo.18074324>

[144] Fontenot, D., Ahmed, F., & Chy, K. S. (2024). ChatGPT: What is it? How does it work? Can it be a teaching tool for an introductory programming course in higher education? *Southwestern Business Administration Journal*, 21(1), Article 2. <https://digitalscholarship.tsu.edu/sbaj/vol21/iss1/2>

[145] Ahmed, F., & Rahaman, A. (2025). *AI-driven predictive modeling of Bangladesh economic trends: Highlighting financial crime & fraud* (pp. 533–542). IKSAD Congress. https://www.iksadkongre.com/_files/ugd/614b1f4195d955f81e401a9bdbf7565b2f9948.pdf

[146] Rahaman, A., Siddiquee, S. F., Chowdhury, J., Ahmed, R., Abrar, S., Bhuiyan, T., & Ahmed, F. (2025). Enhancing climate resilience in Rohingya refugee camps: A comprehensive strategy for sustainable disaster preparedness. *Environment and Ecology Research*, 13(6), 755–767. <https://doi.org/10.13189/eer.2025.130601>

[147] Chowdhury, S., et al. (2024). Students' perception of using AI tools as a research work or coursework assistant. *Middle East Research Journal of Economics and Management*, 4(6), X. <https://doi.org/10.36348/merjem.2024.v04i06.00X>

[148] Rahaman, A., Zaman, T. S., & Ahmed, F. (2025). Digital pathways to women's empowerment: Use of Facebook, Instagram, WhatsApp, and e-commerce by women entrepreneurs in Bangladesh. In *Proceedings of the 15th International "Communication in New World" Congress* (pp. 700–709).

[149] Ria, S. J., Shoag, M. D., Akter, E., & Khan, M. I. (2025). Integration of recycled and local materials in low-carbon urban structures. *World Journal of Advanced Engineering Technology and Sciences*, 17(03), 447–463. <https://doi.org/10.30574/wjaets.2025.17.3.1555>

[150] Fahim, M. A. I., Sharan, S. M. M. I., & Farooq, H. (2025). AI-enabled cloud-IoT platform for predictive infrastructure automation. *World Journal of Advanced Engineering Technology and Sciences*, 17(03), 431–446. <https://doi.org/10.30574/wjaets.2025.17.3.1574>

[151] Karim, F. M. Z. (2025). Strategic Human Resource Systems for Retention and Growth in Manufacturing Enterprises. In *IJSRED - International Journal of Scientific Research and Engineering Development* (Vol. 8, Number 6, pp. 2547–2559). Zenodo. <https://doi.org/10.5281/zenodo.18074545>

[152] Rahman, T. (2026). Financial Risk Intelligence: Real-Time Fraud Detection and Threat Monitoring. Zenodo. <https://doi.org/10.5281/zenodo.18176490>

[153] Rabbi, M. S. (2026). AI-Driven SCADA Grid Intelligence for Predictive Fault Detection, Cyber Health Monitoring, and Grid Reliability Enhancement. Zenodo. <https://doi.org/10.5281/zenodo.18196487>

[154] A., Md Sazid (2026). Comparative Performance Analysis of AI-Optimized MPPT Algorithms for Grid-Connected Solar PV Systems. Zenodo. <https://doi.org/10.5281/zenodo.18261309>

[155] Zaman, S. U., Afrin, S., Zaidi, S. K. A., & Islam, K. S. A. (2026). Resilient edge computing framework for autonomous, secure, and energy-aware systems. *World Journal of Advanced Engineering Technology and Sciences*, 18(01), 105–121. <https://doi.org/10.30574/wjaets.2026.18.1.1577>

[156] Ali, A. (2026). The impact of packaging design on recycling efficiency in municipal systems. *World Journal of Advanced Engineering Technology and Sciences*, 18(01), 122–139. <https://doi.org/10.30574/wjaets.2026.18.1.0019>

[157] Mim, M. A., Sharif, M. M., Rahman, F., & Nahar, S. (2026). Smart IoT infrastructure for workplace efficiency and energy savings. *World Journal of Advanced Engineering Technology and Sciences*, 18(01), 140–156. <https://doi.org/10.30574/wjaets.2026.18.1.0026>

[158] Taimun, M. T. Y., Alam, M. S., & Fareed, S. M. (2026). Digital twin-enabled predictive maintenance for textile and mechanical systems. *World Journal of Advanced Engineering Technology and Sciences*, 18(01), 187–203. <https://doi.org/10.30574/wjaets.2026.18.1.0001>

[159] Fazle, A. B., Taimun, M. T. Y., Fareed, S. M., & Alam, M. S. (2026). Ergonomic and automation based process redesign in industrial workstations. *Global Journal of Engineering and Technology Advances*, 26(01), 091-108. <https://doi.org/10.30574/gjeta.2026.26.1.0010>

[160] Alam, M. S., Fareed, S. M., Fazle, A. B., & Taimun, M. T. Y. (2026). Intelligent material flow optimization using IoT sensors and RFID tracking. *Global Journal of Engineering and Technology Advances*, 26(01), 109-125. <https://doi.org/10.30574/gjeta.2026.26.1.0011>