WIAE

World Journal of Advanced Engineering Technology and Sciences W,
cISSN: 2582-8266 E;d«mmg
Cross Ref DOI: 10.30574/wjaets s e
WJAETS Journal homepage: https://wjaets.com/
(RESEARCH ARTICLE) W) Check for updates

An IoT-Enabled High-Frequency Smart Energy Meter with Web Based Data
Management and Control

Ammar Abdussamad Umar *, Aliyu Nura Salisu, Lucky Ajidoku, Mohammad-Jamiu Babatunde Balogun and
Zainal Abidina Abdulhadi

Department of Electrical Engineering, Bayero University, Kano, Kano State, Nigeria.
World Journal of Advanced Engineering Technology and Sciences, 2026, 18(01), 304-320
Publication history: Received on 11 December 2025; revised on 18 January 2026; accepted on 21 January 2026

Article DOI: https://doi.org/10.30574 /wjaets.2026.18.1.0041

Abstract

The primary feature of a smart grid is the automation of processes within the entire power system. The control is not
possible without an accurate data showing full demand on the grid. This paper presents the design of a high frequency
smart energy meter that captures accurate energy consumption in real time utilizing the ESP32 microcontroller, MQTT
communication protocol, PHP web application, and SQL database. The design enables automatic energy measurement
and transmission of the measured data in real-time to a web server using the MQTT protocol, where the data is securely
stored in an SQL database. The system also includes an integrated online payment platform, allowing customers to
prepay their energy bills. The energy consumption data from the system can then be used in different ways such as
forecasting load expansion overtime, knowing system expansion over time, and system automation.

Keywords: ESP32 Microcontroller; Smart Grid; MQTT Communication Protocol; Web Management System; SQL
Database; PHP

1. Introduction

Smart grid is an advanced power network that uses digital communication technologies and automation to manage
electricity generation, transmission, and distribution more efficiently and reliably. It integrates renewable energy
sources, enables real-time monitoring and control, and facilitates two-way communication between utilities and
consumers, allowing for better management of supply and demand, improved energy efficiency, and enhanced
resilience to disruptions.

The main source of control and decision making is the energy meter data because it shows the load variation over a
specific period of time thus making it easy for utility company to analyze the data and deploy models that will be used
to optimize the operation of the whole system. High frequency energy meters transmit energy data to a dedicated server
every small interval of time ranging from fraction of seconds to a minute [1]. The frequency at which data is recorded
in the database gives more clarity about the energy change over time and the higher the frequency of measurement, the
higher the accuracy of the energy measured.

Smart energy meters form a network containing multiple devices transmitting to a dedicated server. Therefore, to
design a complete smart energy meter, the design of the communication protocol, and server endpoint has to be taken
into consideration. The bilateral flow of information on the network must be secured to ensure data security and
integrity [2]. The choice of communication protocol is very important. In the case of high frequency data transmission,
HTTP is not recommended given the number of devices trying to send a request and get a response within the same

* Corresponding author: Ammar Abdussamad Umar

Copyright © 2026 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0.

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://www.wjaets.com/
https://doi.org/10.30574/wjaets.2026.18.1.0041
https://crossmark.crossref.org/dialog/?doi=10.30574/wjaets.2026.18.1.0041&domain=pdf

World Journal of Advanced Engineering Technology and Sciences, 2026, 18(01), 304-320

interval of time. Most of these request/responses will most likely not get recorded by the database given the number of
requests in a second since we are dealing with a high frequency data transmission.

2. Material and methods
The design of smart energy meter requires the design of multiple systems that will work simultaneously with the
devices. These systems are:

e Smart Energy Meter
e Server Endpoint and User Interface
e Communication Protocol

The entire system is represented in Figure 1.

crIRDT FELAY LoD
o

ESP32

MICROCONTROLLER UNIT =2

PHP WEB
APPLICATION

Figure 1 System Design

The section representing the smart energy meter as seen in Figure 1, consist of a microcontroller unit, relay, current &
voltage sensors, and status indicators. The microcontroller serves as the heart of the system because it takes inputs such
as the output of the voltage and current sensors, and it establish communication with the server through MQTT
communication protocol. The smart energy meter section consists of three major components.

e Hardware
e Firmware
e Software

2.1. Hardware Design

These are the physical devices that constitute the smart energy meter. Figure 2 below shows the hardware part of the
system in green square. It consists of four components:

ESP32 Microcontroller
ACS712 Current Sensor
ZMPT101B Voltage Sensor
Relay Unit

305

World Journal of Advanced Engineering Technology and Sciences, 2026, 18(01), 304-320

Hardware Unit

CURRENT RELAY LoAD
AC SUPPLY SENSOR

ESP32
MICROCONTROLLER UNIT || #t=tt®

MOTT BROKER

sUESCRIEE

&
] s
@ o
a 5
STATUS o =
Ebicatozs
PHP WEB

APPLICATION

Figure 2 Hardware Unit of The System

2.2. ESP32 Microcontroller Unit

The choice of microcontroller to execute the design is based on the specifications of the system. The system requires an
interface to communicate with the internet, ADC with sufficient frequency response, and sufficient clock speed to avoid
latency and data loss. These requirements were pointing to ESP32 microcontroller because it has the specifications
indicated by the figure below

Specifications - ESP32 DEVKIT V1 DOIT

Number of cores |2 (Dual core)

Wi-Fi 2.4 GHz up to 150 Mbit/s

Bluetooth BLE (Bluetooth Low Energy) and legacy Bluetooth
Architecture 32 bits

Clock frequency |Up to 240 MHz

RAM 512 KB

Pins 30

Capacitive touch, ADCs (analog-to-digital
converter), DACs (digital-to-analog converter), I2C
(Inter-Integrated Circuit), UART (universal
asynchronous receiver/transmitter), CAN 2.0
(Controller Area Network), SPI (Serial Peripheral
Interface), I2S (Integrated Inter-IC Sound), RMII
(Reduced Media-Independent Interface), PWM
(pulse width modulation), and more.

Peripherals

Figure 3 ESP32 Specifications [3]

2.3. ACS712 Current Sensor

The ACS712 is a linear current sensor based on the Hall Effect. It offers a cost-effective and accurate method for
measuring both AC and DC currents. Its design enables straightforward integration, making it suitable for industrial,
commercial, and communication systems. Common uses include motor control, load monitoring and management,
switched-mode power supplies, and protection against overcurrent faults [4]. This module gives a fairly accurate
reading when calibrated very well and when operated under

306

World Journal of Advanced Engineering Technology and Sciences, 2026, 18(01), 304-320

1 8

Ip+ VCC v
2 7 out

IP+ VIOUT }———0 C

T 0.1 uF
Ip ACS712 ==
3
ip_ FILTER

6
b L
IP- GND 5 1nF

Figure 4 ACS712 Circuit Diagram [4]

In the diagram above, The ACS712 gives an output of an analog signal, Vout. which varies linearly with the uni- or bi-
directional AC or DC primary current sensed, IP, within the range specified (0-30A in this case). Cr is recommended for
noise management, with values that depend on the application [4].

2.4. ZMPT101B Voltage Sensor

This is a high precision AC voltage sensor module that uses ZMPT101B transformer and an adjustable potentiometer
for sensitivity tuning. The input AC voltage is transformed into a proportional low-voltage signal (0-5V) for easy
readings by microcontrollers and ADCs. The configuration used by the module is shown in Figure 4. The output of the
ZMPT101B is connected across an operational amplifier with a sampling resistor in between V+ and the output. The
sampling resistor can be adjusted in order to calibrate the sensor [5].

R

R'
U 0-1000 | ZMPT101B L
ro

U2

Figure 5 ZMPT101B Module Circuit Diagram [5]

2.4.1. Relay Unit

This is responsible for connecting and disconnecting the load from the network depending on the control signal received
from the cloud.

2.4.2. Pin Assignment

Pin assignment is very important while connecting hardware units to a microcontroller because, it is important to
connect devices to the appropriate pins. For example, where the hardware is an output device, it should be connected
to a pin with ADC. Table 1 below shows the pin assignment of the hardware connected to the ESP32 microcontroller
and, Figure 5 shows the complete implementation of the hardware connections to the microcontroller.

Table 1 Pin Assignment

Hardware Pin Number
Relay D23
Voltage Sensor D13
Current Sensor D33
LED For Wi-Fi Status D21

307

World Journal of Advanced Engineering Technology and Sciences, 2026, 18(01), 304-320

LED For Data Transfer | D18

LED For Low Credit D19

Buzzer D5

LED Indicators i
. < Burrer Current Sensor Output sigaal AC Source
|

Nuetral

ACSTI2

peuitg sapses wRq

cund ¢ |
1 2MPTI0IB
. !
p. A
Load

Voltage Semsor Outpat Signal

Wifl LED Signal
Lew Credit LED Signal

Buzzer Signal

Figure 6 Circuit Diagram

2.5. Firmware Design

Firmware refers to a software embedded into hardware devices. The software is written, compiled and stored in a non-
volatile memory of the microcontroller. The software is responsible for controlling the behavior of the hardware
devices, manages communication with peripherals, handles network connections, and executes other tasks necessary
for the proper functioning of the device. Dividing the firmware program into modules is very important to allow for easy
update/changes while the device is in operation [6]. The firmware of this system is represented in Figure 7.

Firmware

MQTT Connection Current and Voltage

Measurement

Publish Subscribe

WiFi Setup

Figure 7 Modular Representation of the System Firmware

2.6. Wi-Fi Setup

This is the section of the firmware responsible for establishing a connection to a WiFi network enabling the smart energy
meter to communicate with the Internet. The smart energy meter attempts to connect to a predefined WiFi Network

using the SSID and password provided by user during meter configuration.
2.6.1. MQTT Connection

This module facilitates connection between the smart meter and an MQTT broker for both publishing and subscribing
to topics. If the connection to the broker is successful, two processes occur at the same time. Publish and subscribe.

308

World Journal of Advanced Engineering Technology and Sciences, 2026, 18(01), 304-320

Publish process involves reading current and voltage sensor data and encoding it into a JSON format and publishing it
to a specified topic on the MQTT broker. The publish process flowchart is shown in Figure 8.

Start

Connect MQTT

Read Voltage and
Current sensor

Publish json containing
voltage and current
values

< 1s MQTT
Connected?

Figure 8 Publish Process

The subscribe process is responsible for subscribing to a specific topic on the MQTT broker and receive control values
in real time that will be used for controlling the load based on the value generated by a PHP script. Figure 9 shows the
process flowchart describing the process. The first stage of the flowchart is to try and connect to the MQTT broker. If
the connection is successful, is will get the meter status variable from the MQTT broker in real time. If meter status is 1,
the meter will switch off the supply by triggering the relay and the buzzer will start beeping alerting the user that he
has low credit. Else if the meter status is 0, the meter will continue its operation and the supply is ON.

Figure 9 Subscribe Process flowchart

309

World Journal of Advanced Engineering Technology and Sciences, 2026, 18(01), 304-320

All of the processes listed above are required to run simultaneously and in real time. To manage \the execution of these
tasks, there is a requirement to make use of a real time operating system. Complex systems require the use of real time
operating system (RTOS) [7]. In figure 10, A shows a basic embedded system that does not have real time requirement.
B is a bit more complex as it requires real time requirements. Therefore, real time operating system (RTOS) is required
to manage simultaneous task execution.

Application
Real-time
Application Operating Ng::"(‘fk
System
Device Drivers Device Drivers
Hardware Hardware
A B

Figure 10 Types of Embedded Systems [7]

2.7. Communication Protocol

The choice of communication protocol as highlighted earlier under firmware design is MQTT communication protocol.
The choice is based on the architecture of the MQTT communication protocol (subscribe/publish model) that allows
multiple devices to communicate with a single TCP/IP server in ease. Additional features such as authorization,
authentication and secured connections are easily integrated into an MQTT connection [8]. Figure shows a basic MQTT
communication protocol configuration where multiple devices are connected via an intermediate server known as
broker. Each device is a client and can be configured to either publish or subscribe to a topic or do both. The broker is
the middle entity between all the clients on the network.

— N -

Client //

Figure 11 MQTT Architecture [9]

2.8. Meter Management System

This is an essential part of the system responsible for control and data storage. The meter management system is
designed using PHP which is server-side programming language used in creating dynamic web pages. Its popularity is
in such a way that 75.2% of the entire world web pages are designed using PHP [10]. The PHP web application in this
project will focus on basic features that will make the system work just fine. Figure 12 shows the implementation the
modular structure of the meter management system.

310

World Journal of Advanced Engineering Technology and Sciences, 2026, 18(01), 304-320

Meter Management System

Database Connection Start Session || Pay Calculate Meter Update Update Energy User Authentication
Energy Status Balance Consumption
Handle Payment

Figure 12 Modular Structure of The Meter Management System

Database Connection: This section of the script facilitates the connection of the application with an existing
structured SQL database. This module plays a crucial role in routing and fetching data from the database.
Authentication: This control user access across the meter management system in such a way that only verified
costumers, staff, and system administrators are given access to specific information depending on the type of
user. The information of each user is personalized based the record of such costumer in the database.

Start Session: This involves starting a session variable to store customer information that can be accessed
everywhere in the application using the $SESSION associative array. This reduces the need to constantly access
the database.

Calculate Energy: This module calculates the total energy consumed over a period by analyzing power data
retrieved from the database, computing energy consumption based on power usage and time intervals between
data points. To avoid accumulating the energy consumption where the meter is offline, the module makes sure
that whenever the intervals between two data points is up to 30 seconds, the accumulation skips the data points
with 30 seconds interval or more and continue on the subsequent sets of data points.

Update Balance: This module handles the deduction of balance based on the energy consumed by a user,
updating the corresponding database records accordingly. The deduction of balance is done whenever the
energy consumed is up to 1kWh. Each time balance is deducted, the total energy and timestamp at the time of
deduction is stored in the database.

Update Energy Consumption: This function maintains records of energy consumption for each meter, either
updating existing records or inserting new ones, ensuring accurate tracking of energy usage over time.

Pay: This module handles payment reception and processing. The user is prompted to input the intended
amount to top up to his account. Upon submission of the form, the same amount is communicated to the
payment gateway where the payment reception and processing is done by the payment service provider. Upon
completion of the transaction, the payment service provider returns a JSON that contains the status, meter Id,
transaction Id, and amount. Upon the reception of these parameters via an API, a PHP script handle the
transaction properly by displaying the status of the transaction to the user, adding records to the database and
if the transaction is successful, increment the balance pointing to the meter.

Meter Status: This module retrieves the timestamp of the latest entry in the "EnergyData” table and compares
it with the current time to determine whether the meter is online or offline. If the time difference between the
latest entry and the current time exceeds a predefined threshold (2 minutes), the meter is considered offline.
otherwise, it's considered online.

In addition to the modules shown in Figure 12, there is another block of PHP scripts to handle communication between
the MQTT broker and the apache web server. These scripts are standard libraries created by the PHP community
accessible via Composer. Composer is dependency manager that manages the integration of third party solutions to an
existing PHP application [11]. Figure 13 shows the modular structure of the MQTT libraries. Therefore, we need to build
on the scripts of the MQTT libraries to handle communication between the meter management system and the MQTT

311

World Journal of Advanced Engineering Technology and Sciences, 2026, 18(01), 304-320

MQTT Client Script

MQTT Objects Publish Subscribe Database
Connection

Figure 13 MQTT Integration Section

MQTT Objects: These are standard objects that are included in the MQTT client script and therefore more and more
classes can be created using the objects. MQTT functionalities such authentication, security, publishing, and
subscription can be derived from these objects.

Publish: This module continuously checks the balance of a meter identified by a specific ID pointing to costumer. If the
balance is less than a threshold amount(Price of a unit of electricity), it publishes 1 to an MQTT topic 'meterStatus’,
indicating a low balance; otherwise, it publishes 0, indicating a normal balance. The value of 'meterStatus’ is used for
controlling the meter to either keep the supply ON or OFF as explained in the flowchart in Figure 9.

Subscribe: This module subscribes to an MQTT topic named ‘SmartEnergyMeter’. Upon receiving a message, it triggers
the ‘procMsg’ function from the MQTT object. Inside ‘procMsg’, it decodes the received JSON message, checks if it
contains ‘voltage’ and ‘current’ keys, and inserts these values into a database.

Database Connection: Just like in the previous block, database connection is mandatory since there is a need of saving
and retrieving data from the database.

2.9. Database

This is one of the most important part of the meter management system because it is responsible for storing information
about consumption. In which, the data stored in the database is retrieved for control purposes and decision making. The
energy consumption stored in the database gives full insights into how, where, and when the energy is consumed [12].
The database is designed using SQL which is a relational database. Basic information about customers(users), meter,
bills, and energy consumption & tracking constitute the database where all the tables are related through normalization.
Figure 14 shows the database schema of the whole system.

smart_energy_meter
bill_payments

e

@ payment_id : int{11)

=

meter_id : int(11)

amount_paid : decimal(10,2)

@ payment_date : datetime

2 payment_status : enum('Pending’,'Paid’)

smart_energy_meter smart_energy_meter
=1 o meter_details ﬁ* o energy_tracking
2 meter_id : int(11) @ meter_id : int(11)
user_id :int(11) # last_energy_consumed : decimal(10,2)

balance : decimal(10,2)

» status : enum(’Active' 'Inactive')
o smart_energy_meter o smart_energy_meter
users energy_consumption
¢ user_id : int(11) “ @ consumption_id : int(11)
2 username : varchar(50) # meter_id : int(11)
5 password : varchar(50) [7 consumption_date : date
3 name : varchar(50) # energy_consumed : decimal(10.2)

Figure 14 Database Schema

312

World Journal of Advanced Engineering Technology and Sciences, 2026, 18(01), 304-320

3. Theory and Calculations

3.1. Hardware Implementation

3.1.1. ACS712 Current Sensor

While integrating this sensor to the design, the output is expected to be a low voltage AC signal which represents a scale
of the input. A standard C/C++ library was created by [13]. In the library, he tried to create functions that model the
sensor’s output signal as peak-peak, RMS, and DC current. Our interest is in the use of the function for RMS, because it
aligns with our application. One of the first features of the library is to convert the sensors voltage output into current
equivalent given by the mathematical equation

I _ Vout — Vmidpoint
(ma) mVper Amp

Where:

Vout is the sensor’s analog output voltage
Vmidpoint is the midpoint voltage when no current
mV per Amp is the sensor’s sensitivity

The ADC on the microcontroller represents the output of the current sensor based on a number ranging from 0 to the
maximum ADC resolution. There is need to convert such number to represent the voltage equivalent of the sensor’s
output.

. 1000 X V.o

per step MAXadc value

Where:
Vref 1s the reference voltage
maxADC value is the ADC’s maximum value (e.g., 1023 for a 10bit ADC)

The instantaneous measured current can therefore be derived from the sensor’s sensitivity since sensitivity is the
measure of change in output to input.

mV,

iy s _ _ per step
sensitivity = mVper gmp = oy R
m per step

From the above equation, the output of the sensor can be represented by mA per step

A _ mVpe‘r step
m per step — %
m per amp

For the computation of the RMS value of the measured current, we have to capture some samples of the instantaneous
current and use it in the following equation.

An object was created in the library and it can be instantiated as class anywhere in the program where its application is
needed.

3.1.2. ZMPT101B Voltage Sensor

[14] Used polynomial regression to calculate the estimate RMS voltage of the output of ZMPT101B Voltage sensor and
decided on the best method polynomial to use based on comparison between the value calculated using polynomial and
the actual measured value using standard FLUKE 115 meter. The work tried to find out the performance of the
polynomials from order 1 to order 5 in relation to the accurate value

313

The first five equations of the fifth order used in the methods are:

World Journal of Advanced Engineering Technology and Sciences, 2026, 18(01), 304-320

y, = —0.00000004888x* + 0.00002986x% — 0.005183x2 + 2.922x — 6.085

n

R IDE DDA
25 2N 2N 2N 2% 2N
PEADEADI DI ADY DTS
ZADEADEEDE DAY
2N QX QX QX 2N QA
PRIDI DYDY DT DY

al | D
a | | D
a| [
al | D%
a, Zyt.xf
4 | _nyxzs _

Figure 15 Polynomial Regression of Nth Order [14]

y, = 2.709x — 8.35

y, = 0.0007711x? + 2.506x + 0.2662

y3 = 0.00000412x3 + 0.000857x2 + 2.675x — 3.198

ys = 0.0000000001278x5 4+ 0.00000003529x* + 0.00001023x® — 0.003271x2 + 2.853x — 5.57

When the above equations were compared with the measured instantaneous values, the following results were

obtained:

Table 2 Voltage measurement using instantaneous voltage calculation [14]

Input Voltage measurements of the voltage sensor from the polynomial regression equations using the
voltage | jnstantaneous calculation.
fluke
meter
V)
Y1 Y2 Y3 Va Ys
Voltage | Error | Voltage | Error | Voltage | Error | Voltage | Error | Voltage | Error
V) ©%) | V) (%) v) (%) v) (%) V) (%)
250 246.48 1.41 | 229.15 8.340 2485 0.60 305.39 -22.16 | 269.55 -7.82
248 247.17 0.33 | 228.54 7.847 247.67 0.13 301.14 -21.43 | 268.96 -8.45
246 244.92 0.44 | 226.14 8.073 24591 0.04 301.46 -22.54 | 226.17 8.06
244 244.33 -0.14 | 234.17 4.029 242.11 0.77 297.93 -22.10 | 264.68 -8.48
242 241.76 0.10 | 22246 8.074 242.11 -0.05 297.93 -23.11 | 264.68 -9.37
240 240.53 -0.22 | 220.61 8.079 240.31 -0.13 295.03 -22.93 | 263.53 -9.80
238 237.38 0.26 | 217.48 8.622 238.42 -0.18 292.03 -22.70 | 260.74 -9.55
236 236.80 -0.34 | 216.69 8.182 236.61 -0.26 289.06 -22.48 | 257.69 -9.19
234 235.26 -0.54 | 215.44 7.932 234.76 -0.32 287.44 -22.84 | 25541 -9.15
232 231.56 0.19 | 214.47 7.556 232.65 -0.28 284.41 -22.59 | 245.48 -5.81
230 230.97 -042 | 213.74 7.070 230.62 -0.27 282.62 -22.88 | 250.80 -9.04

314

World Journal of Advanced Engineering Technology and Sciences, 2026, 18(01), 304-320

228 229.34 -0.59 | 212.44 6.825 228.68 -0.30 278.48 -22.14 | 247.93 -8.74
226 227.25 -0.55 | 211.60 6.372 226.58 -0.26 276.78 -22.47 | 246.40 -9.03
224 225.78 -0.79 | 209.38 6.527 22495 -0.42 274.27 -22.44 | 244.95 -9.35
222 22291 -0.41 | 207.76 6.414 222.79 -0.36 270.44 -21.82 | 243.60 -9.73
220 222.19 -1.00 | 205.98 6.373 221.42 -0.65 268.41 -22.00 | 242.51 -10.23
218 220.39 -1.10 | 202.82 6.963 218.66 -0.30 265.55 -21.81 | 239.42 -9.83
216 217.29 -0.60 | 199.68 7.556 217.12 -0.52 262.33 -21.45 | 235.33 -8.95
214 216.22 -1.04 | 197.53 7.696 215.83 -0.86 260.25 -21.61 | 233.99 -9.34
212 213.99 -0.94 | 196.24 7.434 213.76 -0.83 257.19 -21.32 | 231.73 -9.31
210 212.10 -1.00 | 194.42 7.419 211.84 -0.88 255.47 -21.65 | 230.07 -9.56
208 210.40 -1.15 | 192.78 7.317 210.33 -1.12 252.35 -21.32 | 228.32 -9.77
206 208.71 -1.32 | 191.31 7.131 208.51 -1.22 249.72 -21.22 | 226.76 -10.08
204 206.42 -1.19 | 190.42 6.657 206.38 -1.17 247.53 -21.34 | 224.89 -10.24
202 205.18 -1.57 | 188.42 6.723 204.47 -1.22 24442 -21.00 | 222.58 -10.19
200 204.04 -2.02 | 186.25 6.875 203.84 -1.92 241.26 -20.63 | 220.53 -10.27

From the above results, they concluded that the polynomial with the third order, y; has the best accuracy given that it
has the least percentage error(highlighted in green) compared to the rest of the polynomials whose percentage error
are highlighted in red. Therefore, they used the y; polynomial in the C firmware to capture instantaneous sample in real
time so that the RMS voltage can be calculated using the following relation:

Vims = |~ 20, V2 [14]

n&i=1"1

Where V; is the instantaneous voltage and n is the number of samples captured by the ADC of the microcontroller at
uniform intervals. The flowchart in figure 17 below is used in the process of sensing and recording the voltage being

measured.

IF_rlsul'e that the Sensor is

trimmed to the right AIDC
position Using the referemce

Y

Obtain the ATWC
“Value of the Voltage

Polbvmomial and Calculate the

Use the ADC Value in the Selected
corresponding Analog Value

Manv of the Stages Above) to Caculate

Use the Analog Values (that Include as
the Virms Depending on the method

Figure 16 The flow chart of voltage calculation [14]

315

World Journal of Advanced Engineering Technology and Sciences, 2026, 18(01), 304-320

3.1.3. RELAY UNIT

The relay unit is very important because it is responsible for connecting and disconnecting the load. Figure 17 below
shows its connection to the whole system. A typical AC/DC relay has 5 terminals which are the VCC, Ground, Control
Terminal, Normally Closed (NC) Terminal, and Normally Open (NO) Terminal. In this case, the VCC and Ground
terminals are connected to a 5V and ground terminals respectively to energize the relay. While the control terminal is
connected to the microcontroller unit. And the whole supply of the system is connected to the normally closed terminal
(NC) so that voltage will only be available to the ZMPT101B sensor and the load only if the microcontroller sends a
signal to the control terminal of the relay module.

AC Source
u
-
O
Relay Cantrol Ground o | Z,

3 Vee

2 Relay

- R

3

Figure 17 Relay Interfacing

3.2. Firmware Implementation

3.2.1. Real Time Operating System

As highlighted in the design of this system, there is a need for a real time operating system to manage task execution
due to the constraint timing requirement of the system. The Real Time Operating System used in this project is
FreeRTOS which is lightweight kernel compatible with many microcontrollers including ESP32. FreeRTOS allows us to
execute several tasks simultaneously by distributing computing resources equally among all the tasks. Since the ESP32
microcontroller has two cores, we distributed the tasks at hand to the two cores of the microcontroller. The following
are the tasks of the whole firmware:

Sense Task

Publish Task

MQTT Task

MQTT Callback Task
Wi-Fi Task

Sense Task: This task is responsible for measuring voltage and current values in real time then making those values
available to a pointer in the flash memory of the microcontroller.

Publish Task: This task is responsible for making getting the values of voltage and current stored on the flash memory
of the microcontroller to a topic on the MQTT broker.

MQTT Task: This task is responsible for handling MQTT connection between the microcontroller and the MQTT broker.
MQTT Callback Task: This task is responsible for processing incoming MQTT messages and updates the meter status.

Wi-Fi Task: This task is responsible for managing Wi-Fi connection and it serves as the communication layer for the
microcontroller and the internet.

While implementing FreeRTOS in the firmware, the normal configuration of the firmware is altered because the main

loop where code is usually written is empty. This forces the microcontroller to reset due to inactivity in the main loop.
A watchdog timer is therefore placed in the main loop to prevent the microcontroller from resetting.

316

World Journal of Advanced Engineering Technology and Sciences, 2026, 18(01), 304-320

4., Results

From the design and implementation in the previous sections of this paper, we successfully created the smart energy
meter composing of two components which are the hardware and software. The most important part of the system is
in the transmission of data from the meter to the database server which includes the timestamps of the recorded data.
It is very important to note that the novelty of this work lies in the ability of the system transmit the data and record the
readings without much latency in the system.

4.1. Hardware

The previous sections of this paper dealt with the hardware design. The design was taken and tested before
implementation. The test involved was a unit test for all the hardware components to verify the accuracy of the system
and ensure that each component is giving out the expected output or at least close the expected output. The firmware
code written in C was also tested alongside some of the hardware components to ensure smooth operation. Figure 18
below shows the hardware prototype.

Figure 18 System Prototype

From figure 18 above, the hardware prototype having the ESP32 microcontroller as the heart of the system with other
important units like the ACS712 current sensor, ZMPT101B voltage sensor, and the relay unit interconnected by wires
in accordance with the design schematic diagram presented in the design section of this paper.

4.2. Software

The software design was implemented based on the design specifications listed in the design section of this paper. Just
like the hardware, unit tests were carried on the different modules of the software. The figure below shows the user
authentication of the web application where a user is required to input a unique ID dedicated to the user and a password.

317

World Journal of Advanced Engineering Technology and Sciences, 2026, 18(01), 304-320

Meter Management
Portal

LOGIN.

Want To Use Our Services? Sign up now

Forgot password?

Figure 19 User authentication interface

The next stage after a successful user authentication is the dashboard shown in figure 20. As it can be seen, details of
the meter such as the meter ID, the balance of the user in local currency, the status of the meter in real time, and the
energy consumption. There is also a log out and add credit buttons which are used to terminate a user session and add
money to user’s wallet respectively. It should be noted that these details displayed on the database are fetched from the
database in real time with the exception of the meter status which is directly controlled by a script monitoring MQTT
data transfer in real time.

Welcome: KAN123098

Account Balance: &
3101.44

Your Meter Is OFLINE

Total enew consumed:
2.37 kWh

Log out

Figure 20 Meter Management System Dashboard

Another important part of the system is the payment page shown in figure 21. In this work, the payment page is just an
input form where each number added to the form serves as an increase to the account by the added balance. In deployed
system, upon form submission, a request with user’s information along the payment amount is sent to a payment service
provider via an API where a response is sent by the service provider validating the user. Upon each transaction, the
basic details of the transaction such as its status, date, reference number, are recorded in the database. Also, an email is
sent the user confirming the state of payment. Upon a successful transaction, a balance of the equivalent transaction
amount is added to the user’s wallet and if the meter is already beeping, the credit status of meter is changed and supply
is restored to the costumer immediately.

318

World Journal of Advanced Engineering Technology and Sciences, 2026, 18(01), 304-320

Bill Payment

Amount to Pay

=T

PAY

Dashboard

Figure 21 Payment Page

4.3. MQTT Broker

This being the intermediate server that facilitates communication between the meter and apache server. MQTT Explorer
was used since it has a user interface. The broker IP address was used as the communication endpoint for both the
apache and firmware of the energy meter. A topic was also created for the meter and the apache subscribes to the topic.
A JSON data format of voltage and current values are published to a topic. Figure 22 shows the MQTT Explorer user
interface and the JSON values of current and voltages transmitted in real time. On the MQTT explorer, you get to the
number of message posted on the server and the topics registered on it. You can also access all of the data on the server.

@ MQTT Explorer o
Application Edit View
MQTT Explorer Q, Search DISCONNECT & .
> $SYS (51 —— -
meterStatus = 1 opic ' W -
AmmarSmartEnergyMeter = ("voltage™:220.00. current™:4 55}

Figure 22 MQTT Explorer Interface

5. Discussion

The data transmitted from the smart energy meter and stored in the database gives the opportunity to have full
information about the changes in energy consumption over time. This is very important in load forecasting, possible
system expansion and operation optimization. The data itself can be used in steering policy changes in accordance with
the load specific changes of the demand over a specific period of time.

Few changes to the system on the web application side of the system, advance system control is possible where remote
control of a specific costumer’s supply is possible. This is very important to costumers because it can enable energy
saving and serves as a footprint for smart city

Injecting the data into a narrow trained Al model where the model is trained to solve a specific load problem or system
operation optimization moist especially in a power plant.

6. Conclusion

This design can be implemented on all types of power systems whether it being a distributed or an integrated system
having too many nodes. Also, additional information data such as frequency and other parameters describing the quality
of power at the consumption can be integrated into the system.

319

World Journal of Advanced Engineering Technology and Sciences, 2026, 18(01), 304-320

The work in this article is just a basic illustration of the function of a high frequency energy meter. More modifications
to the different parts of the system is possible in order to improve the functionality of the high frequency energy meter.

Compliance with ethical standards

Disclosure of conflict of interest

No conflict of interest to be disclosed.

References

[1]

[2]

[10]
[11]
[12]

[13]

[14]

[15]

F. Kabir, T. K. Araghi and D. Megias, "Privacy-preserving protocol for high-frequency smart meters using
reversible watermarking and Paillier encryption,” Computers and Electrical Engineering.

A. Akkad, G. Wills and A. Rezazadeh, "An information security model for an loT-enabled Smart Grid in the Saudi
energy sector," Computers and Electrical Engineering, 2023.

"Espressif," [Online]. Available:
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf. [Accessed 04 11
2024].

Spark Fun, "Spark Fun," 08 11 2024. [Online]. Available:
https://www.sparkfun.com/datasheets//BreakoutBoards/0712.pdf. [Accessed 08 11 2024].

Micro Transformers, "Micro Transformers,” 13 11 2024. [Online]. Available: https://www.micro-
transformer.com/2ma-2ma-voltage-transformer-ZMPT101B.html. [Accessed 13 11 2024].

H. D. Nguyen, N. Le Sommer and Y. Maheo, "Over-the-Air Firmware Update in LoRaWAN Networks: A New
Module-based Approach,” in The 21st International Conference on Mobile Systems and Pervasive Computing
(MobiSPC), WV, USA, 2024.

M. Barr and A. Massa, Programming Embedded Systems, O'Reilly.

A. Gerodimos, L. Maglaras, M. A. Ferrag, N. Ayres and 1. Kantzavelou, "loT: Communication protocols and security
threats," Internet of Things and Cyber-Physical Systems, vol. 3, pp. 1-13, 2023.

wallarm, "wallarm,"” 28 December 2024. [Online]. Available: https://www.wallarm.com/what/coap-protocol-
definition. [Accessed 3 January 2024].

https://w3techs.com/technologies/details/pl-php, "w3techs," [Online]. [Accessed 2 January 2025].
"Composer,"” [Online]. Available: https://getcomposer.org/doc/00-intro.md. [Accessed 5 January 2025].

T. Fawcett,]. Palmer, N. Terry, B. Boardman and U. Narayan, "Using smart energy meter data to design better
policy: Prepayment meter customers, fuel poverty and policy targeting in Great Britain," Energy Research &
Social Science, pp. 1-11, 2024.

RobTillaart, "Github," 21 March 2020. [Online]. Available: https://github.com/RobTillaart/ACS712 /tree/master.
[Accessed 15 July 2024].

A. I, K. N.S, M. W. M, S. Hussain and M. M., "Calibration of ZMPT101B Voltage Sensor Module Using Polynomial
Regression for Accurate Load Monitoring," ARPN Journal of Engineering and Applied Sciences, vol. 12, no. 4, pp.
1076-1084, 2017.

Sheetal, Shriraksha, S. Rehman, Vinutha and Sayeesh, "Smart Energy Meter Using IoT," International Journal of
Research in Engineering, Science and Management, vol. 3, no. 7, pp. 303-307, 2020.

320

